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Abstract: Many biological systems are characterised by biological entities, as well as their relation-
ships. These interaction networks can be modelled as graphs, with nodes representing bio-entities,
such as molecules, and edges representing relations among them, such as interactions. Due to the
current availability of a huge amount of biological data, it is very important to consider in silico
analysis methods based on, for example, machine learning, that could take advantage of the inner
graph structure of the data in order to improve the quality of the results. In this scenario, graph neural
networks (GNNs) are recent computational approaches that directly deal with graph-structured data.
In this paper, we present a GNN network for the analysis of siRNA–mRNA interaction networks.
siRNAs, in fact, are small RNA molecules that are able to bind to target genes and silence them.
These events make siRNAs key molecules as RNA interference agents in many biological interaction
networks related to severe diseases such as cancer. In particular, our GNN approach allows for the
prediction of the siRNA efficacy, which measures the siRNA’s ability to bind and silence a gene target.
Tested on benchmark datasets, our proposed method overcomes other machine learning algorithms,
including the state-of-the-art predictor based on the convolutional neural network, reaching a Pearson
correlation coefficient of approximately 73.6%. Finally, we proposed a case study where the efficacy
of a set of siRNAs is predicted for a gene of interest. To the best of our knowledge, GNNs were used
for the first time in this scenario.

Keywords: graph neural network; deep learning; siRNA; biological networks

1. Introduction

Recent advancements in high-throughput technologies have expanded the possi-
bility of analyzing a large amount of biological data. Moreover, biological information
increases when considering interactions and relations between different molecules. Many
biological systems can be easily represented and modelled as graph networks in which
different entities interact with each other through a complex set of interactions or relations.
The molecules of a biological network are represented as nodes, and the interactions are
represented as edges of the graph [1]. Different types of biological information can be repre-
sented in the shape of networks; some examples are protein–protein interaction networks,
where interactions are part of a cell signalling cascade inside the cell, different metabo-
lites interacting inside a specific metabolic pathway, and interacting genes belonging to a
transcriptional regulative network [2,3]. In this context, artificial intelligence approaches
such as machine learning (ML) contribute to revealing hidden relations between molecules
inside the cell, thus explaining part of complex biological mechanisms, such as the onset
of different diseases. Often, they can efficiently model these interactions for data analysis;
for example, for classification or prediction issues, exploiting their relevant characteristics
in classification/prediction accuracy. Nevertheless, traditional ML algorithms do not deal
with graph-structured data; in this way, they lose the intrinsic relationships regarding
the network interaction model. Graph neural networks (GNNs) are recent computational
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approaches applied to the analysis of data modelled as graph structure [1]. Different
from other ML models, which usually work with tabular data, they are able to analyse
data represented with a graph structure, such as biological networks. Moreover, they
combine the advantage of analysing data, represented with a graph structure, and the
feature of modelling the intrinsic topology of data, highlighting the hidden relationships
and information between them [3,4]. This provides a simple and intuitive representation of
heterogeneous and complex biological processes. Besides this, GNNs are not only suitable
for non-Euclidean data but are also able to extract potential graph structures from data
without apparent graph structures, such as images, and make inferences based on this
structure [2]. A case study of biological data modelled as biological networks is small
interfering RNA (siRNA)–messenger RNA (mRNA) interaction networks, where a few
mRNAs interact with a large number of siRNAs. Recently, attention has been paid to this
biological network due to the ability of siRNA molecules to act in cancer treatment as RNA
interference (RNAi) therapeutic agents [5]. In the bio-medical field, siRNA could represent
a new potential strategy to modulate cellular mechanisms governing specific pathological
states, such as cancer [5–7]. They are non-coding RNA molecules acting by binding specific
target genes through specific RNA binding site interactions. siRNA efficacy in targeting
and silencing a specific gene is linked to the affinity of siRNA to specifically bind an mRNA
target, thus defining the gene silencing effectiveness of that siRNA for a specific sequence
of the target gene [8]. In this scenario, it is important to predict in silico the siRNA efficacy
since the selection of siRNAs with high efficacy values is an important feature for the
consequent in vitro siRNA production. Indeed, it allows for the selective binding of the
selected target gene with a high affinity, thus blocking its cellular action.

This paper proposes a GNN approach to face the problem of siRNA–mRNA efficacy
prediction, defining a specific topological model. Indeed, one of the critical tasks for
siRNA–mRNA interaction analysis is the prediction of siRNA efficacy on mRNA binding,
which depends upon different siRNA features, such as its sequence feature, thermodynamic
feature, secondary structure feature, etc. This can limit the ability of the prediction since
these features are biased and incomplete feature vectors. ML has proved to overcome these
weaknesses linked to the features of these biological data [9]. The GNN exploits the advan-
tage of directly working with graph-structured data; this way, it does not lose information
about the siRNA–mRNA interaction model. The rest of the paper is organised as follows:
in Section 1.1, some related works are summarised; Section 3 describes the SiRNA datasets
used, the sequence and thermodynamic features, the GNN, and the proposed approach; in
Section 2, results, discussion, and a simple case study are reported; finally, Section 4 gives
the conclusions.

1.1. Related Work

In recent years, many authors used GNNs to solve classification, clustering, and pre-
diction problems in bioinformatics. In [1], the authors discuss, in a comprehensive way,
domains in bioinformatics in which GNNs are frequently applied, such as protein function
prediction, protein–protein interaction prediction, gene regulatory networks, and in silico
drug discovery and development. Authors in [10] propose a GNN-based method for
identifying ncRNA–protein interactions (NPIs). The proposed method was compared with
four state-of-the-art machine learning methods, obtaining comparable performances but
increasing the capability of predicting novel interactions based on network and sequence in-
formation. The work in [11] introduces a graph auto-encoder network to create embeddings
for scRNA-seq cell data. The results show that modelling the data as a graph increases
the flexibility in defining custom features characterizing the genes, the cells, and their
interactions. A similar approach for scRNA-seq cell data is described in [12], where, in
order to capture the structural information among cells, a GNN module is added to a
zero-inflated negative binomial (ZINB) model-based autoencoder. The experimental results
on six real scRNA-seq datasets demonstrate that the proposed structural method outper-
forms state-of-the-art methods in terms of clustering accuracy and scalability. scGNN [13]
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introduces a graph neural network framework for single-cell RNA-Seq analyses. This
framework models heterogeneous gene expression patterns using a left-truncated mixture
Gaussian model that aggregates cell–cell relationships with GNNs, and integrates three
iterative multi-modal auto-encoders. The results show that the scGNN outperforms ex-
isting gene imputation and cell clustering tools on four benchmark scRNA-Seq datasets.
In scDeepSort [14], authors designed a pre-trained cell-type annotation method based
on a weighted GNN framework. The proposed algorithm consists of three components:
(i) the embedding layer, which stores the representation of graph nodes; (ii) the weighted
graph aggregator layer, which learns the graph structure information and generates linear
separable feature space for cells; (iii) the linear classifier layer, which classifies the final
cell state representation. In the weighted graph aggregator layer, a modified version of the
GraphSAGE [15] information processing framework was applied as the backbone GNN.
From an architectural point of view, in order to consider the edge features and measure the
importance of the neighbourhood and the connecting edges, the authors in [16] propose a
novel graph neural network named NENN applied for molecular networks. It incorporates
node and edge features based on a dual-level attention mechanism, including node-level
and edge-level attention.

Regarding the biological problem of siRNA–mRNA efficacy prediction, many machine
learning and deep learning algorithms have been applied to solve it; these algorithms are
based on the mRNA’s secondary structures and the nucleotides’ specific positions. In [17],
a deep neural network that also uses thermodynamic features to characterise the siRNA
efficacy of a siRNA–mRNA interaction is proposed. As the best result, the experiments
show a Pearson correlation coefficient of 66%, computed between true and predicted siRNA
efficacy values. The authors of the papers in [8,18] employ the same kind of thermodynamic
features using a linear regression model and obtain similar results. More recently, other
studies employ the thermodynamic features and nucleotide positions. In this direction,
authors in [9] developed a new siRNA efficacy predictor based on a deep architecture,
extracting hidden feature patterns from two modalities, including sequence context features
and thermodynamic properties. In [19], authors combine quantitative and qualitative anal-
yses to represent siRNA–mRNA interactions, and, based on this representation, introduce
a supported vector regression (SVR) predictor. Finally, authors in [20] propose a hybrid se-
quence feature-based model, LncMirNet (lncRNA–miRNA interactions network) to predict
lncRNA–miRNA interactions via deep convolutional neural networks (CNN). The results
show that LncMirNet, compared to six state-of-the-art methods on a real dataset collected
from lncRNASNP2 [21], increased the accuracy, area under curve (AUC), and Matthews
correlation coefficient (MCC).

2. Results and Discussion
2.1. Experimental Setup

We performed two kinds of experimental tests. First of all, we carried out a repeated
(five times) ten-fold cross-validation procedure, obtaining a total of 50 different predictions
for each algorithm. Then, in order to test our model with an independent dataset, we
trained the GNN with dataset_1 and tested it with dataset_2. As explained in Section 3.1,
in fact, we collected all of the available siRNA datasets, and the only way to test our model
with an external test set was considering dataset_1 and dataset_2 as the training and test set,
respectively. Indeed, both datasets were provided by different research groups, so they can
be considered independent of each other. The goodness of the predicted siRNA efficacy
was computed using the Pearson correlation coefficient (PCC) [22], as carried out in [9].
PCC is a statistical measure of the linear correlation between two sets of data. In this case,
PCC was computed between true and predicted siRNA efficacy values. PCC is in the range
[−1; +1], where values close to +1 or −1 indicate a strong correlation (anti-correlation)
between the variables, and values close to zero indicate a weak association between the
variables. PCC values were then averaged over 50 runs. Moreover, we computed the
mean squared error (mse) and the coefficient of determination, also known as R-squared or
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R2 [23], which explains what the percentage of the variance of a dependent variable is with
respect to an independent variable in a regression model. All of the deep learning models
were implemented in Python 3 using the Keras framework [24] with the Tensorflow 2
backend [25]. The proposed GCN model was implemented using StellarGraph library [26],
which is a Python library for machine learning on graphs and networks fully integrated
with Keras and Tensorflow. Datasets and source code are available at GitHub repository
https://github.com/BCB4PM/GNN4siRNA accessed at 1 November 2022.

2.2. Model Parameters Fine-Tuning

To obtain the best performance from the proposed model, we chose the best number
of features for input sequences (siRNA and mRNA) and fine-tuned the model hyperpa-
rameters. Table 1 reports the results of our study. With regard to the input sequences,
according to the k-mer representation, we tested different k values for both siRNA and
mRNA genomic sequences to obtain two input matrices with acceptable sparsity. Even
though both inputs are genomic sequences, they have mean lengths that differ by at least
an order of magnitude; in particular, siRNAs are small sequences, whereas mRNA can
have thousands of nucleotides. For this reason, after some tests that we do not report
here, we found a similar sparsity when siRNAs and mRNAs are represented with 3-mer
(64 features) and 4-mer (256 features), respectively. Regarding model hyperparameters, we
performed tests on the batch size, HinSAGE layer sizes, hop neighbour samples, dropout,
and optimisation function. Here, we reported details about the most critical parameters
of the architecture, i.e., the HinSAGE layer sizes and hop neighbour samples for each
layer. Figure 1 shows the fine-tuning of these hyperparameters with respect to the Pearson
correlation coefficient. In particular, we first tested different pairs of output neurons for
the first and second layer of the HinSAGE architecture (Figure 1a), taking advantage of
considering 32 and 16 neurons, respectively. Then, we looked for how many hop neighbour
samples for each layer are necessary to reach the best result (Figure 1b), and we obtained
eight hops for the first layer and four hops for the second layer.

Table 1. Parameters and hyperparameters of the input sequences and GNN model, respectively.
The same values were used for all datasets, except for the Adamax learning rate, where ∗ refers to
dataset_2 and ∗∗ refers to the other two datasets.

Parameters Values

Input
sequences

siRNA k-mer size 3

mRNA k-mer size 4

number of thermodynamic features 22

GNN
model

batch size 60

hop neighbour samples [8, 4]

HinSAGE layer sizes [32, 16]

dropout 0.15

Adamax learning rate 0.005 ∗/0.001 ∗∗

loss function mean squared error

https://github.com/BCB4PM/GNN4siRNA
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(b)
Figure 1. Fine-tuning of (a) HinSAGE hidden layers and (b) hop neighbour samples hyperparameters
with respect to Pearson’s correlation coefficient.

2.3. Experimental Results and Comparison with Other Predictors

The experimental results of our GNN approach for siRNA efficacy prediction were
computed in terms of the average PCC, mse, and R-squared using the parameters sum-
marised in Table 1, as explained in the previous section. Moreover, we estimated regression
fits by means of a residual analysis of dataset_1. Figure 2 shows how the residuals are
randomly scattered around zero; this means that the residuals are consistent with random
error, and that the model has no bias in the residuals. Table 2 shows the prediction results
of our proposed GNN approach, as well as the results obtained considering other deep
learning architecture, as described in Section 3.5. In the upper part of the table, representing
the 10-fold cross validation experiments, results are arranged according to dataset_1 and
dataset_2, described in Section 3.1. Further experiments on dataset_3 are summarised and
discussed in Supplementary Material and in Figures S1, S2 and Table S1 therein. As ex-
pected, all of the algorithms perform better with dataset_2 with respect to the other dataset.
This happens because dataset_2 has the easiest topology (star graph) and contains only an
mRNA target, even though the number of training samples is lower than those of the other
datasets. Otherwise, when the complexity of the dataset topology increased, as in dataset_1,
all of the compared algorithms reached lower results. Interestingly, the proposed method
not only reached better results than the other algorithms with all datasets, but was also the
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most robust concerning the complexity of the topology. Table 2 shows the obtained results
in terms of PCC, mse, and R2. The proposed GNN outperformed all of the other methods,
and the best results of approximately 73% were reached with regard to dataset_2. The
state-of-the-art method, indicated as the baseline in the table, reached, at most, 69.5% with
regard to dataset_2. As for the remaining deep architectures, either CNN, LSTM, or DNN
did not provide meaningful results. Looking at the performance of the other algorithms,
we notice that the baseline algorithm is the second best after the proposed one in terms of
PCC and mse. With regard to the R2 measure, Table 2 clearly shows how the proposed
algorithm reaches higher values with respect to the other approaches. In general, the low
R2 values, i.e., lower than 0.50, do not surprise us since, in this kind of biological problem,
there is an inherent amount of unexplainable variability.

In the lower part of Table 2, we show results obtained during the test phase, i.e., train-
ing with dataset_1 and testing with dataset_2. In this case, although our method reached
the best results again in terms of PCC, we noticed a significant drop in performance. This
behaviour, however, was not unexpected. As recent literature has demonstrated—see,
for example, [27,28], among others—GNNs suffer from poor out-of-distribution (OOD)
generalisation capabilities that occur when train and test sets originate from different data
distributions. Because dataset_1 and dataset_2 have very different topologies that reveal dif-
ferent graph measures, such as average clustering coefficient and unique node degrees [27]
(Section 3.1), they represent different distributions, and our GNN model is affected by the
OOD generalisation issue. In this case, the CNN perform better than the other models in
terms of R2, obtaining 0.2923 against the 0.2057 reached by our model. Once again, the R2

values appear not very significant for this kind of biological problem, since the values are
lower than 0.30. In turn, when we considered dataset_3, which is the integration of dataset_1
and dataset_2, both data distributions are learned by the GNN model and, therefore, it is
able to generalise when validation data are presented (Table S1).

Figure 2. Residuals scatter-plot. Fitted values vs. residuals in dataset_1. The dotted line represents
the prediction equation.
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Table 2. Comparison of the proposed GNN approach against the other four models in terms of PCC,
mse, and R2. Both 10-fold cross validation and external testing are reported. Bold values indicate
best results.

Algorithms

Proposed
GNN Baseline CNN LSTM DNN

10-fold
Cross Validation

dataset_1

PCC 0.6918 0.5554 0.4996 0.4428 0.4723

mse 0.0253 0.0336 0.0455 0.043 0.0403

R2 0.4459 0.2817 0.0243 0.0854 0.0275

dataset_2

PCC 0.7361 0.6959 0.4975 0.4864 0.4797

mse 0.0204 0.0228 0.0422 0.0351 0.0441

R2 0.4882 0.4674 −0.0124 0.1484 −0.0302

External Testset dataset_1 vs. dataset_2

PCC 0.5740 0.5258 0.5477 0.5323 0.4744

mse 0.0336 0.0351 0.0299 0.0325 0.0337

R2 0.2057 0.1741 0.2923 0.2313 0.2042

2.4. Biological Application of the Proposed siRNAs Efficacy Prediction Method

siRNAs are part of RNA interference (RNAi) molecules. As previously stated, they
can bind target genes in specific sites and block their expression. Translating this concept
into clinical practice, they can be used as therapeutic molecules for different pathologies,
targeting key genes of specific pathways and re-addressing the altered signalling cascade.
They are mostly synthesised by biological methods. Scientific literature shows that many
siRNA molecules are already used in clinical trials [29–32]. siRNA therapeutics has also
been tested to prevent or treat various cancers. In this context, the prediction of siRNA
efficacy becomes a relevant problem in studies involving RNA interference, as it measures
how efficiently the siRNA will silence a specific target gene. It can vary significantly when
comparing different siRNA molecules for the same target gene, as a single change in the
siRNA sequence can alter its stability for the binding site. Our proposed method, aiming
at predicting the efficacy of the interaction between siRNA and mRNA molecules, allows
for choosing siRNAs with high efficacy values. Once again, translating this concept into
clinical practice, this means that if a siRNA has to be designed and produced to inhibit an
essential gene for a specific pathology, the choice of a siRNA with a high efficacy means the
use of a molecule that will most likely inhibit the target gene, thus regulating important
signalling cascades for that specific pathway. For instance, the Noggin gene (NM_005450)
is known to be associated with a poor prognosis of gastric cancer by promoting cell
proliferation through EGFR up-regulation [33]. It is also involved in the development
of the prostate cancer osteolytic bone metastatic process, which is a common clinical
manifestation in advanced-stage patients suffering from prostate cancer [34]. The use of
specific siRNA molecules as RNA therapeutics would allow for the inhibition of Noggin’s
action, restoring normal EGFR regulation. The silencing of Noggin mRNA by siRNA
therapeutics could thus reduce its metastatic potential, promoting partial bone repair in
advanced osteolytic lesions and limiting late tumor growth [35]. For these reasons, we
decided to use the Noggin gene as a simple case study to test siRNA efficacy prediction
for this target. Although Noggin belongs to our knowledge base, it does not influence
the rationale behind the proposed case study. Then, we used the OligoWalk Web Server
(rna.urmc.rochester.edu/cgi-bin/server_exe/oligowalk), which allows for the design of
siRNA molecules for a specific input mRNA sequence. It produced in silico 19 new siRNA
molecules, which do not belong to our knowledge base and are candidates for the Noggin
gene. We finally predicted the efficacy value of those 19 siRNA molecules. As shown in
Table 3, eight siRNAs (siRNA 1, 4, 5, 6, 7, 8, 10, and 16) were predicted to have a high
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efficacy value of ≥0.80. These molecules could then be selected to be produced in vitro for
RNA interference therapy against the Noggin gene.

Table 3. Predicted efficacy values for a set of Noggin siRNA candidates designed with the
OligoWalk algorithm.

siRNA Candidates for the Noggin Gene

siRNA Sequence
Predicted

Efficacy Value

1 UUUGAUCUCGCUCGGCAUG 0.8078
2 AUGUGGAGAUAGUGCUGGC 0.7686
3 AAUGUCUGCGACCACAGCC 0.7858
4 UUCAGAUCCUUUUCCUUGG 0.8317
5 AACUCUAGCCCUUUGAUCU 0.8453
6 AGCCACAUCUGUAACUUCC 0.8106
7 AACUUCCUCCGCAGCUUCU 0.8324
8 AUCUGUAACUUCCUCCGCA 0.8408
9 UUUUCCUUGGGGUCAAAGA 0.7826
10 AUGAAGCCUGGGUCGUAGU 0.8261
11 UCAGAUCCUUUUCCUUGGG 0.7641
12 UUCUUGCCCUGGGCCAAGC 0.7843
13 ACGUAGCGCGGCCAAAAGC 0.7482
14 AGAAUGUCUGCGACCACAG 0.7767
15 ACCUUCACGUAGCGCGGCC 0.7248
16 AAAGAUAGGGUCUGGGUGU 0.8055
17 AAAAGCGGCUGCCCAGGUC 0.6789
18 AGAUAGUGCUGGCCGCCGG 0.7341
19 AGAUCCUUUUCCUUGGGGU 0.7616

3. Materials and Methods

In this section, we will present the datasets that we used in order to train our model,
and then will describe the main characteristics of the deep learning architectures used in
this study. A great focus will be given to the graph neural network (GNN) model, and how
we chose to represent the siRNA efficacy prediction problem so that GNN could be applied.

3.1. SiRNA Datasets

In this work, we tried to collect the siRNA datasets used in the work by [9]. In par-
ticular, we kept siRNA interactions, which are siRNA–mRNA pairs and the related effi-
cacy values, provided in the original studies of Huesken [17], Harborth [36], Ui-Tei [37],
Vickers [38], and Khovorova [39]. All of those datasets, which we call dataset_1 in this paper,
were originally collected by [40], and we downloaded them thanks to the work by [41].
Finally, we added siRNA interactions provided by [42], called dataset_2 in this paper. Un-
fortunately, we were not able to obtain siRNA dataset from siRNADB [43] as achieved
in [9] because that database is no longer available. In total, we were able to collect 3518
siRNA sequences and their interactions, referred to as dataset_3. The main characteristics
of those datasets in terms of number of unique siRNAs, number of unique mRNAs, and
number of interactions are summarised in Table 4. We decided to consider dataset_1 and
dataset_2 separately because the latter has the property to have a single target (mRNA) with
many incoming relationships; therefore, from a topological point of view, it represents a
star graph. This peculiarity will be investigated in Results section.
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Table 4. Number of siRNAs, mRNAs, and interactions for each dataset.

Dataset N. of siRNAs N. of mRNAs N. of Interactions Ref.

dataset_1 2816 44 2816 [40,41]

dataset_2 702 1 702 [42]

dataset_3 3518 45 3518 [9]

3.2. Sequence and Thermodynamic Features

In order to train a machine learning model, we need to define and extract some raw
features from the input data. In this context, we considered two class of features, namely
sequence and thermodynamic features. For the sequence features, we adopted two very
popular representation schemes for biological sequences: one-hot encoding and k-mer
counting. SiRNA, in fact, are biological sequences that are 21 nt long; each sequence can
therefore be represented using a so-called one-hot encoding. Given the four DNA bases A,
C, G, T (or U for RNA), each base in a siRNA sequence was mapped to a four-dimensional
binary vector: A= [1, 0, 0, 0]; C= [0, 1, 0, 0]; G= [0, 0, 1, 0]; T/U= [0, 0, 0, 1]. Apart from the
target site, we also considered its flanking downstream and upstream regions because they
affect the efficacy of siRNA [44]. As demonstrated in [9] through experimental trials, we
kept 20 nt upstream and downstream the target site, and, therefore, sequences 61 nt long
(21 + 2 * 20) were one-hot encoded. If the flanking regions were fewer than 20, the missing
bases were encoded with a [0.05, 0.05, 0.05, 0.05] vector, as suggested in [9]. K-mer counting,
on the other hand, consists of finding and counting the number of occurrences of a set of
fragments of length k inside the original sequence [45]. Given the four-letter alphabet of
DNA (RNA), each sequence is therefore represented by means of an integer array of size 4k.
As for thermodynamic features, siRNA efficacy is dependent on two kinds of properties:
the thermodynamic stability profile of siRNA duplex [40] and the thermodynamic of
siRNA–mRNA interactions [46]. The former was computed following the work of [47];
the latter was obtained through the RNAUp web server tool belonging to the ViennaRNA
package [48]. The total number of thermodynamic properties resulted in a 22-dimensional
real-valued feature vector.

3.3. Graph Neural Networks

Graph neural networks are deep learning architectures that natively deal with graph-
structured data. Deep learning and, in general, machine learning algorithms usually work
on data belonging to a Euclidean space; however, in recent years, there is an increasing
amount of data that can be represented as a network (graph), exploiting, in this way, their
intrinsic relationships [3]. In this context, biological data obtained by high-throughput
technologies are a relevant example. Many biological processes, in fact, can be represented
as biological networks, such as protein–protein interactions and metabolic pathways [1].
Given these premises, it is evident that GNN can be considered as a valid instrument for the
analysis of biological networks. A graph G = (V, E) is defined by its set of vertices (nodes)
V, with |V| = n, and a set of edges (links) E (|E| = e), with eij ∈ E being an edge between
node vi and vj. Moreover, a graph can be defined by its adjacency matrix A ∈ Rn×n. In a
graph, both nodes and edges can have attributes in the form of a feature matrix Xv ∈ Rn×d

and Xe ∈ Re×c, respectively, where d and c are the dimensionalities of vertex and edge
features. If the nodes in the graph represent different entities, e.g., proteins and drugs, we
have a heterogeneous graph, and each node type will have its own features. The types of
learning tasks on a graph structure can be summarised as follows [1,3]:

• Node classification/regression: in this case, we want to predict a label associated to
a node of the graph. That label can be either categorical (classification) or numerical
(regression). In a typical scenario, there are labelled and unlabelled nodes in the
same graph, so the aim of task classification (regression) is to predict the label of the
unknown nodes by means of a semi-supervised learning approach.
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• Edge classification/regression: the same scenario as the node classification/regression,
but we want to predict a label at edge level.

• Link prediction: in this case, we want to predict if a link exists between two nodes
in the graph. In biological networks, in fact, there is often an incomplete knowledge
of interactions among biological entities, such as in the protein–protein interaction
networks or in the gene regulatory networks (GRNs). As in node classification,
a typical scenario adopts a semi-supervised learning approach, where the knowledge
of existing edges in the graph is used to predict new connections.

• Graph classification/regression: in this case, we want to predict a label, either categor-
ical or numerical, that characterises the whole graph.

Finally, we need to discuss the type of layers and deep learning algorithms that com-
pose a GNN. Considering the scope of this work, we only focused on graph convolutional
networks (GCNs); for a complete taxonomy on GNN, we recommend the survey in [3].
GCNs are a class of GNNs that lend the main concepts of convolutional neural network
(CNN) models [49], adapting them to deal with graph data. CNNs are often applied to
image processing tasks because they are able to extract spatial features and relationships
among pixels, defined into a fixed grid. In the case of graph-structured data, however,
CNNs are not directly applicable because the ordering of the adjacency matrix of a graph is
not fixed but arbitrary. The most developed GCNs are based on spatial methods, where,
during the training process, the embedding of each node in the graph is learnt by merging,
through, for example, sum or mean operation, the features of its neighbourhood. Each layer
in a GCN, and therefore considers the information coming from a certain neighbourhood
up to a fixed radius, with the lth layer that looks at a neighbourhood of l radius for each
node. The aforementioned ideas have been integrated into the work by [50], where authors
introduced the concept of message passing. In their framework, each node and its own
neighbour exchangea message with each other, and, thanks to that, each node is able to
update its own state, considering the nodes’ features. Then, a readout step at the end of the
network merges the node states on the basis of the level of the learning tasks, such as the
node level (e.g., node classification), edge level (e.g., link prediction), or graph level (e.g.,
graph classification).

3.4. Proposed Approach

The proposed approach uses a graph-based model to predict the siRNA efficacy in a
siRNA–mRNA interaction network. As we previously said, we can easily represent the
entities of this problem as the elements of a graph and the prediction problem as one of
the learning tasks that the GNN can solve. In more detail, for this biological problem, we
have three different elements: (1) siRNA, (2) mRNA, and (3) the siRNA–mRNA interaction.
Each of them can be represented by a specific set of features according to its function in the
problem. In particular, we considered the aforementioned k-mer counting representation
method to create the features of the first two entities, and we took advantage of the
thermodynamic features to characterise the siRNA efficacy of a siRNA–mRNA interaction.

Intuitively, the easy way to represent these entities within a GNN model is to consider
an undirected heterogeneous graph with two kinds of nodes (i.e., siRNA and mRNA) and
one kind of edge (i.e., siRNA–mRNA interaction). In this case, we could solve the siRNA
efficacy regression problem with the edge regression task that we introduced before. As
shown on the left of Figure 3, this graph will contain a siRNA node si, with i = 1, 2 . . . , z,
where z is the number of siRNAs, which is defined with a feature vector containing the
k-mer representation of the i-th siRNA sequence; in addition, there will be an mRNA
node mj, with j = 1, 2 . . . , p, where p is the number of mRNAs, which is defined with
its proper feature vector containing the k-mer representation of the j-th mRNA sequence.
At this point, a unique type of edge, the wsi ,mj , represents the interaction between the i-th
siRNA and the j-th mRNA. Each edge has a weight value (the siRNA efficacy) and a vector
containing thermodynamic features. Unfortunately, the GCN models cannot exploit all of
the entities that we arranged in this topology since the message-passing mechanism only



Int. J. Mol. Sci. 2022, 23, 14211 10 of 15

catches information by considering graph node features and graph topological structural
information. This means that this kind of model does not fully incorporate edge features
into this mechanism, but uses them as filters to multiply the node feature matrix [51]. In
biological networks, the interactions often contain information closely related to the entity
to which they are connected, sometimes representing a part of the entity itself. In this
case study, for example, the thermodynamic features are strictly related to the siRNA
entity and define a piece of crucial knowledge that must be modelled if we want to study
this biological problem. In addition, to demonstrate that using edge features as filters is
insufficient for solving this problem, we performed a preliminary study with this topology
representation that we do not report in this work; according to our premises, the obtained
results were of poor quality.

Figure 3. From the standard topology (on the left) to the proposed one (on the right). We replace each
interaction edge with three entities: an interaction node (blue diamond) and two edges that connect
it to siRNA (green circle) and mRNA (red square), respectively.

For all of those reasons, we chose to transform the proposed graph topology into a
new topology, where we translated the information of an interaction edge within a new
interaction node of the graph. As reported on the right of Figure 3, we introduced three new
entities that replace the interaction edge: a new kind of node, which we call the interaction
node (the blue diamond in the figure), and two edges that connect the interaction node
with siRNA and mRNA, respectively. The features of the interaction edge become the
features of the interaction node, and the weight of the original interaction edge is now the
label of the interaction node. The new edges that we introduced have no properties and
only perform a structural function. Using the proposed graph topology, we can face the
siRNA efficacy regression problem with a node regression task. Conversely to what other
literature approaches, such as [16], suggested, i.e., a framework composed of dual-level
attention layers used to consider both nodes and edges features, we preferred the proposed
enriched topology that introduces, for this kind of problem, a lower complexity with respect
to the first representation that we introduced (the left of the Figure 3). In fact, from the
point of view of the graph adjacency matrix, it only introduces |E| additional elements,
with e

2 ≤ |E| ≤ e− 1, where |E| is equal to the number of interaction edges. To efficiently
perform the node prediction task on the proposed topology, we chose to exploit one of the
most flexible implementations of the GCN algorithm, i.e., the GraphSAGE platform [15].
This implementation uses an inductive approach that leverages spatial-based attribute
information to train embeddings for unseen test nodes with a high accuracy. It exploits a
latent vector representation to perform an aggregation strategy, where features of each node
are fused with features of neighbour nodes. This strategy uses a two-layer architecture,
where a node from the graph calculates its representation by exploiting the aggregation
of its neighbours’ representations calculated in the previous layer. In particular, we used
an extension of the GraphSAGE approach, the HinSAGE (Heterogeneous GraphSAGE)
algorithm [26], which can take into account the heterogeneity of nodes and edges in
the graph.
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Figure 4 reports a schema of the HinSAGE architecture for the proposed approach. This
architecture exploits two hidden layers to predict the label of the afore-defined interaction
nodes, i.e., the efficacy value of the siRNA–mRNA interactions. For each layer, it is
necessary to specify the number of hops that define the node neighbourhood radius. In the
first hidden layer of the figure, we considered a hop to equal 1. Red arrows show the
direction of the feature aggregation. We used the same neighbourhood depth for the second
hidden layer; here, the nodes’ feature aggregation considers the neighbours’ representations
calculated in the previous layer (blue arrows). In Figure 4, as an example, we predict the
siRNA efficacy value of the bold shape interaction node on the left of the figure using the
HinSAGE two-layer architecture and a node regression strategy.

Figure 4. Architecture for siRNA efficacy value prediction. Each HinSAGE hidden layer performs
a node feature aggregation among neighbours. For each query node, such as the bold shape inter-
action node, red arrows aggregate neighbours’ features, and blue arrows aggregate the neighbour
neighbours’ features.

3.5. Baseline Models

We considered several deep learning models as a baseline for comparison with our
approach. First of all, we chose the state-of-the-art contribution; that is, the work by
Han and colleagues [9]. In that work, they implemented a 2D CNN that takes, as an
input, the one-hot representation of the siRNA target sites, including their flanking regions
(see Section 3.2). Then, they concatenated the thermodynamic features with the feature
extracted by the CNN after a pooling operation. Finally, a feed-forward neural network
was stacked, with a single unit output layer (sigmoid activation) that provides the siRNA
efficacy value. The original characteristic of the model in [9] is that they implemented
15 convolution kernels of different sizes, and then merged the features obtained by the
convolution operations. Since the source code is not available, we re-implemented their
deep model. The other deep learning models used for comparison were based on different
architectures, including a 1D CNN, long short-term memory (LSTM) network, and dense
neural network (DNN). The CNN model was composed of three 1D CNN layers, taking,
as an input, the one-hot representation of the siRNA target sites, including their flanking
regions, each one followed by a max pooling layer. Then, after a flattened layer, the ther-
modynamic features were merged and the resulting features were fed to a feed-forward
network, composed of two dense layers with ReLU activation. The output was a single
node with linear activation. In order to avoid overfitting, dropout layers were inserted after
the first two max-pooling layers, as well as after the two dense layers of the feed-forward
part of the network. LSTM [52] is a type of recurrent neural network (RNN) that takes
into account both short-term and long-term memory components by means of a feedback
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mechanism that loops back previous outputs as a sort of memory. LSTM networks are
particularly suited to work with sequence data and time series. For that reason, we applied
an LSTM network to analyse siRNA sequences. Our LSTM model took, as an input, the
one-hot representation of the siRNA target sites, including their flanking regions, and it
was composed of two LSTM layers; after that, the thermodynamic features were included
and the resulting features were fed into a feed-forward network composed of two fully
connected layers, with ReLU activation. The output was a single node with linear activation.
Dropout layers were inserted after the first LSTM layer and after the two dense layers
in the feed-forward part of the network. The DNN model that we adopted was made of
three stacked fully connected (dense) layers, each with ReLU activation and followed by a
dropout layer. This architecture took, as an input, the concatenation of the k-mer represen-
tation of the siRNA target sites, including their flanking regions, with the corresponding
thermodynamic features. The output was once again a single node with linear activation.

4. Conclusions

Many biological mechanisms can be explained as interaction networks among bio-
logical entities. In this context, GNNs represent a class of very suitable tools for dealing
with graph-structured data. In this paper, we proposed a GNN approach, based on a
supervised implementation of a GCN, that is able to analyse the interaction between siRNA
and mRNA molecules, with the aim to provide a prediction of the efficacy value of these
interactions. GNNs were used for the first time in the proposed scenario. We defined
a graph model that takes into account features belonging to siRNA, mRNA, and their
interaction, and we set up a node regression task using a modified version of a GraphSAGE
layer that deals with heterogeneous graphs, namely HinSAGE. Our GCN approach was
compared, in terms of the PCC of the predicted efficacy values and mse, with the state-
of-the-art model, and also with other well-known deep learning architectures, including
CNN, LSTM, and DNN. Using a five-time repeated 10-fold cross-validation procedure
against three datasets with different graph topologies and graph sizes, we obtained that
the proposed method outperformed all of the other computational models in terms of
PCC and mse. Moreover, it appears more robust than the other ones at varying datasets
since it provides the lowest standard deviation among the PCCs of the three datasets. In
conclusion, our GCN approach demonstrated its effectiveness when dealing with biological
graph-structured data, with respect to other deep learning models that, on the other hand,
did not consider the inner structure of the input data.
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Abbreviations
The following abbreviations are used in this manuscript:

GNN Graph neural network
ML Machine learning
siRNA Small interfering RNA
NPI ncRNA–protein interaction
ZINB Zero-inflated negative binomial
AUC Area under curve
MCC Matthews correlation coefficient
GRN Gene regulatory network
GCN Graph convolutional network
CNN Convolutional neural network
LSTM Long short-term memory
DNN Dense neural network
RNN Recurrent neural network
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