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Abstract: The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) patho-
genesis and progression has been ascertained but their cross-talk within GBM cells remains elusive.
We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this pa-
per, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in
GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG
overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single
TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines
(A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected
brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase
and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset.
Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies
through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5
overexpression in U87MG and their expression was positively correlated with that of circSMARCA5
(r-values = 0.49 and 0.50, p-values = 9 × 10−5 and 7 × 10−5, respectively) in GBM biopsies. Among
targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively
correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with
that of circSMARCA5 (r-values = −0.58 and −0.30, p-values = 0 and 0.019, respectively), miR-126-3p
(r-value = −0.36, p-value = 0.0066), and miR-515-5p (r-value = −0.34, p-value = 0.010), respectively.
Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates down-
stream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.

Keywords: circular RNA; circSMARCA5; microRNAome; microRNA processing; microRNA target;
tumor suppressor; RNA binding protein; epigenetics

1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive malignant tu-
mor among those affecting the central nervous system (CNS), with an average annual
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age-adjusted incidence rate of 3.23 per 100,000 individuals per year and a median overall
survival of 14 months following diagnosis, according to the 2021 Central Brain Tumor
Registry of the United States (CBTRUS) statistics [1]. The classification and diagnostic
criteria of tumors of the CNS, published by the World Health Organization (WHO) in 2021,
state that molecular signatures such as isocitrate dehydrogenase (IDH) mutational status,
epidermal growth factor receptor (EGFR) gene amplification, telomerase reverse transcrip-
tase (TERT) promoter mutation, and duplications and deletions occurring in chromosomes
7 and 10 need to be associated with specific histological and immunohistochemical features
for a correct diagnosis of GBM [2]. Genomic features of GBM have been largely studied
thanks to the data collected within The Cancer Genome Atlas (TCGA) [3]; accordingly,
GBM can be classified into four molecular subtypes (classical, mesenchymal, proneural,
and neural), based on specific gene expression profiles [4]. Non-coding RNA, especially
microRNA (miRNA) expression profiles have also been used to classify GBM into differ-
ent subtypes [5]. Intra- and inter-GBM tumor heterogeneity at different levels (cellular,
molecular, and microenvironmental) defeat the effectiveness of therapeutical approaches
currently used, leading to high rates of chemoresistance and relapse [6]. Therefore, GBM
is still an incurable malignant tumor with less than 5% of individuals surviving 5 years
after diagnosis.

Circular RNAs (circRNAs) are a recently discovered class of RNAs, mostly non-
coding, characterized by covalently bound 5′ and 3′ termini [7,8]. The main biogenetic
mechanism of circRNAs is back-splicing, occurring during pre-mRNA maturation [9].
CircRNAs are synthesized by almost all living organisms (apart from eubacteria) and by
many viruses [10,11], following tissue- and developmental-specific patterns of expression,
and appear particularly abundant in the brain [12]. The peculiar structure of circRNAs
allows them to be more resistant to exonuclease-mediated digestion than their linear coun-
terparts [13]. CircRNAs have been detected also in biological fluids, inside extracellular
vesicles (EVs) [14–16], and, for these reasons, they may be used as stable non-invasive
diagnostic, prognostic, or response-to-therapy biomarkers for several diseases, including
GBM [17,18]. CircRNAs perform their function mainly by: (i) sponging miRNAs, being part
of the competitive endogenous RNA (ceRNA) networks; (ii) interacting with RNA bind-
ing proteins (RBPs), defining their subcellular localization and modulating their activity;
(iii) working as scaffold for transcription factors during the assembly of the pre-initiation
complex in the first phase of RNA transcription [19]. Altered expression of different
intra- and extra-cellular oncogenic or tumor-suppressive circRNAs has been linked to the
pathogenesis and progression of several types of cancer [20].

CircSMARCA5 has been recently characterized as a downregulated tumor suppressor
(TS) in GBM and additional tumors by ourselves and other researchers [21–28]; it also has
been detected in serum-derived EVs, together with circHIPK3, and has been described as a
good diagnostic candidate biomarker of GBM [17]. We also found that circSMARCA5 elicits
its function at least in part by acting as a decoy for the pleiotropic serine- and arginine-rich
splicing factor 1 (SRSF1) protein, therefore regulating its splicing activity [23].

MiRNAs belong to a large group of short (about 20-nucleotides long) non-coding
RNAs, which act as post-transcriptional negative regulators of gene expression and whose
sequences have been conserved during evolution [29]. The canonical pathway of miRNA
biogenesis consists of the synthesis of large precursor molecules (pri-miRNA), followed
by processing mediated by Drosha and Dicer enzymes that leads to the production of
pre-miRNAs and mature miRNAs, respectively [30]. Similar to circRNAs, miRNAs are
expressed according to tissue- and developmental-specific patterns and are involved in
the regulation of many biological functions, including physiological and pathological
conditions such as cancer [31–37]. The altered expression and function of miRNAs has been
ascertained to play a critical role in the pathogenesis and progression of GBM [38–44].

To expand our knowledge of the pathways regulated by circSMARCA5, in this study
we investigated its potential role as an upstream regulator of the microRNAome (miR-
NAome) in GBM cells.
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2. Results
2.1. The miRNAome Expression Profile Is Dysregulated upon circSMARCA5 Overexpression
in U87MG

To check for circSMARCA5-mediated regulation of the microRNAome in GBM cells,
the expression of 748 miRNAs was assayed in U87MG transfected for 24 h with the plasmid
vector expressing circSMARCA5 or with an empty pcDNA3.1 vector (NC) through real-
time PCR, by using two different sets of TaqMan® Array MicroRNA Cards (A and B) (see
Section 4). As shown in Figures 1A and S1, a total of 11 and 17 miRNAs were differentially
expressed (DE) between U87MG overexpressing circSMARCA5 and NCs, in Cards A
and B, respectively. Among DE miRNAs, 15 were upregulated and 13 downregulated in
U87MG overexpressing circSMARCA5 as compared to NCs. Analysis performed with
DIANA miRPath showed an involvement of DE miRNAs in biological processes (BPs) and
pathways related to glioma (Figure 1B,C; Table S1).
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Figure 1. (A) Heatmap representation of the expression level of significant DE miRNAs in U87MG
transfected for 24 h with the empty plasmid vector (pcDNA3) or with the plasmid vector expressing
circSMARCA5 (pcDNA3_circSMARCA5). Data are represented as −1*DCt (the less its value, the less
the expression of DE miRNAs; the higher its value, the higher the expression of DE miRNAs) for the
three replicates (R1, R2, R3) of each experimental condition. (B,C) Enriched pathways (EPs) controlled
by upregulated (B) and downregulated (C) miRNAs. Only significant (−1*LOG p-value ≥ 1.3) EPs
are reported in the graphs.
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2.2. miRNAs 126-3p, 515-5p, and 1257 Are Upregulated upon circSMARCA5 Overexpression
in U87MG

Based on our previous characterization of circSMARCA5 as TS in GBM, we focused
on DE miRNAs that showed, upon circSMARC5 overexpression: (i) a fold-change (FC)
of at least 1.5 and (ii) an upregulation or downregulation associated with a known TS or
oncogenic function in GBM (or other neoplasia), respectively. These criteria allowed us to
filter six DE miRNAs (five upregulated TS RNAs (miR-126-3p, miR-144-5p, miR-331-3p,
miR-515-5p, and miR-1257) and one downregulated onco-miRNA (miR-517a-3p)) to be
further analysed (Table 1).

Table 1. Upregulated TS miRNAs and downregulated onco-miRNAs chosen as candidate DE
miRNAs to be further analysed through single TaqMan® assays.

DE miRNA Expression upon
circSMARCA5 OE

Role of miRNA in
GBM or Other Tumors

Reference from
Literature

miR-126-3p Upregulated TS-miRNA [45–49]

miR-144-5p Upregulated TS-miRNA [50]

miR-331-3p Upregulated TS-miRNA [51,52]

miR-515-5p Upregulated TS-miRNA [53–56]

miR-517a-3p Downregulated Onco-miRNA [57,58]

miR-1257 Upregulated TS-miRNA [59,60]

Upregulation of miRNAs 126-3p, 515-5p, and 1257 in U87MG overexpressing circS-
MARCA5 was validated through single TaqMan® assays; miR-144-5p was not detected
in any sample following real-time PCR; expression of miR-331-3p and miR-517a-3p did
not significantly change in U87MG overexpressing circSMARCA5 as compared to NCs
(Figure 2).
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Figure 2. Expression of candidate DE miRNAs in U87MG overexpressing circSMARCA5. Data are
reported as fold-change (FC) of the expression of candidate DE miRNAs in U87MG transfected with
pcDNA3_circSMARCA5 vs. NCs. Red and blue bars show FC calculated by using miR-106a-5p and
miR-192-5p as endogenous control (HK), respectively. The * p-value < 0.05 (n = 3, Student’s t-test).

2.3. miRNAs 126-3p and 515-5p Are Downregulated in GBM Biopsies and Their Expression
Positively Correlates with That of circSMARCA5

To further analyse the correlation between circSMARCA5 and miRNAs 126-3p, 515-5p,
and 1257, their expression was initially assayed in a training set cohort made up of five GBM
and five UC samples. As shown in Figure S2, miRNAs 126-3p and 515-5p were significantly
downregulated, while miR-1257 was upregulated in GBM vs. unaffected brain parenchyma
(UC). The expression of miR-126-3p, miR-515-5p, and circSMARCA5 was then assayed in
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a validation set cohort made up of 38 GBM and 21 UC samples: circSMARCA5, miR-126-
3p, and miR-515-5p were confirmed as downregulated in GBM biopsies, as compared to
UCs (FC = −2.32, −1.59, and −2.82, p-values = 9.34 × 10−9, 7.9 × 10−4 and 2.97 × 10−6,
Student’s t-test, respectively) (Figure 3A). MiR-126-3p and miR-515-5p were also positively
correlated with circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10−5 and 7 × 10−5,
Spearman’s correlation test, respectively) (Figure 3B) and downregulated in all the GBM
cell lines used in this study, as compared to brain cells from healthy donors (Figure S3).
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Figure 3. CircSMARCA5, miR-126-3p, and miR-515-5p are downregulated and positively correlated
in GBM and UC biopsies. (A) Box and whisker plots representing the expression of circSMARCA5,
miR-126-3p, and miR-515-5p in GBM and UC biopsies. Data are reported as −1*DCt. Statistical
significance is indicated as p-value under the name of each transcript. (B) Correlogram showing
correlations among circSMARCA5, miR-126-3p, and miR-515-5p. The colour of the circle is linked
to the type of correlation (colours from light blue to dark blue and from light red to dark red are
representative of positive and negative correlation, respectively); the size of the circle is inversely
proportional to the p-value (the bigger is the circle, the less is the p-value). The r-values have been
calculated by applying Spearman’s correlation test (*** p-value < 0.001, **** p-value < 0.0001).

2.4. IGFBP2 (Target of miR-126-3p), NRAS and ROCK1 (Targets of miR-515-5p) mRNAs Are
Downregulated upon circSMARCA5 Overexpression in U87MG

To widen our knowledge of the identified circSMARCA5/miR-126-3p/miR-515-5p
axis, we searched for the targets of the two candidate miRNAs. A manual literature search
allowed us to initially select 17 validated targets (9 of miR-126-3p and 8 of miR-515-5p)
in GBM or other neoplasias (Table S2). This first selection was followed by the analysis
of the Tumor Cancer Gene Atlas (TCGA), whose data were retrieved from the University
of Alabama Cancer Database (UALCAN) to search for upregulated targets in GBM as
compared to UCs. Based on TCGA data, we focused on eight mRNA targets (IGFBP2,
NRAS, PLXNB2, ROCK1, SOD2, TCF12, TRIP13, and VCAM1) (Table 2), whose expression
was first assayed in U87MG overexpressing circSMARCA5. Among the assayed targets,
IGFBP2, NRAS, and ROCK1 mRNAs were significantly downregulated (FC IGFBP2, NRAS,
ROCK1 = −1.97, −1.33, and −1.31, respectively) (Figure 4).
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Table 2. Selected targets of miRNAs 126-3p and 515-5p. Data reported in the table have been retrieved
from UALCAN database.

DE miRNA Target FC GBM vs. UC
(UALCAN-TCGA)

p-Value
(UALCAN-TCGA)

miR-126-3p IGFBP2 43.64593019 <10−12

miR-126-3p PLXNB2 2.135723573 0

miR-126-3p VCAM-1 7.528862275 0

miR-515-5p NRAS 1.878510556 0.0011

miR-515-5p ROCK1 1.726470588 0.0575

miR-515-5p SOD2 2.854586107 1.65 × 10−12

miR-515-5p TCF12 5.298487733 0.0204

miR-515-5p TRIP13 4.796287482 3.05 × 10−9
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are reported as fold-change (FC) of the expression of candidate miRNA targets in U87MG transfected
with pcDNA3_circSMARCA5 vs. NCs. * p-value < 0.05, ** p-value < 0.01 (n = 3, Student’s t-test).

2.5. IGFBP2 and NRAS mRNAs Are Upregulated in GBM Biopsies and Cell Lines with Respect to
UCs and Their Expression Negatively Correlates with That of circSMARCA5

The expression of IGFBP2, NRAS, and ROCK1 mRNAs was then assayed in the
same validation set cohort (made of 38 GBM and 21 UC samples) used to verify the
differential expression of candidate DE miRNAs. IGFBP2 and NRAS were upregulated
in GBM biopsies and cell lines with respect to UCs (Figures 5A and S4) and their ex-
pression negatively correlated with that of circSMARCA5 (r-values = −0.58 and −0.30,
p-values = 0 and 0.019, Spearman’s correlation test, respectively), and with that of their
negative regulators, miR-126-3p and miR-515-5p, respectively (r-values = −0.36 and −0.34,
p-values = 0.0066 and 0.010, Spearman’s correlation test, respectively) (Figure 5B). IGFBP2
mRNA and protein were significantly upregulated in classical (C) and mesenchymal
(M) GBM subtypes, when compared to the proneural (P) and neural (N) ones, based on
TCGA data (Figures S5 and S6); NRAS mRNA was, instead, significantly upregulated in
the N GBM subtype when compared to the other subtypes (Figure S7). These data are
in agreement with the worst prognosis of M-subtype patients showing a higher IGFBP2
mRNA expression (p-value = 0.023, Kaplan–Meier survival curve comparison) (Figure 5C).
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IGFBP2 and NRAS mRNAs were positively correlated based on our dataset (r-value = 0.46,
p-value = 0.00027) (Figure 5B), and GBM TCGA and normal brain cortex GTEx gene ex-
pression data (r-value = 0.76, p-value = 4.5 × 10−52) (Figure S8). To extend the pathway
downstream to IGFBP2, we assayed the expression of the vascular endothelial growth
factor A (VEGFA) mRNA (whose transcription is known to be activated by IGFBP2 protein
that acts as an enhancer on its promoter—see Section 3) in (i) U87MG overexpressing
circSMARCA5 and (ii) in the same validation set cohort used to verify the differential
expression of IGBP2 mRNA. VEGFA mRNA was significantly downregulated in U87MG
upon circSMARCA5 overexpression and its expression positively correlated with that of
IGFBP2 in the validation set cohort used in this study (Figure S9).
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Figure 5. Expression of DE miRNA targets in GBM and UC biopsies. (A) Box and whisker plots
representing the expression of IGFBP2, NRAS, and ROCK1 mRNAs in GBM and UC biopsies. Data are
reported as −1*DCt. Statistical significance is indicated as p-value under the name of each transcript.
(B) Correlogram showing correlations among circSMARCA5, miR-126-3p, miR-515-5p, IGFBP2, and
NRAS. The colour of the circle is linked to the type of correlation (colours from light blue to dark blue
and from light red to dark red are representative of positive and negative correlation, respectively);
the size of the circle is inversely proportional to the p-value (the bigger is the circle, the less is the
p-value). r-values have been calculated by applying Spearman’s correlation test (**** p-value < 0.0001,
** p-value < 0.01, * p-value < 0.05). (C) Kaplan–Meier overall survival (OS) curves of Mesenchymal (M)
GBM-subtype patients, based on the expression of IGFBP2. Data were retrieved from Glioblastoma
Bio Discovery Portal (GBM-BioDP).
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2.6. Serine- and Arginine-Rich Splicing Factor 3 (SRSF3) Is Predicted to Bind Pre-miRNAs 126
and 515-1

To search for RNA motifs common to pre-miRNAs 126 (precursor of miR-126-3p)
and 515-1 (precursor of miR-515-5p), their sequences were given as input to the MEME
tool. Two motifs, CUUCAA and CUCCAA, were identified within pre-miR-126 and pre-
mir-515-1 sequences, respectively (p-values = 4.72 × 10−4 and 2.12 × 10−4, respectively).
Both motifs have been validated by other researchers to be bound by SRSF3, a known
post-transcriptional regulator of miRNA processing (Table 3), and occur in the apical loop
and the stem regions of pre-miRNAs 126 and 515-1 hairpins, respectively, according to the
RNAStructure tool’s prediction (Figure S10).

Table 3. Experimentally validated interactions between RBPs and RNA motifs CUUCAA and CUC-
CAA identified within pre-miR-126 and pre-mir-515-1 sequences.

Gene Name RNA Motif Reference Q-Score
(ATtRACT)

SRSF2 GGCUCCAA [61] 0.001327

SRSF3 UUCUCCAA [62] 0.000743

SRSF3 UACUUCAA [62] 0.014075

SRSF3 CUUCAAC [62,63] 1

SRSF3 UUCUUCAA [62] 0.012513

3. Discussion

The pathway leading to the expression of miRNAs is very complex and tightly reg-
ulated by several factors at different steps [64]. Altered expression of the microRNAome
in GBM has been extensively studied, although the molecular mechanisms steering spe-
cific miRNA dysregulation have been elucidated only in a few cases [65–67]. Numerous
RBPs play a crucial role in the post-transcriptional processing of pri-miRNAs and pre-
miRNAs [68]: among them, the splicing factor SRSF1 has been demonstrated to regulate
the expression of several mature miRNAs by a cross-talk with the enzymes involved in the
processing of their precursors, through mechanisms that have been only partially explained
to date [69]. The interplay between circRNAs and miRNAs has been mainly described as
a ceRNA network, in which circRNAs, including circSMARCA5, act as sponges for miR-
NAs [24–27,70–74]; however, circRNAs have not been yet reported as upstream regulators
of miRNA expression, to the best of our knowledge. Because of their role as decoys for
several RBPs, here we hypothesize that circRNAs may act as upstream epigenetic regulators
of the miRNAome inside cells. In this work, we specifically investigated the circSMARCA5-
mediated regulation of the miRNAome in GBM cells. We previously characterized circS-
MARCA5 as a TS circRNA in GBM and we demonstrated that it performs its function by
sponging the RBP SRSF1 [22,23,75]. Our data ascertained that circSMARCA5 plays a role
in the control of the miRNA expression inside GBM cells and that several dysregulated
miRNAs upon circSMARCA5 overexpression are involved in glioma pathways. Further
investigation led us to focus on miRNAs 126-3p and 515-5p: (i) both were upregulated in
U87MG upon circSMARCA5 overexpression; (ii) their expression was positively correlated
with that of circSMARCA5; (iii) they have been characterized as TS in GBM and additional
cancers by other scholars [45–49,54–56,76–87]. CircSMARCA5-mediated upstream control
of miRNAs 126-3p and 515-5p is also supported by: (i) the observed downregulation of
their two selected mRNA targets, IGFBP2 and NRAS, upon circSMARCA5 overexpression;
(ii) positive correlation between the expression of IGFBP2 and NRAS mRNAs; (iii) negative
correlation between the expression of IGFBP2 and NRAS mRNAs and circSMARCA5. Circ-
SMARCA5 is also functionally linked to miRNAs 126-3p, 515-5p and their targets; indeed,
similar to circSMARCA5 [21–23], miR-126-3p and its target IGFBP2 are involved in GBM
progression, by regulating cell migration, invasion [45,88–90], and angiogenesis [91,92]. To



Int. J. Mol. Sci. 2022, 23, 13676 9 of 17

deepen the knowledge of the latter molecular axis, we also investigated the expression
of VEGFA mRNA, both in U87MG overexpressing circSMARCA5 and in the validation
cohort of GBM and UC biopsies. We previously showed that circSMARCA5 affects the
ratio between pro- and anti-angiogenic isoforms of VEGFA mRNA in GBM by regulating
alternative splicing of VEGFA pre-mRNA, tethering the splicing factor SRSF1 [22]. Here we
showed that the amount of pan-VEGFA mRNA decreased in U87MG upon circSMARCA5
overexpression and that VEGFA and IGFBP2 mRNAs were positively correlated. Unless
here we focused on an axis involving (non-coding and coding) RNA molecules, data ob-
tained on the expression of VEGFA mRNA suggest that IGFBP2 may be upstream regulated
by circSMARCA5 also at the protein level: indeed, IGFBP2 was described as an enhancer
for the transcription of VEGFA in neuroblastoma cells [93] and IGFBP2 and VEGFA were
shown to be positively correlated at the protein level in GBM tissues [94]. MiR-126-3p can
be also carried in biological fluids through EVs [95,96]: it would be interesting to investigate
if and how the delivery of this molecule to cells at different sites from the bulk tumor play
a role in the cancer progression and resistance to the current therapies. MiR-515-5p and its
target NRAS are also known to be involved in GBM progression by regulating cell migra-
tion, growth [53–56,97], and angiogenesis [98,99]. In an attempt to find a link between the
upstream regulator circSMARCA5 and the downstream-regulated intronic miRNAs 126-3p
and 515-5p, we also searched for RBPs that may commonly bind and, potentially, regulate
pre-miR-126 and pre-miR-515 processing. Our prediction allowed us to identify the splicing
factor SRSF3 as an RBP that potentially binds both pre-miRNAs. We previously found that
SRSF3 splicing is regulated by SRSF1 and, indirectly, by circSMARCA5 in GBM cells, where
the pro-oncogenic full-length functional SRSF3 mRNA isoform is overexpressed when
compared to the truncated non-functional one [21]. SRSF3 has been described as a direct or
indirect positive regulator of the processing of several pri-miRNAs such as pri-miRNAs
30a, 142, and miR-132/212, by interacting with a CNNC motif, recruiting DROSHA to the
cleavage site, and enhancing the Microprocessor activity [100,101]. Based on our predic-
tion, SRSF3 would interact with different motifs other than CNNC on pre-miRNA 126 and
515 sequences, paving the way to alternative mechanisms of SRSF3-mediated pri- and,
eventually, pre-miRNA processing. Most specifically, based on our data, we speculate that
in a GBM cell context and in particular for pre-miRNAs 126 and 515-1 processing, SRSF3
may function as a negative regulator (Figure 6). As previously reported for the RBP RNA
binding fox-1 homolog 3 (RBFOX3), the same RBP can stimulate or block the processing
of individual pri- or pre-miRNAs depending on the cell context and the specific miRNA
precursor structure [102].
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Figure 6. Schematic model of circSMARCA5-mediated upstream control of miRNAs 126-3p, 515-5p,
and their mRNA targets IGFBP2 and NRAS.

Collectively, our data suggest circSMARCA5 as an upstream regulator of the expres-
sion of TS miRNAs 126-3p and 515-5p and their downstream targets IGFBP2 and NRAS
mRNA in GBM cells, extending our knowledge on the disrupted tumor suppressive path-
ways mediated by circSMARCA5 in GBM cells. Prospectively, these pathways may be
considered for targeted molecular therapeutic approaches, especially by using recently
discovered genomic editing techniques [103].
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4. Materials and Methods
4.1. Cell Lines and Biopsies

GBM cell lines A172, CAS-1, SNB-19, U251MG, and U87MG were cultured as described
in the supplementary materials and methods. All cell lines were purchased from the Interlab
Cell Line Collection (ICLC), located at the IRCCS Ospedale Policlinico San Martino, Genova,
Italy. Cell lines were used between the 5th and 10th passage and their viability was assessed
through the Trypan Blue Exclusion Test (ThermoFisher Scientific, Waltham, MA, USA)
before each experiment, according to the protocol described by W Strober [104]. In total,
38 GBM and 21 UC biopsies were obtained, characterized by pathologists, and stored until
their processing, as previously described [22]. Informed consent was signed by the patients
before surgery. Demographic data of the patients enrolled in this study are summarized
in Table S3. The entire study was performed according to the Declaration of Helsinki
and approved by the local ethical Committee of the Azienda Ospedaliero-Universitaria
“Policlinico-Vittorio Emanuele”, Catania, Italy (project identification code: 166/2015/PO,
17 December 2015).

4.2. Cell Transfection

U87MG cells were transfected by using lipofectamine 2000 (Thermofisher Scientific,
Waltham, MA, USA), as previously described [21]. Briefly, 5 × 104 cells were seeded in a
24-well plate, cultured for 24 h, and transfected with 500 ng of NC or the vector express-
ing circSMARCA5 (pcDNA3.1_circSMARCA5) for 24 h, according to the manufacturer’s
instructions. Three replicates for each experimental condition were carried out and anal-
ysed accordingly. Data on circSMARCA5 overexpression upon transfection of U87MG are
reported in Figure S11.

4.3. RNA Extraction

Total RNA was isolated through Trizol™ (Thermofisher Scientific, Waltham, MA, USA)
in accordance with the manufacturer’s instructions and quantified by spectrophotometry,
as previously described [105]. FirstChoice® Human Brain Reference RNA (Ambion, Austin,
TX, USA) was used as an additional UC.

4.4. microRNA TaqMan® Arrays

MicroRNA TaqMan® Arrays (Thermofisher Scientific, Waltham, MA, USA) were
performed as previously described [106]. Briefly, 300 ng of total RNA isolated from
each of the three biological replicates of U87MG, transfected for 24 h with the vector
pcDNA3.1_circSMARCA5 or with NC, were reverse-transcribed into specific cDNAs of
748 microRNAs using the TaqMan™ MicroRNA Reverse Transcription Kit (ThermoFisher
Scientific, Waltham, MA, USA) and the Megaplex™ RT Primers Human Pool A v 2.1 and
Pool B v 3.0 (ThermoFisher Scientific, Waltham, MA, USA). The products of Megaplex™
reactions were then pre-amplified using the following kits: Megaplex™ PreAmp Primers,
Human Pool A v. 2.1, and Human Pool B v. 3.0 (ThermoFisher Scientific, Waltham, MA,
USA), according to the manufacturer’s instructions. The Megaplex™ PreAmp product of
each sample was then loaded into an independent TaqMan® Array MicroRNA Card A
(in the case of samples reverse-transcribed and pre-amplified with pool A primers) or B
(with samples reverse-transcribed and pre-amplified with pool B primers) (ThermoFisher
Scientific, Waltham, MA, USA). PCR was performed using a QuantStudio™ 5 Real-Time
PCR System (ThermoFisher Scientific, Waltham, MA, USA) (Figure S12).

4.5. Array Data Analysis

EDS files generated by the run of microRNA TaqMan® Arrays were imported into
the dashboard of a ThermoFisher cloud (https://apps.thermofisher.com/apps/spa/#/
dashboard, accessed on November 2021) and then analysed through relative quantification
application. Cycle thresholds (Cts) were then calculated by the software and exported
in a CSV file. Data from Cards A and B were analysed independently. Briefly, miRNAs

https://apps.thermofisher.com/apps/spa/#/dashboard
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that showed Cts > 35 in all the experimental conditions were considered too late and
filtered out from data analysis. Correlations between the mean or median Ct value of each
card and the Ct value of each miRNA were calculated to select candidate housekeeping
(HK) miRNAs. A selection of 15 and 3 candidate HK miRNAs, among those showing the
strongest correlation with the mean and median Ct values, were given as input to RefFinder
(http://blooge.cn/RefFinder/?type=reference, accessed on November 2021) to select the
best reference miRNAs within Cards A and B, respectively (Table S4). Reference miRNAs
(miR-192-5p and miR-106a-5p for Card A; miR-452-3p and miR-19a-5p for Card B) were
used to obtain DCts, (Ct of the transcript of interest—Ct of the reference transcript). DCts
of 190 and 58 miRNAs were given as input to the MeV (Multiple Experiment Viewer) tool
v. 4.7.1 to retrieve significant DE miRNAs within Cards A and B, respectively. A graphical
representation of microRNA TaqMan® Arrays’ data analysis is reported in Figure S12.

4.6. Real-Time PCR

DE miRNAs were validated through single TaqMan™ microRNA assays. Briefly,
30 ng of total RNA were reverse transcribed through the TaqMan™ microRNA Reverse
Transcription Kit (ThermoFisher Scientific, Waltham, MA, USA) by using miRNA-specific
primers and then amplified through the TaqMan™ Universal Master Mix II (ThermoFisher
Scientific, Waltham, MA, USA) by using specific TaqMan™ assays, according to the manu-
facturer’s instructions. Messenger RNAs of candidate miRNA targets were amplified by
using the Power SYBR™ Green RNA-to-Ct™ 1-Step Kit (ThermoFisher Scientific, Waltham,
MA, USA). PCRs were run in a QuantStudio™ 5 Real-Time PCR System (ThermoFisher
Scientific, Waltham, MA, USA). Real-time PCR data were represented as −1*DCts, FC, or
log FC within the text (see supplementary methods for further explanation). The list of
TaqMan™ assays and primers used in this study is shown in Table S5.

4.7. In Silico Analyses

BPs and pathways regulated by DE miRNAs were retrieved through DIANA miRPath
3.0 [107]: validated targets stored in TarBase v. 7.0 were selected to calculate BP and pathway
enrichment. The expression of miRNA targets from the GBM TCGA dataset was retrieved
through the UALCAN, GBM-BioDP, and Gene Expression Profiling Interactive Analysis
(GEPIA) databases [108–110]. Multiple Em for Motif Elicitation (MEME) suite v. 5.4.1 [111]
was used to retrieve RNA motifs within pre-miRNA sequences, using default parameters.
ATtRACT database v. 0.99β [112] identified RBPs validated to bind specific RNA motifs.
The RNA Structure tool [113] was used to calculate and visualize the secondary structures
common to pre-miRNA sequences.

4.8. Statistical Analyses

Pearson’s and Spearman’s correlation tests were used to calculate correlations between
the mean or median Ct value of each card and the Ct value of each miRNA, in order to
select candidate housekeeping (HK) miRNAs. Only miRNAs showing correlation coef-
ficients (r-values) ≥ 0.8 and p-value < 0.05 were considered as candidate DE miRNAs to
be given as input to RefFinder. DE miRNAs were calculated through the Significance
Analysis of Microarray (SAM) method within MeV tool v. 4.7.1 [114]. Only miRNAs re-
porting q-values = 0 were considered DE. Correlation tests and statistical significance were
performed and calculated through GraphPad Prism v. 8.0.2. Student’s t-test was used to
identify DE miRNAs and targets after single real-time PCR assays; for this, p-values < 0.05
were considered significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms232213676/s1. References [47,53–56,115–122] are cited in the
supplementary materials.
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