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Abstract: Two robust Sn(IV)-porphyrin-based supramolecular arrays (1 and 2) were synthesized
via the reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The
structural patterns in these architectures vary from 2D to 3D depending on the axial ligation of
Sn(IV)-porphyrin units. A discrete 2D tetrameric supramolecule (1) was constructed by coordination
of {(trans-dihydroxo)[5,10-bis(4-pyridyl)-15,20-bis(phenyl) porphyrinato]}tin(IV) (SnP1) with trans-
PdCl2 units. In contrast, the coordination between the {(trans-diisonicotinato)[5,10-bis(4-pyridyl)-
15,20-bis(phenyl)porphyrinato]}tin(IV) (SnP2) and trans-PdCl2 units formed a divergent 3D array (2).
Axial ligation of the Sn(IV)-porphyrin building blocks not only alters the supramolecular arrays but
also significantly modifies the nanostructures, including porosity, surface area, stability, and morphol-
ogy. These structural changes consequently affected the photocatalytic degradation efficiency under
visible-light irradiation towards acid orange 7 (AO) dye in an aqueous solution. The degradation
efficiency of the AO dye in the aqueous solution was observed to be between 86% to 91% within
90 min by these photocatalysts.

Keywords: Sn(IV)-porphyrin; coordination; supramolecular array; nanostructures; photocatalytic
degradation of dyes

1. Introduction

Industrial and agricultural activities emit hazardous chemicals into bodies of water
threatening aquatic life and polluting drinking water [1–3]. Massive quantities of toxic
chemicals are discharged into aquatic systems annually causing serious environmental
problems. Azo dyes, the most common synthetic dye, account for more than 50% of
global dye production because of their extensive use in the dyeing and textile industries.
These dyes are stable under light and resistant to chemical oxidation; hence, they are not
efficiently removed during conventional wastewater treatment. Azo dyes in bodies of water
are fatal for aquatic life and have been a serious worldwide threat. Numerous methods
have been developed to remove these toxic pollutants from wastewater [4–7]. Some notable
physicochemical methods are adsorption [8], chemical precipitation [9], filtration [10], and
advanced oxidation processes (AOPs) [11]. The AOP is the most promising method because
it is simple to operate, less costly, has high degradation efficiency, and can decompose
pollutants into CO2 and H2O. Pollutants are efficiently degraded by reactive oxygen
species (ROS) generated in situ by an appropriate photocatalyst that absorbs light [12–15].
Photocatalysts that can efficiently use sunlight are constantly being sought because metal
oxide-based photocatalysts lack visible light activity.

Free-base porphyrins and metalloporphyrins, types of porphyrinoids, are the most at-
tractive building blocks of photofunctional materials that absorb visible light. Porphyrinoid-
based nano- or micro-structured materials have received tremendous attention over the
last two decades [16–20]. Their well-ordered and versatile geometrical features make them
suitable not only for photocatalytic degradation but also in other fields: catalysis [21],
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solar energy conversion and storage [22], molecular recognition [23], and biomedical pur-
poses [24]. Free-base porphyrins and metalloporphyrins self-assemble through various
intermolecular interactions: hydrogen bonding, π–π stacking, van der Waals forces, metal–
ligand coordination, and electrostatic interactions. Hydrophobic and hydrophilic effects
further contribute to the self-organization of porphyrinoids in solution [25–28]. There are
various methods to synthesize self-organized porphyrin nanomaterials: surfactant [29] and
ionic self-assembly assisted [30], sonication [31], metal coordination [32], and reprecipita-
tion [33]. Highly directional metal–ligand coordination has attracted particular attention
because of its elaborate design leading to a variety of 2D or 3D architectures: ladders [34],
rectangles [35], cube cages [36], wheel-type nanoring [37], coordination polymers [38],
double-decker complexes [39], and molecular squares [40].

Pyridylporphyrins play a special role in supramolecular coordination assembly based
on several attractive features [41,42]: (a) rigid planar geometries with interesting optical
and redox properties; (b) conjugation with metal ions (Pd2+, Pt2+, Ru2+, Rh2+, and Re+)
to form various coordination complexes used in catalysis, molecular recognition, and
optoelectronics [43–47]. Sn(IV)-porphyrin complexes have been extensively used in the
fabrication of functional nanomaterials: nanotubes [48], nanofibers [49], nanorods [50],
nanocomposites [51], and nanosheets [52]. Sn(IV)-porphyrin centers readily adopt a hexaco-
ordination geometry with two trans-oxyanion ligands (alkoxides or carboxylates) because
of the oxophilic nature of Sn(IV) centers. The ditopic character of Sn(IV)-porphyrins
is due to different functional groups in their axial and peripheral positions. Therefore,
Sn(IV)-porphyrin-based building blocks are used for the fabrication of functional multipor-
phyrin supramolecular arrays and nanostructures [53–58]. Their attractive photophysical
properties have been used in optoelectronic supramolecular systems [59,60].

We have explored Sn(IV)-porphyrin-based nanostructures using supramolecular as-
semblies. Complementary Zn(II)-Sn(IV)-Zn(II) porphyrin triads [17,18,32,50], the coor-
dination of Sn(IV)-porphyrin with Ag(I) ions [15], and the ionic assembly of cationic
Sn(IV)porphyrin [19] were studied for fabricating nanostructures, morphology control, and
photocatalytic performance. We have further explored nanomaterial-based supramolecu-
lar assemblies featuring well-defined dimensions and innate porosity, such as porphyrin
squares, for photocatalytic degradation of pollutant dyes. The design and selection of
suitable building blocks with well-defined shapes and dimensions are challenging tasks for
the development of specific nanostructures with efficient performance.

We here report two porphyrin-based supramolecular architectures (2D and 3D) syn-
thesized by coordination between the peripheral pyridyl groups of Sn(IV)-porphyrin and
Pd(II) complexes. Furthermore, we intensively investigated the nanostructures for the
photocatalytic degradation of pollutant dyes in aqueous solutions. Acid Orange 7 (AO)
dye was selected as the target contaminant in this study because AO is chemically stable,
nonbiodegradable, mutagenic, and potentially carcinogenic.

2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterization

Two supramolecular multiporphyrin architectures were designed as illustrated in
Scheme 1: a discrete 2D tetrameric supramolecule 1 and a divergent 3D supramolecular
array 2. 1 was synthesized by using SnP1 and trans-bis(benzonitrile)dichloropalladium(II)
[trans-Pd(PhCN)2Cl2] as the building block and linkage source, respectively, according to
the reported procedure by Drain et al. [61,62]. SnP1 has two pyridyl donors at 90◦, and
trans-Pd(PhCN)2Cl2 serves as a two-site acceptor at 180◦ generated by the dissociation of
labile benzonitrile ligands (Scheme 2). The reaction of SnP1 with trans-Pd(PhCN)2Cl2 in
THF at room temperature produced 1. We later modified 1 with two axial isonicotinato-
ligands to synthesize 2. A divergent 3D supramolecular array of 2 can be developed
when modified 1 is further reacted with trans-Pd(PhCN)2Cl2. However, isonicotinic acid
reacts with Pd(II) and Sn(IV) centers of 1 and disrupts the closed 2D tetrameric structure
of 1. As an alternative strategy for the construction of a 3D supramolecular array, SnP2
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was used as a monomeric building block because it provides four pyridyl donors that
are directly three-dimensional (Scheme 2). Although Pd(II) centers can randomly link
pyridyl donors between SnP2 complexes, it should be noted that SnP2 is assembled into
divergent 3D arrays through the reaction with trans-Pd(PhCN)2Cl2. The structure of 2
depicted in Scheme 1 is a representative 3D array. For comparative studies, we prepared
free-base porphyrin-based closed 2D tetrameric array 3 using 5,10-bis(4-pyridyl)-15,20-
bis(phenyl)porphyrin. All synthesized compounds were fully characterized by various
spectroscopic techniques: elemental analysis, 1H NMR, FTIR, ESI–MS, UV–vis spectroscopy,
fluorescence spectroscopy, PXRD, and FESEM.
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The 1H NMR spectra of SnP1, SnP2, 1, and 2 are shown in the Supplementary Materials
(Figures S1–S4). Figure S3 shows a more complex 1H NMR spectrum of 1 than that of SnP1

with a downfield shift of pyridyl protons which indicates the Pd(II)–pyridine complexation
(Figure S2) [63]. The NMR spectrum of SnP1 exhibits a pair of doublets ascribed to both
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α-pyridyl (H2,6) protons at 9.09 ppm and β-pyridyl (H3,5) protons at 8.31 ppm. (H2,6)
protons significantly shift downfield to 9.57 ppm after Pd(II) binds with pyridyl, while the
resonance shift and the splitting of β-pyridyl (H3,5) protons of 1 are less affected (8.47 ppm).
The resonance of both phenyl and β-pyrrole protons split of 1 (due to the difference in the
outer and inner square environments) to exhibit a smaller downfield shift as compared to
SnP1. Similarly, α-pyridyl (H2,6) protons of porphyrin present in SnP2 appear as a doublet
at 9.09 ppm. After coordination with Pd(II), these protons exhibit significant downfield
shifts and appear at 9.56 ppm in 2. The α-pyridyl protons of the axial isonicotinato ligand
of 2 also shift downfield (7.62 ppm to 7.93 ppm) after coordination with Pd(II). The peaks
of phenyl and β-pyrrole protons of 2 shift slightly downfield compared to those of SnP2.

The ESI–MS spectra of SnP1, SnP2, and 1 are shown in Figures S5–S7. The molecular
ion peaks of [SnP1 + H]+1 and [SnP2 + H]+1 appear at 769.09 and 979.23, respectively
(Figures S5 and S6). As shown in Figure S7, the base peak of [1 − 4Cl]+4 appears at 909.01.
Other small fragments ([1 − 2Cl]+2 at 1853.52, [1 − 3Cl]+3 at 1224.01, and [1 − 5Cl]+5 at
720.21) with low intensity are also observed. The appearance of the base peak and frag-
mentation of 1 in ESI–MS support the existence of a supramolecular array as illustrated
in Scheme 1. The FTIR spectra of 1 and 2 along with their starting porphyrins (SnP1 and
SnP2) are shown in Figure S8. The absence of a characteristic band of nitrile stretching
(ca. 2220 cm−1) in 1 and 2 indicates that pyridyl N atoms coordinate with Pd(II) by com-
pletely replacing PhCN during the reaction of trans-Pd(PhCN)2Cl2 with either SnP1 or
SnP2. Additionally, the characteristic band of carboxylate stretching of SnP2 and 2 appears
at 1660 cm−1 (Figure S8).

The optical properties of SnP1, SnP2, 1, and 2 were investigated using UV–vis spec-
troscopy in chloroform (Figure 1). The Soret band of SnP1 displays sharp peaks at 420 nm
along with Q-bands at 519, 558, and 598 nm. These bands are redshifted by 1 and the
Soret band appears at 428 nm upon complexation with Pd(II). A shift of 8 nm confirms the
coordination of pyridyl N to the Pd(II) complex in 1. Q-bands also redshift and appear at
521, 560, and 601 nm. In contrast, the Soret band of SnP2 appears at 420 nm, and Q-bands
appear at 516, 555, and 594 nm. All these bands of 2 are redshifted compared to bands
of SnP2. Array 2 exhibits a Soret band at 429 nm, while Q-bands appear at 517, 558, and
598 nm. Therefore, bathochromic shifts and broadening confirm the formation of Pd(II)-N
bonds. These results are consistent with those previously reported [62–65].
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The fluorescence spectra of SnP1, SnP2, 1, and 2 in chloroform are shown in Figure 2.
The fluorescence spectrum of SnP1 shows two emission bands at 596 and 646 nm, which
are redshifted to 598 and 648 nm, respectively, with a lower relative intensity of 2 due to
complexation with Pd(II). Similarly, SnP2 displays a two-band pattern at 601 and 653 nm
(Figure 2). These bands redshift to 605 and 654 nm after forming a complex with Pd(II) in
2. In all cases, the emission intensity is largely quenched (up to 90%) upon ligation and
changes the peak-to-peak ratio. This is due to the energy transfer between porphyrin rings
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via π−π stacking and the heavy metal ion effect, which accelerates the singlet-to-triplet
excited-state intersystem crossing [62].
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Figure 2. The fluorescence spectra of SnP1, SnP2, 1, and 2 in chloroform.

The thermal stabilities of 1 and 2 were measured using thermogravimetric analysis
(TGA) under He flow (Figure S9). A slight weight loss is observed in the case of 1 up to
300 ◦C owing to the loss of volatile molecules. A major weight loss occurs in the range of
300–400 ◦C because of the destruction of the framework (loss of the Pd(II) linkage with
porphyrin). Similarly, the major weight loss of 2 occurs in the range of 350–450 ◦C due to
the decomposition of the framework. These results indicate that 1 and 2 are stable up to
300–350 ◦C. We also examined the crystallinity of these arrays by analyzing their PXRD
patterns (Figure S10) and confirmed them as amorphous and less crystalline as observed
in Figure S10. N2 sorption isotherms were recorded at 77 K in a liquid nitrogen bath to
determine the permanent porosities of 1, 2, and 3 (Figure S11). The estimated Brunauer–
Emmett–Teller (BET) surface areas are 47, 82, and 32 m2 g−1 for 1, 2, and 3, respectively.
The presence of permanent porosity within these supramolecular arrays can enable access
to metalloporphyrin sites in the pores of small molecules, thus providing higher catalytic
performance toward dyes.

The morphologies of 1 and 2 were observed using field-emission scanning electron
microscopy (FESEM) (Figure 3). We compared the surface morphology of 1 with those
of 3 to determine the effect of the metal on porphyrin. Sponge-like nanoparticles are
observed in 1 with average lengths ranging from 25 to 65 nm as confirmed by DLS studies
(Figure S12). The particles are larger in 3 and interconnected compared to those in 1.
These observations indicate that the presence of the (trans-dihydroxo)-Sn(IV) center in the
porphyrin unit significantly affects the morphology of 1 compared to that of 3. The average
particle size with a high population of 2 ranges from 25 to 100 nm, while particles with
lower populations have sizes within 325–375 nm. The surface morphology of SnP1 and
SnP2 is not sufficient to describe the specific shapes (Figure S13).
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2.2. Photocatalytic Performance for the Degradation of AO

The photocatalytic degradation activity of 1, 2, and 3 were investigated by degrad-
ing AO in an aqueous solution under visible-light irradiation. As shown in Figure S14,
approximately 30 min is required to reach the adsorption–desorption equilibrium; 11%,
16%, and 9% of AO are adsorbed by 1, 2, and 3, respectively. This presumably indicates
that these porphyrin arrays possess suitable surface areas and porosity for AO adsorption.
The time-dependent absorption spectra of AO in the presence of 2 under visible-light
irradiation are shown in Figure S15. A negligible AO decay is observed in the absence of
any photocatalyst or visible light (Figure 4).
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visible-light irradiation in the presence of photocatalysts 1, 2, and 3.

Photocatalysts and visible light are necessary for AO degradation. Figure S15 shows
that the absorbance at 485 nm decreases with increasing visible light irradiation time
indicating the photochemical degradation of AO in the presence of the photocatalyst. All
photocatalysts (1, 2, and 3) show significant AO degradation (Figure 4). AO degradation in
the presence of the photocatalyst can be described by its degradation efficiency expressed
(C0 − C)/C0, where C0 is the initial concentration of AO dye, and C is the concentration at
time t. The observed AO degradation efficiency values of 1, 2, and 3 are 86%, 91%, and 64%,
respectively (Figure 4). 2 shows better performance in AO degradation than either 1 or 3.
We applied a pseudo-first-order kinetic rate equation ln(C0/C) = kt to further interpret the
reaction kinetics for AO decay. This equation is used when the C0 of the dye is low, and k is
the pseudo-first-order degradation rate constant. The reaction kinetics of AO degradation
is obtained based on the data plotted in the graph in Figure 4 as shown in Figure S16. The
first-order rate constants of AO degradation are 0.043 min−1, 0.047 min−1, and 0.021 min−1

by 1, 2, and 3, respectively (Figure S16). These results are notable compared to the other
reported values of AO degradation (Table 1).

The reusability of 1, 2, and 3 is necessary for practical applications and was determined
by recycling tests of 2 by degrading AO under visible-light irradiation (Figure S17). 2
maintained 96% of its initial degradation performance after 10 consecutive cycles indicating
its stability. The morphologies of 1 and 2 were also examined after degrading AO to confirm
their stability. PXRD patterns (Figure S18) and FESEM images (Figure S19) of reused 1 and
2 are similar to their unused images indicating that the framework of these photocatalysts
is adequately stable after the photocatalytic reaction.
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Table 1. A comparison of the photodegradation efficiency of AO with various photocatalysts.

Photocatalysts Rate Constant (min−1) Reference

TiO2 P-25/Cu 0.041 [66]
TiO2 P-25 0.045 [66]

MnFe2O4-γGO 0.019 [67]
ZnFe2O4-C3N4(2:3) 0.012 [68]

Fe3+-doped TiO2 0.011 [69]
Au-Fe(1:1)/TiO2 0.014 [70]

ZnS-Mn3O4 (1.5%wt) 0.054 [71]
2-line ferrihydrite 0.026 [72]

Co-Fe nitride 0.024 [73]
Fe0/H2O2 0.054 [74]

ZnO 0.021 [75]
ZnO-Ag 0.051 [75]

g-CN/TiO2 0.016 [76]
[Cu(HLsalpyca)(NO3)]n/H2O2 0.015 [77]

CNP/B-BiVO4/WO3 0.014 [78]
BiOBr/rGO/ZnPc(CO2H)4(0.25) 0.023 [79]

1 0.043 this study
2 0.047 this study
3 0.021 this study

We attempted to optimize the reaction conditions in terms of temperature, the pH of
the AO solution, and the AO dye/catalyst ratio. Degradation experiments were performed
at different temperatures to estimate the effect of temperature on AO degradation by 2. The
degradation efficiency increases with an increase in temperature (Figure S20). We prepared
aqueous solutions of AO at different pH values (2–12) to determine the effect of the pH
of the dye solution on degradation. The pH of the aqueous AO solution affects the AO
degradation rate (Figure S21). Figure S21 shows that the rate of degradation increases
from pH 2 to 7 followed by a decrease to pH 12. A strong acidic or basic medium likely
disintegrates the framework of 2. The degradation rate is affected more in a basic medium
than in an acidic medium. The effect of the dye/catalyst ratio on AO degradation was
examined using various concentrations of AO solution (5, 10, 15, 20, 30, 35, and 40 mg L−1)
and a constant amount of 2 (10 mg). Degradation rates decrease with an increase in the AO
concentration (Figure S22).

We have proposed a possible mechanism for the photodegradation of pollutant dyes
using porphyrin-based nanomaterials in aqueous solutions [15,32]. The mechanism com-
prises five steps: (a) the photocatalyst absorbs light under visible-light irradiation and AO
from an aqueous solution. Valence band (VB) electrons are promoted to the conduction
band (CB) after crossing the bandgap forming electron–hole (e−/h+) pairs at the surface
of the photocatalyst. Strong intermolecular π–π interaction among porphyrin molecules
intensifies the electronic delocalization within the photocatalysts, which can be minimized
by the recombination energy of excited electrons; (b) photogenerated holes (h+) react with
H2O to generate a highly reactive hydroxyl radical (•OH); (c) excited electrons react with
dissolved O2 molecules to produce reactive superoxide radical anions (O2

−•), (d) these
photogenerated superoxide radical anions and hydroxyl radicals react with the AO dye;
(e) the dye is degraded into smaller molecules (CO2 and H2O). The mechanism consisting
of five steps for porphyrin-based frameworks (P) is shown in Equations (1)–(5):
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P + hν→ P* (e− + h+) (1)

H2O + h+ → •OH + H+ (2)

O2 + 2e− → O2
−• (3)

•OH + AO→ degraded products (4)

O2
−• + AO→ degraded products (5)

Radical trapping experiments were performed to detect the photogenerated reactive
species during the photocatalytic AO degradation by 2 [19,50]. We used tert-butanol
(tBuOH) to capture hydroxyl radicals (•OH) and p-benzoquinone (p-BQ) as superoxide
radical anions (O2

−•) during the photodegradation in the presence of 2 (Figure S23). The
results reveal that the degradation rate is severely affected by tBuOH and p-BQ. Superoxide
radical anions (O2

−•) are the major reactive species compared to hydroxyl radicals (•OH)
for catalytic AO degradation. We observed that SnP1 and SnP2 show very low efficiency
to degrade AO (Figure S23). The photocatalytic activity of 2 was investigated under
various monochromatic light wavelengths (Figure S24). The variation of the wavelength-
dependent AO photodegradation shows that optical absorption significantly contributes
toward solar energy conversion and photocatalytic performance. In addition, 2 shows a
small degradation ability even at λ > 700 nm.

We investigated the degradation products of AO by 2 after irradiating under visible
light. The reaction mixture obtained after 30 min was analyzed using ESI–MS (Figure S25).
New peaks are observed in mass spectra confirming the degradation of AO into smaller
molecules [69]. For an AO sample before the photodegradation experiment, few fragments
of AO occurred in the ESI-MS measurement. Figure 5 and Table S1 show the possible
intermediates of AO degradation. The base peak (m/z = 327; [AO − Na]+) corresponds to
anionic AO and exists in the solution as keto–enol tautomers. AO can be fragmented in two
ways: (a) the cleavage of the azo bond by the hydroxyl radical (•OH) and the formation of
two low molecular weight fragments: 1-amino-2-naphthol (m/z 158) and sulfanilic acid
(m/z 172). The primary amine (m/z 172) may hydrolyze to generate either m/z 173 or m/z
157. However, the successive oxidation of other amines forms 1,2-dihydroxy naphthalene
(m/z 159), followed by salicylic acid (m/z 137) to phenol (m/z 93); (b) The cleavage of
the C–N bond forms lower molecular fragments with m/z 143 and 187. The successive
ring-opening oxidation of 2-naphthol forms ortho-phthalic acid (m/z 165), followed by
benzoic acid (m/z 121). However, the successive oxidation and hydrolysis of the fragment
(m/z 187) form benzene sulfonic acid (m/z 157), followed by phenol (m/z 93). Finally,
all lower molecular weight intermediates are further fragmented and mineralized into
H2O and CO2. The total organic carbon (TOC) value was calculated to quantify the AO
removal by photocatalysts [66]. TOC removal percentages by 1, 2, and 3 were 69%, 75%,
and 59%, respectively.



Int. J. Mol. Sci. 2022, 23, 13702 9 of 14Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 9 of 14 
 

 

Figure 5. Possible intermediates formed in the AO degradation by 2. 

3. Materials and Methods 
All chemicals were purchased from Sigma–Aldrich (Seoul, Korea) and used without 

further purification unless stated otherwise. 5,15-bis(4-pyridyl)-10,20-
bis(phenyl)porphyrin (H2P) [61], trans-Pd(PhCN)2Cl2 [62], and array 3 [63] were 
synthesized according to the previously reported procedures. THF was purified by 
distillation over sodium/benzophenone ketyl solution while distilled pyrrole was 
obtained using calcium hydride. 1H NMR spectra were obtained using a Bruker 
BIOSPIN/AVANCE III 400 spectrometer at 293 K (Bruker BioSpin GmbH, Silberstreifen, 
Rheinstetten, Germany). Steady-state UV–vis and fluorescence spectra were recorded 
using a Shimadzu UV-3600 spectrophotometer and a Shimadzu RF-5301PC fluorescence 
spectrophotometer, respectively (Shimadzu, Tokyo, Japan). The FTIR spectra were 
obtained using a Shimadzu FTIR-8400S spectrophotometer (Shimadzu, Tokyo, Japan). 
Electrospray ionization mass (ESI-MS) spectra were recorded using a Thermo Finnigan 
linear ion trap quadrupole mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 
USA). Elemental analysis was performed using an EA 1110 Fisons analyzer (Used Lab 
Machines Limited, London, UK). Field emission scanning electron microscopy (FESEM) 
images were obtained using a MAIA III (TESCAN, Brno, Czech Republic). Powder X-ray 
diffraction (PXRD) patterns were obtained using a Bruker AXS D8 Advance powder X-
ray diffractometer (Bruker; Billerica, MA, USA). Thermogravimetric analysis (TGA) was 
performed using an Auto-TGA Q500 instrument (TA Instruments, New Castle, DE, USA). 

Figure 5. Possible intermediates formed in the AO degradation by 2.

3. Materials and Methods

All chemicals were purchased from Sigma–Aldrich (Seoul, Korea) and used without
further purification unless stated otherwise. 5,15-bis(4-pyridyl)-10,20-bis(phenyl)porphyrin
(H2P) [61], trans-Pd(PhCN)2Cl2 [62], and array 3 [63] were synthesized according to the pre-
viously reported procedures. THF was purified by distillation over sodium/benzophenone
ketyl solution while distilled pyrrole was obtained using calcium hydride. 1H NMR
spectra were obtained using a Bruker BIOSPIN/AVANCE III 400 spectrometer at 293 K
(Bruker BioSpin GmbH, Silberstreifen, Rheinstetten, Germany). Steady-state UV–vis and
fluorescence spectra were recorded using a Shimadzu UV-3600 spectrophotometer and
a Shimadzu RF-5301PC fluorescence spectrophotometer, respectively (Shimadzu, Tokyo,
Japan). The FTIR spectra were obtained using a Shimadzu FTIR-8400S spectrophotometer
(Shimadzu, Tokyo, Japan). Electrospray ionization mass (ESI-MS) spectra were recorded
using a Thermo Finnigan linear ion trap quadrupole mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA). Elemental analysis was performed using an EA 1110 Fisons
analyzer (Used Lab Machines Limited, London, UK). Field emission scanning electron
microscopy (FESEM) images were obtained using a MAIA III (TESCAN, Brno, Czech
Republic). Powder X-ray diffraction (PXRD) patterns were obtained using a Bruker AXS D8
Advance powder X-ray diffractometer (Bruker; Billerica, MA, USA). Thermogravimetric
analysis (TGA) was performed using an Auto-TGA Q500 instrument (TA Instruments,
New Castle, DE, USA). Dynamic light scattering (DLS) experiments were performed using
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a NanoBrook 90Plus DLS size analyzer (Brookhaven, NY, USA). The Brunauer–Emmett–
Teller (BET) surface area was determined with an analyzer (BELSORP-mini volumetric
adsorption equipment) using N2 adsorption isotherms at 77 K.

3.1. Material Synthesis

3.1.1. {(trans-Dihydroxo)[5,10-bis(4-Pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(IV) SnP1

H2P (0.099 g, 0.16 mmol) was dissolved in pyridine (20 mL). SnCl2·2H2O (0.22 g,
0.95 mmol) was added to the solution and refluxed for 12 h. Pyridine was removed under
vacuum, and the residue was dissolved in CHCl3. The mixture was filtered through a celite
pad, and the solvent in the filtrate was evaporated. The obtained solid was dissolved in
40 mL of a mixed solvent (10 mL H2O + 30 mL THF). K2CO3 (0.325 g, 1.45 mmol) was
added to the above reaction mixture and refluxed for 12 h. THF was removed at reduced
pressure, and the mixture was allowed to precipitate at 0 ◦C. The solid precipitate was
filtered and dried in an oven. Recrystallization of the precipitate using CHCl3/CH3CN
formed a reddish solid SnP1. Yield: 90 mg (73%). Anal. Calcd for C42H28N6O2Sn: C,
65.73; H, 3.68; N, 10.95; R, 19.64. Found: C, 65.35; H, 3.94; N, 10.50; R, 20.23. 1H NMR
(400 MHz, CDCl3, ppm): δ −7.50 (s, 2H, Sn-OH), 7.78–7.84 (m, 8H, m,p-phenyl), 8.27–8.31
(m, 8H, o-phenyl + 3,5-pyridyl), 9.09–9.19 (m, 12H, β-pyrrole + 2,6-pyridyl). FTIR (KBr
pellet, ν/cm−1): 1590 (s), 1465 (w), 1400 (w), 1340 (w), 1260 (w), 1200 (w), 1070 (s), 1020 (vs),
790 (vs), 700 (w), 660 (w), 550 (br). UV–vis (CHCl3, nm): λmax(log ε); 403(4.6), 420(5.27),
519(3.5), 558(4.42), 598(4.03). Emission (CHCl3, nm): λmax 596, 646.

3.1.2. {(trans-Diisonicotinato)[5,10-bis(4-pyridyl)-15,20-bis(phenyl)porphyrinato]}tin(iv) SnP2

A mixture of SnP1 (50 mg, 0.065 mmol) and isonicotinic acid (20 mg, 0.16 mmol)
in DMF (20 mL) was stirred at room temperature. After 24 h, the solvent was removed
under a vacuum. The product was purified by column chromatography (SiO2, eluent:
CH2Cl2/MeOH = 98:2) and recrystallized from CHCl3/n-hexane to obtain violet micro-
crystals of SnP2 (50 mg, 79%). Anal. Calcd. for C54H34N8O4Sn: C, 66.34; H, 3.51; N, 11.46;
R, 18.69. Found: C, 66.01; H, 3.82; N, 11. 38; R, 18.79. 1H NMR (400 MHz, CDCl3): δ 4.79 (d,
J = 6 Hz, 4H, isonicotinato-Hα), 7.62 (d, J = 6 Hz, 4H, isonicotinato-Hβ), 7.80–7.85 (m, 6H,
m,p-phenyl), 8.20–8.23 (m, 8H, o-phenyl + 3,5-pyridyl), 9.09 (d, J = 5.6 Hz, 4H, 2,6-pyridyl),
9.19–9.26 (m, 8H, β-pyrrole). FTIR (KBr pellet, ν/cm−1): 1656 (s), 1590 (s), 1540 (w), 1405
(w), 1310 (br), 1210 (w), 1140 (w), 1060 (w), 1025 (s), 790 (s), 760 (s), 670 (br). UV–vis (CHCl3,
nm): λmax(log ε); 402(4.29), 420(5.21), 516(3.25), 555(4.01), 594(3.56). Emission (CHCl3, nm):
λmax 601 and 653.

3.1.3. Supramolecular Array 1

trans-Pd(PhCN)2Cl2 (0.019 g, 0.05 mmol) was added with stirring to a solution of
SnP1 (0.038 g, 0.05 mmol) in 10 mL of THF. After 1 h, the brown precipitate was fil-
tered, washed with 5 mL THF, and dried in air. Yield: 35 mg (74%). Anal Calcd. for
C168H112Cl8N24O8Pd4Sn4: C, 65.03; H, 4.12; N, 10.57; R, 20.28. Found: C, 64.87; H, 4.34;
N, 10.44; R, 20.35. 1H NMR (400 MHz, CDCl3): δ −7.36 (s, 2H, Sn-OH), 7.88 (m, 6H,
m,p-phenyl), 8.35 (d, J = 6.4 Hz, 4H, o-phenyl), 8.47 (d, J = 6.4 Hz, 4H, 3,5-pyridyl), 9.21–9.29
(m, 8H, β-pyrrole), 9.57 (d, J = 5.6 Hz, 4H, 2,6-pyridyl). FTIR (KBr pellet, ν/cm−1): 1610 (s),
1420 (s), 1320 (br), 1225 (br), 1135 (w), 1030 (vs), 860 (w), 765 (br), 700 (vs). UV–vis (CHCl3,
nm): λmax(log ε); 428(5.40), 521(3.55), 560(4.36), 601(3.98). Emission (CHCl3, nm): λmax
598 nm and 648.

3.1.4. Supramolecular Array 2

trans-Pd(PhCN)2Cl2 (0.038 g, 0.1 mmol) was added with stirring to a solution of SnP2

(0.049 g, 0.05 mmol) in 15 mL of THF. After 1 h, the red precipitate was filtered, washed with
5 mL of THF, and dried in air. Yield: 61 mg (89%). Anal Calcd. for {C54H34Cl4N8O4Pd2Sn}n:
C, 63.87; H, 4.00; N, 10.41; R, 21.72. Found: C, 63.65; H, 4.29; N, 10.22; R, 21.84. 1H
NMR (400 MHz, CDCl3): δ 4.88 (d, J = 6 Hz, 4H, isonicotinato-Hα), 7.85–7.93 (m, 10H,
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isonicotinato-Hβ + m,p-phenyl), 8.35 (d, J = 6.4 Hz, 4H, o-phenyl), 8.46 (d, J = 6.4 Hz, 4H,
3,5-pyridyl), 9.20–9.30 (m, 8H, β-pyrrole), 9.56 (d, J = 5.6 Hz, 4H, 2,6-pyridyl). FTIR (KBr
pellet, ν/cm−1): 1660 (s), 1610 (s), 1475 (w), 1415 (w), 1210 (w), 1070 (w), 1020 (vs), 795 (vs),
700 (w), 545 (br). UV–vis (CHCl3, nm): λmax(log ε); 429(5.15), 517(3.48), 558(4.04), 598(3.72).
Emission (CHCl3, nm): λmax 605, 654.

3.2. Photocatalytic Degradation Investigation

The photocatalytic performance of porphyrin-based supramolecular arrays (1–3) was
investigated by the photodegrading AO in an aqueous solution. AO was photodegraded
under the irradiation of a 150 W xenon arc lamp with a UV cut-off filter (ABET Technologies,
Old gate lane Milford, CT, USA) at 298 K. In a typical procedure, 10 mg of the photocatalyst
was added to 200 mL of an aqueous solution of AO (15 mg L−1, distilled water with pH 7.0)
with stirring. The reaction mixture was allowed to stand in the dark for 30 min to reach the
adsorption–desorption equilibrium. After irradiation with visible light, a 3 mL suspension
was collected at regular intervals. The photocatalyst was separated from the solution by
centrifugation and collected by filtration through a membrane filter. The AO concentration
was determined by measuring the absorbance at 485 nm using a UV–Vis spectrophotometer.

4. Conclusions

We synthesized two porphyrin-based supramolecular architectures (1 and 2) via the
reaction of trans-Pd(PhCN)2Cl2 with two precursor building blocks (SnP1 and SnP2). The
structural patterns varied from 2D to 3D depending on the axial ligation of the starting
Sn(IV)-porphyrin units. Discrete 2D tetrameric supramolecule 1 was constructed by the
coordination of SnP1 with trans-PdCl2 units. In contrast, the coordination between SnP2

and trans-PdCl2 units formed a divergent 3D array 2. Axial ligation of Sn(IV)-porphyrin
building blocks not only alters the supramolecular arrays but also significantly modifies
the nanostructures, including porosity, surface area, stability, and morphology. These
structural changes consequently affected the photocatalytic degradation efficiency under
visible light irradiation towards AO in an aqueous solution. The degradation efficiency
of AO in an aqueous solution was observed to be between 86% to 91% within 90 min by
these photocatalysts. The high dye degradation efficiency, low catalyst loading, and high
reusability make these photocatalysts more promising than conventional photocatalysts,
such as TiO2, ZnO, or other photocatalysts [66–79]. We believe that our current reports on
photocatalysts hold great promise for the future treatment of dyeing wastewater.
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