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Abstract: Colorectal cancer (CRC) is the third most common cancer in men and the second most
common in women. Treatment of metastatic CRC consists of highly toxic chemotherapeutic drug
combinations that often negatively affect patient quality of life (QoL). Moreover, chemotherapy-
induced toxicity and chemotherapy resistance are among the most important factors limiting cancer
treatment and can lead to the interruption or discontinuation of potentially effective therapy. Several
preclinical studies have demonstrated that curcumin acts through multiple cellular pathways and
possesses both anti-cancer properties against CRC and the capacity to mitigate chemotherapy-related
side effects and overcome drug resistance. In this review article, we suggest that the addition of
curcumin to the standard chemotherapeutic treatment for metastatic CRC could reduce associated
side-effects and overcome chemotherapy resistance, thereby improving patient QoL.

Keywords: curcumin; metastatic colorectal cancer; chemotherapy; chemotherapy-related toxicity;
chemoresistance; quality of life

1. First-Line Treatment of Metastatic Colorectal Cancer: An Overview

Colorectal cancer (CRC) is the third most common tumor and the second leading
cause of cancer death worldwide [1,2]. Metastases, the greatest cause of cancer-related
mortality, are present in nearly 25% of newly diagnosed CRC patients, up to 40% of whom
will relapse during follow-up after curative primary tumor surgery. Over the last ten years,
new combinations of cytotoxic agents and targeted therapies have improved the prognosis
of metastatic CRC (mCRC), and median overall survival is now 30 months, highlighting
the importance of a “continuum of care” approach in advanced disease [3]. Approximately
one-third of mCRC patients have limited-liver metastatic disease and could be candidates
for surgery with curative intent after systemic treatment [4].

The backbone of first-line treatment of mCRC consists of doublets or triplets of fluo-
ropyrimidines (thymidylate synthase (TS) inhibitors) such as 5-fluorouracil or capecitabine
in combination with oxaliplatin (a platinum DNA damage agent) and/or irinotecan (a
topoisomerase I inhibitor). The addition of targeted therapies such as anti-epidermal
growth factor receptor (EGFR) monoclonal antibodies (cetuximab or panitumumab) or
antiangiogenic therapy (bevacizumab or aflibercept) in first or later lines improves both
overall survival and response rates. The clinical benefit of EGFR inhibitors is limited to
RAS-wild-type tumors (KRAS exons 3-4 and NRAS exons 2-3-4), which are present in
nearly 50% of newly diagnosed patients, and the response seems to be superior in left-side
primary tumors [5–10]. In addition, 4–5% of mCRC patients harbor BRAF mutations (most
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frequently V600E), in which the combination of specific inhibitors, such as encorafenib,
with anti-EGFR therapy has been shown to increase overall survival [11]. Other targeted
therapies such as regorafenib (a multitargeted kinase-inhibitor) and ramucirumab (an-
giogenesis inhibitor) have also shown good results in chemorefractory mCRC [12,13]. In
addition to agents blocking pathways involved in tumor growth and spread, accumulating
evidence has shown that targeting pathways involved in immunomodulation is also effec-
tive. Immune checkpoint inhibitors stop the tumor from escaping T cell detection and thus
stimulate immune surveillance and clearance [14,15]. However, the efficacy of immune
checkpoint inhibitors is basically limited to tumors with deficient Mismatch Repair (dMMR)
and a high mutational burden, which comprise only 4–8% of all mCRC cases [16,17]. The
programmed death-ligand 1 (PD-1) blocker pembrolizumab has indeed shown promising
results as a monotherapy in this subgroup of patients. The KEYNOTE-177 study comparing
pembrolizumab with chemotherapy in dMMR patients reported a progression-free sur-
vival of 16.5 months with pembrolizumab compared to 8.2 months for the chemotherapy
group. Moreover, the duration of response at 24 months was 83% compared to 35%, respec-
tively [18]. Equally encouraging results have been achieved with another PD-1 inhibitor
nivolumab and the cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitor ipilimumab [19].

2. Chemotherapy-Associated Toxicity in mCRC

The most common first-line treatment regimens in unresectable mCRC patients
are FOLFOX (folinic acid + 5-fluorouracil + oxaliplatin) and FOLFIRI (folinic acid +
5-fluorouracil + irinotecan) in combination with either an anti-EGFR antibody (in RAS-wild-
type tumors) or with bevacizumab. Unfortunately, all these combinations are extremely
toxic and can compromise patient quality of life (QoL), which is increasingly being rec-
ognized as both a crucial outcome in clinical practice and an endpoint in randomized
clinical trials [20,21]. In fact, chemotherapy-induced toxicity is one of the most influential
factors limiting cancer treatment and is often associated with the interruption or even
discontinuation of potentially effective anti-cancer therapy.

Approximately 30% of patients treated with fluoropyrimidines develop severe toxici-
ties (≥Grade III Common Terminology Criteria for Adverse Events), including myelosup-
pression, severe diarrhea, vomiting, stomatitis (inflammation of the mucus lining in the
mouth), mucositis, hand-foot syndrome (palmar-plantar erythrodysesthesia), and neuropa-
thy. Moreover, fluoropyrimidine-related toxicity leads to death in 0.5–1% of patients [22–25].
Oxaliplatin also has severe side effects, such as gastrointestinal upset (nausea and vomiting,
diarrhea, and mucositis), hematological disorders (anemia, thrombocytopenia, and neu-
tropenia), peripheral neuropathy, and hepatotoxicity [26]. In fact, neuropathy, the major
problem associated with oxaliplatin treatment, occurs in up to 70% of patients and leads
to dose limitation and treatment discontinuation [27,28]. It has been suggested that the
development of neurotoxicity, hepatotoxicity, and nephrotoxicity is at least partly due to
oxaliplatin-induced oxidative damage to mitochondria and to the inhibition of sodium
pumps by the chelating action of oxalate on calcium and magnesium molecules [29,30].
Management of these adverse effects is based on the administration of calcium gluconate
and/or magnesium sulphate [31]. Irinotecan is also often associated with severe toxicities,
especially neutropenia and diarrhea, generally caused by the insufficient glucuronida-
tion of the irinotecan active metabolite SN-38 by the UDP-glucuronosyltransferase (UGT)
1A1 (UGT1A) enzyme. The resulting elevated SN-38 plasma concentration is responsible
for the often life-threatening hematological and gastrointestinal toxicities associated with
irinotecan [32]. Finally, targeted therapies such as bevacizumab have been associated with
thromboembolic events and the occurrence of grade 3/4 hypertension and bleeding in 2%
to 4% of patients [33]. Fortunately, the addition of bevacizumab to FOLFOX seems to be
well tolerated and does not markedly change the overall chemotherapy-related toxicity [23].
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3. Curcumin Attenuates Chemotherapy-Related Toxicity

For many years, curcumin (diferuloylmethane)—the “golden spice”—has been widely
studied because of its pleiotropic effects in cancer. Curcumin, a hydrophobic polyphe-
nol, is derived from the rhizome of the herb Curcuma longa and constitutes the major
curcuminoid in the spice turmeric (77% curcumin, 17% demethoxycurcumin, 3% bis-
demethoxycurcumin). Curcumin is “generally recognized as safe” (GRAS) as a dietary
supplement by the U.S Food and Drug Administration (FDA) and the European Food
Safety Authority (EFSA) and has been catalogued with the E100 code of the European
Union. One of the clinical benefits of curcumin is the improvement of QoL in several health
conditions [34], including cancer [35,36].

Curcumin is a pleiotropic agent that acts through multiple cellular pathways and
has been shown to possess anti-cancer properties against CRC in vitro and in vivo [37,38].
Many of its anti-cancer properties have been attributed to its role as an anti-inflammatory
and antioxidant, as well as to its ability to modulate the cell cycle and the pathways in-
volved in proliferation, apoptosis, migration, invasion, angiogenesis, and metastasis [39],
which are typically targeted by the drugs used to treat CRC. Mechanistically, curcumin
modulates several CRC molecular targets at the same time—either by altering their gene
expression, activation, or signaling pathways, or by direct interaction [37–39]. Importantly,
in addition to its well-known anti-cancer properties, curcumin can also alleviate some of
the chemotherapy-related side effects [40]. For example, curcumin attenuates the liver
injury induced by oxaliplatin through activation of the nuclear factor-erythroid 2-related
factor 2 (Nrf2) signaling, a key regulator pathway of cellular defense against oxidative
and electrophilic stresses [41], as well as the nerve damage and the oxidative damage to
mitochondria caused by oxaliplatin [42]. In fact, curcumin has been shown to not only
hinder mitochondrial damage but also to protect mitochondria and induce activity of
mitochondrial complex enzymes [36,42,43]. Interestingly, similar effects of curcumin on
cisplatin-related toxicity have been observed in several tumor types [44–48]. Addition-
ally, curcumin protects against irinotecan-induced intestinal injury by inhibiting nuclear
factor kappa B (NF-κB) transcription factor activation [49], and it is also active against
FOLFIRI-related cardiovascular toxicity [50] and capecitabine-induced hand-foot syn-
drome [51]. Recently, it has been shown that curcumin attenuates bevacizumab-associated
cardiotoxicity by suppressing oxidative stress and preventing mitochondrial dysfunction in
heart mitochondria [52].

In a study of curcumin’s effects in cancer patients, Belcaro and colleagues looked at the
side effects of chemotherapy in several tumor types, including colon, ovarian, lung, liver,
kidney, and stomach cancers. Of 80 patients treated with chemotherapy, 40 simultaneously
received 500 mg of curcumin. Chemotherapy-related nausea, diarrhea, constipation, weight
loss, neutropenia, and cardiotoxicity were significantly lower in the patients receiving cur-
cumin than in the control group. Moreover, patients receiving curcumin also required fewer
medications for treating these side effects [53]. In the same vein, turmeric supplementation
for 21 days resulted in a clinically relevant and statistically significant improvement in
global health status, symptom scores (fatigue, nausea, vomiting, pain, appetite loss, insom-
nia), and hematological parameters of breast cancer patients treated with paclitaxel [54].
Taken together, these findings lead us to suggest that the addition of curcumin to the
standard treatment of CRC could not only attenuate chemotherapy-associated side effects
but also improve the QoL of patients (Figure 1).
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Figure 1. Potential use of curcumin to mitigate therapy-related side effects in mCRC. CURC: curcumin;
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4. Curcumin Reverts Chemotherapy Resistance in mCRC

In addition to chemotherapy-related toxicity, chemoresistance remains one of the main
problems hindering treatment success. Tumor cells can be intrinsically resistant or acquire
resistance during a treatment. Resistance to chemotherapy is a complex and multifacto-
rial process involving several mechanisms, including drug influx/efflux modifications,
alterations in DNA damage repair (DDR), decreased cell death activation, autocrine sur-
vival signaling, and high detoxification activity [55,56]. One of these mechanisms with
consequences in mCRC is the hyperactivation of the NF-κB signaling pathway [57], which
promotes the expression of several target genes involved in inflammation, cell proliferation,
apoptosis, angiogenesis, invasion, metastasis, and chemoresistance [58,59]. In fact, most of
the anti-inflammatory and anti-cancer properties of curcumin are believed to be due to its
ability to inhibit NF-κB activation through interaction with the IκB kinase complex (IKK)
by inhibiting the phosphorylation and degradation of IκBα, a NF-κB inhibitor, and thereby
blocking the nuclear translocation of this transcription factor [37,60,61]. Along with other
studies [62–64], our group has demonstrated that curcumin can overcome oxaliplatin resis-
tance by inhibiting the activity of the CXC-chemokines/NF-κB axis and, consequently, the
expression of genes involved in anti-apoptosis and proliferation [57]. Additionally, in CRC
preclinical models, curcumin was shown to enhance the effect of 5-fluorouracil [65,66] and
capecitabine [67] by inhibiting AKT and NF-κB activity, and consequently, NF-κB-regulated
gene products. In the same vein, Pattel and colleagues reported that curcumin sensitizes
CRC cells to FOLFOX by inhibiting EGFR family receptors and insulin-like growth factor-1
receptor (IGF-1R) [68–70], the overexpression of which has been related to chemoresistance
in CRC [71,72].

BioRender.com
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Chemotherapy resistance is also related to the specific mechanism of action of the
drug. An example of such a specific mechanism is gene amplification in TS in 5-fluorouracil
treated patients [73] and upregulation of genes involved in DDR pathways, such as ERCC1
in oxaliplatin treated patients [74]. Interestingly, Rajitha and colleagues demonstrated that
the inhibition of NF-κB translocation by curcumin or its analogs induces cell cycle arrest and
downregulates TS in CRC cells [61]. Furthermore, curcumin was found to inhibit ERCC1
through its ability to modulate miR-409-3p, thereby overcoming oxaliplatin resistance in
CRC cells [75].

Curcumin can also promote the activation of apoptotic pathways by increasing the
generation of reactive oxygen species (ROS) [76]. In a recent work, Li and colleagues
demonstrated that curcumin can reverse Nicotinamide N-methyltransferase-induced cell
proliferation and 5-fluorouracil resistance through ROS generation and cell cycle arrest [77].

On the other hand, the drug-resistant phenotype is associated with the acquisition of
mesenchymal features, and epithelial-to-mesenchymal transition (EMT) plays a key role
in chemoresistance in CRC, mainly through the activation of the NF-κB and transforming
growth factor β (TGF-β) pathways [78–80]. In fact, EMT was observed in chemotherapy-
resistant CRC cell lines [57,81,82], while curcumin was able to revert this chemoresistance
by downregulating EMT markers [83] through TGF-β/Smad2/3 signaling attenuation [84],
by upregulating EMT suppressive miRNAs [85] or by downregulating the TET1-NKD2-
WNT signaling pathway [86]. In addition, several studies have demonstrated that curcumin
can sensitize colon cancer stem cells (CSC), a small subpopulation of cells within tumors
capable of self-renewal, differentiation, and tumorigenicity [87], to 5-fluorouracil, FOLFOX
and irinotecan, thereby preventing the emergence of chemoresistant CRC cells [70,88–91].
In this regard, a recent study has demonstrated that treatment of CRC organoids with a
combination of amorphous curcumin (a compound with improved solubility and bioavail-
ability) and oxaliplatin, 5-fluoroouracil, or irinotecan showed a synergistic activity through
the inhibition of proliferation-related signals and CSC marker expression, in addition to
arresting the ERK signaling pathway [92]. Along the same lines, Zheng and colleagues
showed that low doses of curcumin promoted the sensitivity of CRC cells to 5-fluorouracil
by downregulating phospho-ERK signaling [93].

Finally, several studies have shown that curcumin can increase the intracellular accu-
mulation of oxaliplatin and 5-fluorouracil in CRC cells by downregulating the P-gp [75,94]
and ATP-binding cassette transporter G2 (ABCG2) [70] drug-efflux transporters both at
the mRNA and protein levels. Preclinical data have suggested that the expression of
ATP-binding cassette (ABC) transporters, such as ABCC2 [95], ABCB4 [96], as well as the
multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp), which is
encoded by ABCB1 [97,98], can confer resistance to chemotherapy. However, evidence that
these transporters contribute to drug resistance in human tumors is sorely lacking [99]
and the development of MDR1 as a therapeutic target has been unsuccessful [100]. It is
important to highlight that although several studies have related the ABC transporters’
overexpression to platinum resistance [55,101,102], the association between oxaliplatin
resistance and the MDR1 expression has shown unconvincing results. For instance, Ekblad
and colleagues described an overexpression of this membrane transporter as a consequence
of oxaliplatin resistance acquisition in vitro, although functional tests did not show any
increase in ABCB1 transport activity in the oxaliplatin-resistant models compared with
its parental cell lines [103]. Other studies have reported no association between these
drug efflux pumps and the sensitivity to oxaliplatin in CRC clinical samples [104]. In
the same vein, the ability of MDR1 to confer resistance to 5-fluorouracil and irinotecan
has been demonstrated in different CRC cell lines transfected with this carrier. How-
ever, its clinical relevance in CRC refractoriness to antitumor chemotherapy remains to be
established [105,106]. Taken together, these results highlight the necessity of further investi-
gation into the role of MDR1 and curcumin in oxaliplatin and 5-fluorouracil resistance in
CRC patients.
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Most clinical data on curcumin come from early phase clinical trials, with results
showing that oral curcumin can achieve efficacious levels in the colon with negligible dis-
tribution outside the gut [107,108]. Moreover, curcumin was shown to be safe in advanced
CRC patients when administered for up to four months [109]. In addition, a study by
James and colleagues found that curcumin at doses up to 2 gms daily was highly tolerable
when added to a FOLFOX regimen in mCRC patients with liver metastases [110]. More
recently, the same group performed a phase IIa randomized trial of first-line treatment
for mCRC patients comparing FOLFOX +/−bevacizumab with the same regimen plus
curcumin 2 gms/day (CUFOX) in mCRC patients. In the intention-to-treat population,
patients in the CUFOX arm achieved longer overall survival (HR 0.34; p = 0.02) but there
was no difference in progression-free survival (HR 0.57) [111].

In conclusion, a further improvement in outcomes for mCRC highly depends on
identifying and targeting mechanisms of drug resistance. Taken together, these findings
offer compelling evidence that combining curcumin with conventional chemotherapy may
be effective in overcoming drug resistance in mCRC (Table 1).

Table 1. Main molecular mechanisms of action of the combination of curcumin and chemotherapeutic
agents in preclinical models of CRC. ABCG2: ATP-binding cassette transporter G2; CSCs: cancer stem
cells; EGFR: epidermal growth factor receptor; EMT: epithelial-to-mesenchymal transition; IGF-1R:
growth factor-1 receptor; NF-κB: nuclear factor kappa B; P-gp: P-glycoprotein; ROS: reactive oxygen
species; TGF-β: transforming growth factor β; TS: thymidylate synthase.

Treatment Regimen Molecular Targets of Curcumin References

Oxaliplatin
+ Curcumin

Inhibition of NF-κB activation [57,62–64]

Downregulation of CXCL8, CXCL1 and CXCL2
chemokines [57]

Inhibition of AKT activation [57]

Inhibition of miR-409-3p/ERCC1 axis [75]

TGF-β/SMAD2/3 signaling attenuation [84]

P-gp downregulation [75,94]

5-fluorouracil
+ Curcumin

Inhibition of NF-κB activation [61,65,66]

Downregulation of TS [61]

P-gp downregulation [75,94]

ROS generation [77]

Downregulation of TET1-NK2-WNT pathway [86]

Elimination of CSCs [89]

Upregulation of EMT-suppressive miRNAs (miR-200b,
miR-200c, miR-141, miR-429, miR-101t) [85]

Inhibition of ERK signaling pathway [92,93]

FOLFOX
+ Curcumin

Downregulation of EGFR and IGF-1R [68–70]

Inhibition of NF-κB activation [70]

Inactivation of β-catenin, COX-2, c-Myc and Bcl-xL [70]

Elimination of CSCs [70,88]

Downregulation of miR-21 [91]

Downregulation of ABCG2 drug-efflux transporter [70]

Irinotecan
+ Curcumin

Downregulation of EMT markers (Vimentin and
N-cadherin) [83]

Elimination of CSCs by apoptosis induction [90]
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5. Conclusions

Treatment for mCRC consists of highly toxic drug combinations that often negatively
affect the QoL of patients. We believe that patient QoL must be recognized as an essential
outcome in clinical practice; moreover, it is increasingly being reported as an endpoint in
randomized clinical trials. Optimizing strategies to control chemotherapy-related toxicity
will not only improve patient QoL but will also improve adherence to cancer treatment
and thus improve patient survival. This is especially crucial for mCRC patients, in whom
chemotherapy is prescribed as a neoadjuvant treatment before surgery for liver metastases,
where it is critical to maintain an adequate dose intensity in order to proceed to curative
surgical treatment. Furthermore, our own experience has taught us that the unprescribed
use of several plant-derived supplements is very common among cancer patients even
when their positive effect on QoL has not been demonstrated in clinical studies. One of
the most commonly used herbal supplements is curcumin, which has been extensively
studied in cancer prevention and treatment. In fact, a plethora of preclinical studies have
demonstrated the anti-cancer properties of curcumin as well as its role as a chemosensitizer
agent [37–39]. Several preclinical studies have demonstrated that the addition of curcumin
to the standard treatment of CRC could decrease treatment-associated side effects and en-
hance chemotherapy efficacy [40,53]. Therefore, considering that therapy-induced toxicity
is among the most important factors limiting cancer treatment and is usually associated
with discontinuation of potentially effective therapy, we suggest that adding curcumin, a
natural compound with a very low toxicity profile in humans [39], to current mCRC treat-
ment regimens could be a potential synergistic strategy to reduce chemotherapy-related
adverse effects, improve treatment efficacy, and decrease drug resistance.

Additionally, it is important to identify predictive biomarkers of response to curcumin-
based treatment. To the best of our knowledge, only a few studies have focused on this
question. However, in a previous study by our group, we found that treatment with
oxaliplatin induces the expression of the CXCL1 chemokine that was repressed by the
addition of curcumin—both in CRC cell lines and in patient-derived CRC liver metastasis
explants treated with oxaliplatin or oxaliplatin + curcumin. Interestingly, the explants
with the “best response” to oxaliplatin + curcumin were those with the highest baseline
levels of CXCL1, suggesting that this chemokine could be a good predictive marker for
this treatment [57]. Prompted by these observations, Howells’ group conducted a phase
IIa trial in which they assessed CXCL1 plasma levels in patients receiving FOLFOX or
CUFOX. Although there was no significant difference in plasma CXCL1 concentrations
after curcumin treatment, mean baseline concentrations were 1.7-fold higher in FOLFOX
patients than in CUFOX patients [111]. In the same vein, Lu and collaborators recently
demonstrated that CRC patients with microsatellite-stable tumors and high baseline IκBα
protein expression would benefit from curcumin treatment [112].

Finally, improved delivery strategies and new curcumin formulations (such as nanopar-
ticles, liposomes, and synthetic analogues) will increase the absorption and bioavailability
of curcumin [113].

Certainly, further research is warranted on the potential role of curcumin in reducing
chemotherapy-induced toxicity and on predictive biomarkers to identify those patients
most likely to benefit. Unfortunately, the few clinical trials of curcumin performed to date
have often been limited by wide patient heterogeneity, small sample size, and the poor
bioavailability of the curcumin formulations studied. For this reason, we strongly recom-
mend that randomized, double-blind, placebo-controlled trials of bioavailable curcumin be
carried out. The results of such trials will further elucidate the role of this polyphenol in
overcoming chemoresistance and improving the QoL of mCRC patients.
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