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Abstract: Fullerene derivatives are of great interest in various fields of science and technology.
Fullerene derivatives are known to have pronounced anticancer and antiviral activity. They have
antibacterial properties. Their properties are largely determined by association processes. Under-
standing the nature and properties of associates in solvents of various types will make it possible to
make significant progress in understanding the mechanisms of aggregation of molecules of fullerene
derivatives in solutions. Thus, this work, aimed at studying the size and stability of associates,
is relevant and promising for further research. The NMR method in a pulsed field gradient was
used, which makes it possible to directly study the translational mobility of molecules. The sizes
of individual molecules and associates were calculated based on the Stokes–Einstein model. The
lifetime of associates was also estimated. The interaction of water-soluble C60 fullerene derivatives
with erythrocytes was also evaluated. The values of self-diffusion coefficients and the lifetime of
molecules of their compounds in cell membranes are obtained. It is concluded that the molecules
of fullerene derivatives are fixed on the cell surface, and their forward movement is controlled by
lateral diffusion.

Keywords: fullerene derivatives; associates; solution; red blood cells; pulsed field gradient NMR;
self-diffusion; lifetime; lateral diffusion

1. Introduction

Fullerene is a three-dimensional allotropic modification of carbon (Cn, where n = 20
. . . 540). A fullerene molecule is a convex closed polyhedron consisting of an even number
of atoms forming pentagons and hexagons. Currently, a large number of types of fullerenes
are known, but the most common and studied is the C60 molecule. At the vertices of a
truncated icosahedron are 60 carbon atoms, and the faces are 20 hexagons and 12 pentagons.
Fullerene derivatives are widely used in various fields of science and technology [1,2].

Water-soluble fullerene derivatives (WSFD) show considerable promise in the field of
biomedical applications. These are substances with unique properties. They can be used as a
targeted component of drug delivery systems. It is known from the literature data that some of
the fullerene derivatives exhibited pronounced anticancer activity [3–6], antiviral (including
anti-HIV) [7–11], and antibacterial [4,12,13] activity. It was also shown that fullerenes and
fullerene-dye hybrid structures have a pronounced antitumor photodynamic effect [14–16].

The biological activity of water-soluble fullerene derivatives is explained by the pecu-
liarity of their structure. Water-soluble fullerene derivatives are amphiphilic compounds
consisting of a hydrophobic carbon framework surrounded by hydrophilic addends [17–19].
As a result, these compounds are lipophilic. On the one hand, WSFDs interact with the
lipid matrix of the cell membrane; on the other hand, WSFDs interact specifically with
protein active sites.
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There are many publications devoted to the behavior of WSFD in proteins, model
and native biological membranes [20–24]. However, at the same time, only a few works
are devoted to studying the interaction of water-soluble fullerene derivatives with red
blood cell (RBC) membranes [25,26]. Although RBCs as a biological system are of interest
since the structure of their membrane is similar to the membranes of other cells. In [25,26],
fullerenols C60(OH)24 and C60(OH)36 containing polar hydroxyl groups were studied. The
authors showed that fullerenols are predominantly associated with surface proteins of
the plasma membrane; however, they can also be incorporated into the membrane. It has
also been demonstrated that fullerenol affects membrane ATPases and can modulate ion
transport across membranes.

The amphiphilic nature of the molecules of water-soluble fullerene derivatives causes
their aggregation in aqueous solutions. As a result of self-organization processes, nanosized
hollow spherical vesicles are formed [27–29]. It is reasonable to assume that the biological
properties of these molecules will be influenced by the processes of self-aggregation and
the size of the resulting clusters. Therefore, the study of self-organization in solutions of
fullerene derivatives is of fundamental importance.

The processes of self-organization of fullerene derivatives in water and organic solutions
are studied using various experimental methods: dynamic light scattering [7,30–32], atomic
force microscopy [7,30,33,34], transmission electron microscopy [7,32,33,35,36]. However, these
methods are rather indirect.

The most direct way to estimate the size of aggregates in solutions from diffusion
coefficients is using the Stokes–Einstein model. Diffusion NMR spectroscopy is informative
for measuring molecular diffusion parameters [37,38]. For example, in [39–42], the 1H
DOSY NMR method was used to study supramolecular systems based on fullerenes.
This method made it possible to obtain information about the processes of formation of
supramolecular systems by analyzing the self-diffusion coefficients of the initial compounds
and finished complexes. It was shown that the mobility of supramolecular systems is lower
than the mobility of the initial molecules. In paper [43], the 1H DOSY NMR method was
used to establish the formation of fullerene polyesters, which was also confirmed by a
decrease in the diffusion coefficient.

A special place in the field of diffusion NMR spectroscopy is occupied by the pulsed
field gradient NMR technique (PFG NMR). In the PFG NMR experiment, individual
diffusion components could be selected from the NMR spectra using Fourier transform,
and the partial diffusion coefficients can be estimated, which makes it possible to apply
this method to study the association of fullerene derivatives in organic and aqueous media.

Another remarkable feature of PFG NMR is the possibility of its application to study
the translational mobility of molecules in biological systems (cells, models) [22,23,44–53].
It does not have a destructive effect on cells and, at the same time, allows obtaining of
qualitative and quantitative information related to the self-diffusion processes of molecules
in biosystems.

Thus, the following conclusions can be drawn. First, water-soluble fullerene deriva-
tives are promising compounds for biomedical research and pharmaceutical applications.
Second, the investigation of these substances’ state in aqueous solutions, as well as their in-
teraction with biological systems (for example, RBCs), is very important. Third, the pulsed
field gradient NMR technique makes it possible to noninvasively study the translational
mobility of fullerene derivatives molecules in solutions and biological cells.

Herein we have presented the experimental results of fullerene derivative association
in solutions and erythrocytes obtained with the pulsed field gradient technique.
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2. Results and Discussion
2.1. Fullerene Derivatives in Solutions

The Stokes–Einstein model is usually used to describe the aggregation of molecules
in solutions. The hydrodynamic radius rH of a spherical particle is calculated using the
self-diffusion coefficient D according to Equation (1) [54–58]:

D =
k · T

n · π · η · rH
, (1)

where k is the Boltzmann constant, T is the absolute temperature, and η is the solvent
viscosity.

In the case of slip molecules, the value of n is equal to four. For the stick-shaped
molecules, n is equal to 6.

The applicability of the Stokes–Einstein model for calculating the size of particles
formed by molecules of fullerene derivatives was tested using the fluorinated fullerene
C60F36. The structure of this compound is well known; the van der Waals diameter is
1.23 nm [58]. From the experimental data of PFG NMR of 19F nuclei, the value of the
self-diffusion coefficient of C60F36 molecules was obtained, which was 6.5 10−10 m2/s [59].
The hydrodynamic diameter 2rH, calculated from Equation (1), is equal to the van der
Waals diameter at n = 6 within the measurement error. Thus, it seems appropriate to
apply Equation (2) for hydrodynamic radii of particles formed by molecules of fullerene
derivatives estimation:

rH =
k · T

6 · π · η · D (2)

2.1.1. Nonpolar Fullerene Derivatives

The molecular structures of fullerene derivatives that do not contain polar groups
(I–V) are shown in Figure 1.
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Figure 1. The molecular structure of compounds I–V.

For compounds I–V, spin echo attenuation of 1H nuclei was measured in the solvents
indicated in Section 3.1. The dependences of the spin echo attenuation amplitude A(2τ, τ1,
g) vs. the square of the pulsed field gradient amplitude g2 (diffusion decays) were analyzed.
The diffusion decays were exponential shapes and fitted well using Equation (3):

A(2τ, τ1, g) = A(2τ, τ1, 0)exp
(
−γ2g2δ2tdDs

)
, (3)

which is an instance of Equation (9) presented in Section 3.3 at m = 1.
The exponential character of diffusion decays of compounds I–V indicates that the

mobility of the molecules of fullerene derivatives is characterized by a single self-diffusion
coefficient Ds. Since the NMR spectra of the studied compounds are well resolved, the
diffusion decays of different spectral lines belonging to different functional groups were
analyzed. The resulting decays turned out to be almost identical.
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Table 1 presents the self-diffusion coefficients obtained for the molecules of compounds
I–V in various solvents. The sizes of particles dH = 2·rH are calculated using the Stokes–
Einstein Equation (2).

Table 1. The self-diffusion coefficients Ds and the diameters dH calculated from Equation (2) for the
fullerene derivatives I–V.

Compound Solvent Ds, m2/s dH, nm

I
CDCl3 5.9·10−10 1.3 ± 0.1

CS2 1.0·10−9 1.2 ± 0.1

II
CDCl3 6.3·10−10 1.3 ± 0.1

CS2 1.1·10−9 1.2 ± 0.1
C6D5CD3 6.6·10−10 1.2 ± 0.1

III CDCl3 6.9·10−10 1.2 ± 0.1

IV C6D5CD3 6.1·10−10 1.2 ± 0.1

V CDCl3 5.8·10−10 1.4 ± 0.1

The hydrodynamic diameters of the molecules of compounds I–V are in the range
of 1.2–1.4 nm. It should be noted that the type of solvent does not affect the particle
sizes, which are close to the van der Waals diameter of the fullerene. Thus, fullerene
derivatives containing non-polar groups are not prone to the formation of aggregates but
are in solutions as isolated molecules.

2.1.2. Polar Fullerene Derivatives

Another picture was observed for fullerene derivatives containing polar groups. The
molecular structures of fullerene derivatives containing polar groups are shown in Figure 2.
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Figure 2. The molecular structure of compounds VI–XIII.

The exponential diffusion decays were observed for solutions of VI in deuterated
DMSO-d6, acetone-d6, and DMSO-D2O mixtures. The fullerene self-diffusion coefficients
and hydrodynamic diameters calculated from Equations (2) and (3), respectively, are shown
in Table 2.

The calculated particle size formed by the molecules of compound VI in solutions of
deuterated DMSO and acetone was 2.3–2.4 nm. The obtained value exceeds the size of the
C60 fullerene molecule twice as much. Presumably, it can be explained by the presence
of five bulk addends on the C60 fullerene framework, which increases the molecular
hydrodynamic diameter. Another option is the formation of self-assembling dimers by
compound VI due to the occurrence of hydrogen bonds between the -COOH groups of
two complementary molecules, as is well known for organic acids.



Int. J. Mol. Sci. 2022, 23, 13344 5 of 18

Table 2. The self-diffusion coefficients Ds and the diameters dH from Equation (2) for fullerene
derivative VI, the solution concentration C = 8 mg/mL.

Solvent Ds, m2/s dH, nm

acetone-d6 5.7·10−10 2.4 ± 0.2

DMSO 8.5·10−11 2.3 ± 0.2

The molar ratio DMSO:D2O = 3:1 2.1·10−11 5.4 ± 0.5

The molar ratio DMSO:D2O = 1:1 2.3·10−11 6.3 ± 0.6

The molar ratio DMSO:D2O = 1:3 2.3·10−11 9.6 ± 0.9

At the same time, in a mixture of DMSO-D2O solvents, for the molecules of compound
VI, a noticeable aggregation was observed, which can be seen in Table 2. Probably, sta-
ble aggregates of various sizes, including D2O molecules, are formed in the system. In
addition, the observed exponential diffusion decay characterizes an average aggregate
self-diffusion coefficient.

Associates formed by the molecules of compound VI possess low stability, which
was confirmed using the dependence of the hydrodynamic diameter dH on temperature.
Figure 3 shows that with the increasing temperature of the solution from 25 to 45 ◦C, a
decrease in particle size was observed.
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2.1.3. Water-Soluble Fullerene Derivatives

The results obtained for compounds VII–XIII in aqueous solutions should be consid-
ered separately.

Compound VII

Water-soluble fullerene derivatives (e.g., compound VII in Figure 2) demonstrate the
strongest tendency to self-organization in solutions. The self-diffusion of the potassium
salt VII in D2O was investigated. The diffusion decays were approximated by the sum of
two exponential components according to Equation (4) [59] (m is equal to two in Equation
(9)) as it is shown in Figure 4:

A(g) = p1 exp
(
−γ2g2δ2tdDs1

)
+ p2 exp

(
−γ2g2δ2tdDs2

)
, (4)

where p1, Ds1 and p2, Ds2—are the relative parts (phase populations) and partial self-
diffusion coefficients of the first and the second component, respectively.
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Figure 4. Diffusion decay of the fullerene derivative VII in D2O solution at td = 20 ms, C = 6 mg/mL.

The hydrodynamic diameters dH based on each self-diffusion coefficient were calcu-
lated from Equation (2) and are given in Table 3.

Table 3. The self-diffusion coefficients Ds1, Ds2, populations p1, p2, and the hydrodynamic diameters
dH1, dH2 of the aggregates formed by the compound VII in deuterated water solutions.

C, mg/mL
Ds, m2/s p dH, nm

Ds1 Ds2 p1 p2 dH1 dH2

6 7.1·10−11 2.1·10−10 0.60 0.40 5.5 ± 0.5 1.8 ± 0.2

12 6.6·10−11 1.7·10−10 0.70 0.30 5.9 ± 0.6 2.3 ± 0.2

14 7.1·10−11 1.7·10−10 0.80 0.20 5.5 ± 0.5 2.3 ± 0.2

24 6.9·10−11 2.0·10−10 0.87 0.13 5.7 ± 0.6 1.9 ± 0.2

From the data in Table 3, we can conclude that there are two different types of clus-
ters formed by the fullerene derivative in the solution. Based on the obtained values of
hydrodynamic diameters, it can be assumed that isolated molecules (dH = 2 nm) and stable
aggregates (dH about 5.5 nm) are observed. The values of the self-diffusion coefficients did
not depend on the solution concentration; they were constant in the concentration range
from 6 to 24 mg/mL. The increasing of aggregate populations with concentration rising
was observed.

Compound VIII

The results obtained for the fullerene derivative VIII show a completely different
behavior of molecules in the solution. It is assumed that for the molecules of this com-
pound, the aggregate lifetime is shorter than the diffusion time. This ensures fast exchange
between isolated molecules and aggregates of compound VIII. Therefore, the obtained
diffusion decays are exponential. Their analysis revealed average self-diffusion coefficients
characterizing the translational mobility of various types of compound VIII aggregates.

Figure 5 shows the dependence of the self-diffusion coefficient of molecules of com-
pound VIII on the concentration of an aqueous solution. At low solution concentrations
(less than 3 mg/mL), the dH value was (1.3 ± 0.15) nm, which corresponds to the size of
an isolated molecule. With an increase in concentration, a decrease in the self-diffusion
coefficient was observed, which indicates the formation of aggregates by the molecules
of the fullerene derivative VIII. At a solution concentration of 40 mg/mL, the maximum
value of the hydrodynamic diameter dH = (4.5 ± 0.5) nm was obtained, which does not
change with a further increase in concentration.
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Compound IX

For compound IX, aqueous solutions of the concentrations indicated in paragraph 4.1
were prepared, and NMR experiments were performed. The diffusion decays of fullerenes
(Figure 6) were approximated using bi-exponential curves according to Equation (4).
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From the analysis of diffusion decays, the self-diffusion coefficients of the molecules
of compound IX were obtained, the values of which were Ds1 = (6.5 ± 0.3) 10−11 m2/s and
Ds2 = (4.0 ± 0.5) 10−10 m2/s.

By analogy with the previous compounds, it is assumed that Ds1 and Ds2 characterize
particles of the fullerene derivative of different sizes. From Equation (2), the particle sizes
were calculated, the values of which were dH1 = (5.2 ± 0.4) nm and dH2 = (1.0 ± 0.06) nm.
The obtained values indicate that the molecules of compound IX in an aqueous solution
are represented by isolated and aggregated molecules.

The experimental data obtained for compound IX give the possibility to estimate
the lifetime of aggregates formed by molecules in an aqueous solution. The lifetime of
fullerene aggregates was estimated from the temperature dependence of the low self-
diffusion coefficient population on diffusion time td p2(td) according to the procedure
proposed in [37].

Figure 7 shows an example of dependence p2(td). The characteristic times of the
curve tail were about 1 s, which was in good agreement with the values of the spin lattice
relaxation times (T1 = 0.9 s) for this compound, measured independently. Figure 7 also
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shows the result of the spin lattice relaxation component subtracting, which is a straight
line. Their slopes were used to calculate the lifetime τ according to Equation (5):

p2 = p f exp
(
− td

τ

)
+ ps exp

(
− td

T1

)
, (5)

where τ is the lifetime, T1 is fullerene spin lattice relaxation time, pf + ps = p2(0).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 18 
 

 

coefficient population on diffusion time td p2(td) according to the procedure proposed in 
[37]. 

Figure 7 shows an example of dependence p2(td). The characteristic times of the curve 
tail were about 1 s, which was in good agreement with the values of the spin lattice relax-
ation times (T1 = 0.9 s) for this compound, measured independently. Figure 7 also shows 
the result of the spin lattice relaxation component subtracting, which is a straight line. 
Their slopes were used to calculate the lifetime τ according to Equation (5): 𝑝ଶ  =  𝑝௙ exp ቀ− ௧೏ఛ ቁ + 𝑝௦exp (− ௧೏்భ), (5)

where τ is the lifetime, T1 is fullerene spin lattice relaxation time, pf + ps = p2(0). 

  
Figure 7. 1—the dependence of part p2(td) on diffusion time td; 2—the dependence p2(td) after sub-
traction of spin–lattice relaxation component. Reprinted with permission from Ref. [37]. Copyright 
© 2016 Published by Elsevier B.V. 

The lifetime values τ are 140 ms, 180 ms, and 200 ms for compound IX solution con-
centrations of 64.4 mg/mL, 21.3 mg/mL, and 5.3 mg/mL, respectively. 

Compound X 
For compound X, aqueous solutions of the concentrations indicated in Section 3.1 

were prepared. NMR studies were performed for 1H and 19F nuclei. The diffusion decays 
of 1H (Figure 8a) and 19F (Figure 8b) nuclei at different diffusion times td are shown. 

  
  

(a) (b) 

Figure 7. 1—the dependence of part p2(td) on diffusion time td; 2—the dependence p2(td) after
subtraction of spin–lattice relaxation component. Reprinted with permission from Ref. [37]. Copyright
© 2016 Published by Elsevier B.V.

The lifetime values τ are 140 ms, 180 ms, and 200 ms for compound IX solution
concentrations of 64.4 mg/mL, 21.3 mg/mL, and 5.3 mg/mL, respectively.

Compound X

For compound X, aqueous solutions of the concentrations indicated in Section 3.1 were
prepared. NMR studies were performed for 1H and 19F nuclei. The diffusion decays of 1H
(Figure 8a) and 19F (Figure 8b) nuclei at different diffusion times td are shown.
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These diffusion decays are bi-exponential shapes. As shown in Figure 8, self-diffusion
coefficients Ds1 and Ds2 are td independent. It may be proposed that two types of molecule
associations are observed. The exchange rate between these two associates was slow
compared to diffusion time. Self-diffusion coefficients decrease with solution concentration
increasing. Hydrodynamic diameters calculated from Stokes–Einstein by Equation (2) are
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given in Table 4. The lesser diameter is close to individual molecule diameters, but the
largest diameter characterizes associate size.

Table 4. Diameters of particles of compound X calculated on the basis of Equation (2) from self-
diffusion coefficients measured for 1H and 19F nuclei.

C, mg/mL
1H 19F

dH1, nm dH2, nm dH1, nm dH2, nm

6 7.6 ± 0.4 0.8 ± 0.1 7.6 ± 0.4 1.0 ± 0.1

8 7.6 ± 0.4 1.0 ± 0.1 7.8 ± 0.4 1.0 ± 0.1

12 7.4 ± 0.4 1.1 ± 0.1 8.2 ± 0.4 1.1 ± 0.1

16 7.6 ± 0.4 1.1 ± 0.1 8.0 ± 0.4 1.1 ± 0.1

24 8.0 ± 0.4 1.3 ± 0.1 8.4 ± 0.4 1.6 ± 0.1

30 7.9 ± 0.4 1.5 ± 0.1 8.8 ± 0.4 1.9 ± 0.1

50 9.8 ± 0.4 2.4 ± 0.1 10.6 ± 0.4 2.4 ± 0.1

The particle sizes calculated from 1H and 19F self-diffusion data are agreed well. The
associate size, as well as the relative part of associated molecules, increases with the solution
concentration increasing. The diameter increases from 7.6 nm to 9.8 nm and from 7.6 nm to
10.6 nm; the associate part increases from 0.67 to 0.8 and from 0.69 to 0.83 for 1H and 19F
data, correspondingly, with concentration increasing from 6 to 50 mg/mL.

Compound XI

For compound XI, aqueous solutions of the concentrations indicated in Section 3.1
were prepared. NMR studies were performed on 1H nuclei. These derivative diffusion
decays are bi exponential which was evidence of two sizes of particles: individual molecules
dH2 = (0.9 ± 0.1) nm and associated molecules dH1 = (5.6 ± 0.3) nm.

As shown in Figure 9, the low diffusion associated molecule component population p1
decreases with diffusion time td increasing. In Figure 9, p1(td) dependence is shown.
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This dependence is exponential, as described by Equation (6). The lifetime of associates
formed by molecules of compound XI in aqueous solutions was calculated.

p(td) = p(0) exp
(
− td

τ

)
(6)
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The lifetime of associates τ are (350 ± 10), (430 ± 20) and (440 ± 20) ms at solution
concentration C = 10, 15 and 24.4 mg/mL, accordingly. The lifetime of associates increased
insignificantly with solution concentration increasing.

Compound XII

The diffusion decay of compound XII is bi-exponential, which is due to isolated (self-
diffusion coefficient Ds2 = (4.3 ± 0.8)·10−10 m2/s) and associated molecules (self-diffusion
coefficient Ds1 = (7.5 ± 1.5)·10−11 m2/s). The dependence of diffusion decay shape on
diffusion time td and concentration was negligible, indicating a slow exchange between
isolated and associated molecules compared to the maximum value of td (250 ms). The
isolated molecule size dH2 = 1.0 ± 0.2 nm, and the associate size was dH1 = 5.0 ± 1.0 nm.
The relative part of associates increases with concentration growth from 0.56 to 0.73.

Compound XIII

The 1H diffusion decay for molecules of compound XIII is also bi-exponential, and
decay shape depends on diffusion time and solution concentration C insignificantly. Self-
diffusion coefficients Ds1 and Ds2 are (1.3 ± 0.1)·10−10 m2/s and (5.8 ± 0.2)·10−10 m2/s,
accordingly. Hydrodynamical diameters are dH2 = (0.7 ± 0.1) nm—isolated molecules and
dH1 = (2.8 ± 0.2) nm—associates. The associated molecules’ relative part increases from
0.59 to 0.70, with concentration increasing from 3 to 40 mg/mL.

2.2. Water-Soluble Fullerene Derivatives in Red Blood Cells

Water-soluble fullerene derivatives (WSFDs) are biologically active species. There-
fore, one of the fundamental problems is to reveal the mechanism of fullerene derivative
interaction with Red Blood Cells (RBCs).

We have previously performed a detailed study of the translational mobility of com-
pound XI in various biological systems: liposomes, shadows, and erythrocytes [53]. In this
work, analysis of the high-resolution NMR spectra of the following systems was conducted:
an aqueous solution of compound XI; RBCs suspension; suspensions of RBCs, RBCs shad-
ows, and liposomes with the addition of compound XI. Using the analysis of 1H spectra
at different amplitudes of the magnetic field gradient, we showed that the signals from
the protons of compound XI could be uniquely identified in the spectra of suspensions.
These signals do not overlap with the proton signals of the membrane components. It
was also shown that, at a high amplitude of the magnetic field gradient, in the spectra of
1H suspension of RBCs with added compound XI, a signal of WSFD molecules was well
observed. At the same time, proton signals of compound XI molecules are absent in an
aqueous solution under the same experimental conditions. A similar picture was obtained
for compounds XII and XIII. Figure 10 shows examples of the 1H spectra of the systems
under study (erythrocyte suspensions with added compounds XI–XIII). 1H chemical shifts
of compounds are slightly changing in suspensions of RBCs compared to solutions due to
fullerene derivative interaction with RBCs.
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The isolated 1H signals of compound molecules give the possibility to register the
diffusion decays of WSFD molecules in a suspension of RBCs correctly. The obtained
experimental data made it possible to extract information about the translational mobility
of WSFD molecules in cell suspensions. The obtained diffusion decays were complex and
were decomposed into three exponent components according to Equation (9) at m = 3. At the
same time, in aqueous solutions of compounds XI–XIII, two exponential diffusion decays
are observed. The values of the self-diffusion coefficients of the molecules of compounds
XI–XIII are presented in Table 5 [44].

Table 5. Self-diffusion coefficients of WSFD molecules in aqueous solutions and RBCs suspension.
Ds1

w and Ds2
w—aqueous solution; Ds1

s, Ds2
s, Ds3

s—RBCs suspension. Reprinted with permission
from Ref. [44].

Compound

Aqueous Solution RBCs Suspension

Ds1
w·1011,

m2/s
Ds2

w·1010,
m2/s

Ds1
s·1012,

m2/s
Ds2

s·1011,
m2/s

Ds3
s·1010,

m2/s

XI 7.4 ± 0.7 4.1 ± 0.4 5.5 ± 0.8 3.9 ± 0.6 5.5 ± 0.8

XII 7.5 ± 1.5 4.3 ± 0.8 5.0 ± 1.0 4.4 ± 0.9 7.1 ± 1.4

XII 4.9 ± 0.5 1.2 ± 0.1 6.0 ± 1.0 3.8 ± 0.6 8.0 ± 1.0

As shown in Table 5, the translational mobility of molecules of compounds XI–XIII in
a suspension of RBCs is characterized by three diffusion coefficients, the values of which
differ by an order of magnitude. However, only two self-diffusion coefficients have been
identified in the aqueous solutions of these compounds. Extraction of the third coefficient
of self-diffusion, the value of which differs significantly from the other two coefficients,
suggests that the movement of the molecules of compounds XI–XIII in the cell suspension
was hindered.

It is known from the literature data that the lateral diffusion coefficient DL, which
characterizes the mobility of lipid molecules in the cell membrane, has a value of about
(5–7)·10−12 m2/s [44,52,53]. The observed “low” coefficient of self-diffusion of the molecules
of compounds XI–XIII was close to a lateral diffusion coefficient. Thus, the complex nature of
the obtained experimental data can be explained by the fact that in the erythrocyte suspension,
the molecules of compounds XI–XIII are in the aqueous phase of the system or are bound to
the erythrocyte cell membrane. The penetration of molecules of compounds XI–XIII into the
membrane was observed as a result of the appearance of a slow diffusion component. At the
same time, in the aqueous phase, the molecules of compounds XI–XIII are in an isolated and
associated form.

The analysis of the dependence of relative parts slow moving fullerene derivative
molecules p1 on diffusion time td makes it possible to estimate the lifetimes τ of fullerene
derivative molecules in the erythrocyte membrane from Equation (6). Lifetimes τ for
compounds XI–XIII are given in Table 6.

Table 6. The self-diffusion coefficients Ds1
s, population p1 at td→0, p1(0), and lifetimes τ of WSFD

molecules in RBCs. Reprinted with permission from Ref. [44].

Compound Ds1
s·1012, m2/s p1(0) τ, ms

XI 5.5 ± 0.8 0.33 440 ± 70

XII 5.0 ± 1.0 0.13 470 ± 70

XIII 6.0 ± 1.0 0.06 1200 ± 300

The dependences of the relative parts p1 of molecules of compound XI on the diffusion
time td at different concentrations are shown in Figure 11. From the analysis of these
dependences, the lifetime calculation was carried out according to Equation (6). The
obtained values of the lifetimes are presented in Table 7.
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Table 7. The values of the lifetime of the molecules of compound XI in the RBC membrane at
various concentrations.

C, M τ1, ms

1.99·10−3 280 ± 15
9.12·10−3 300 ± 20
1.19·10−2 440 ± 70

As seen from Table 7, the lifetime τ1 of compound XI molecules in the cell membrane
increases with the increase of its concentration in the RBCs suspension.

3. Materials and Methods
3.1. Fullerene Derivatives

Methanofullerenes I, II, and IV were reported recently [60,61]. Compound III rep-
resents a well-known n-type material for organic solar cells abbreviated as PCBM [62].
Fullerene derivatives V and VIII were synthesized recently in the reaction of chlorofullerene
C60Cl6 and triethyl phosphite [17]. Fullerene derivatives VI and VII were reported as prod-
ucts of the Friedel–Crafts arylation of C60Cl6 [63]. Compounds IX and XI were synthesized
as described in [64]. Fullerene derivatives X, XII, and XIII were obtained and characterized
as reported in our previous papers [19], [65], [66], respectively.

The molecular mobility of compounds I–V was studied in various solvents: CDCl3
(I, II, III, V), CS2 (I, II), and C6D5CD3 (II, IV). For investigation of the molecular mobility of
compound VI in solution, deuterated DMSO-d6, acetone-d6, and mixtures of DMSO-D2O
were used. Compounds VII–XIII are highly soluble in water due to the presence of five
hydrophilic groups. Therefore, solutions of various concentrations in deuterium water
were prepared for them. The concentrations were from 6 to 24 mg/mL for VII; from 2 to
50 mg/mL for VIII; from 5 to 64 mg/mL for IX; from 6 to 50 mg/mL for X; from 10 to 24
mg/mL for XI; from 10 to 47 mg/mL for XII; from 3 to 40 mg/mL for XIII.

3.2. Red Blood Cells

Blood samples were taken from anesthetized mice by decapitation. The 0.11 molar
sodium citrate aqueous solutions were used as an anticoagulant. The citrate solution to
blood ratio was one to five by volume. The collected blood samples were centrifuged
for 15 min at 1000 rpm, and the plasma was removed with decantation. The erythrocyte
sediment was resuspended in NaCl solution (salt concentration was 0.85 g per 100 mL)
containing 5 mM of Na-phosphate buffer with pH = 7.4. The centrifugation and decantation
procedures were repeated triply; the duration of the second and third centrifugations was
7 min. The fresh buffered NaCl solution was used for each resuspending step. The obtained
erythrocyte sediment was stored at 4 ◦C for no more than 36 h. The fullerene derivatives
were added to the RBCs suspension. The final concentration of WSFD in suspension
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was 1.19·10−2, 9.12·10−3, and 1.99·10−3 M for compound XI; 1.2·10−2 M for compound
XII and XIII.

3.3. PFG NMR Technique

The self-diffusion coefficients were measured with the pulsed field gradient tech-
nique for 1H, 19F, and 31P nuclei at the frequencies of 400.13, 376.498, and 161.976 MHz,
correspondingly. The measurements were conducted on Bruker Avance-III—400 NMR spec-
trometer equipped with the diff-60 gradient unit. The pulsed field gradient stimulated echo
sequence shown in Figure 12 was applied in the experiments. Three 90◦ pulses produce a
stimulated spin-echo at the time of 2τ + τ1 (where τ and τ1 are the time intervals between
the first and the second or the second and the third 90◦ pulses, respectively). The magnetic
field gradient pulses of amplitude g and duration δ were applied after the first and the
third 90◦ pulses. The gradient strength was varied linearly in 64 steps within the range
from 0.1 to 27 T/m. The integrated intensities of the spectrum lines were used to obtain the
dependence of the echo signal attenuation with respect to g2 (diffusion decay) [44,49–52,67].
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Figure 12. Stimulated echo pulse sequence with the magnetic field gradient pulses. Here, τ is the time
interval between the first and the second RF pulses, and τ1 is the time interval between the second
and the third ones. D is the interval between the gradient pulses, δ is the duration of the equivalent
rectangular magnetic field gradient pulses, g is the amplitude of the magnetic field gradient pulse,
and g0 is the amplitude of the constant magnetic field gradient. Reprinted with permission from
Ref. [44].

For the molecules undergoing unhindered isotropic Brownian motion, the evolution
of the spin echo signal is described by the following Equation (3):

A(2τ, τ1, g) = A(2τ, τ1, 0)exp
(
−γ2g2δ2tdDs

)
, (3)

where γ is gyromagnetic ratio, td = ∆−δ/3 is the diffusion time, and Ds is the self-diffusion
coefficient, τ, τ1 and g are shown in Figure 12; A(2τ, τ1, 0) is expressed by the equation:

(2τ, τ1, 0) =
A(0)

2exp
(
− 2τ

T2
− τ1

T1

) (7)

where A(0) is the signal intensity after the first radio frequency (RF) pulse (Figure 12). T1
and T2 are the spin-lattice and spin-spin relaxation times, respectively. While measuring
the echo signal evolution, τ and τ1 are fixed, and only the dependence of A as a function of
g is analyzed, which is called the diffusion decay.

In the case of non-exponential diffusion decay decays, the experimental curves:

A(g) =
A(2τ, τ1, g)
A(2τ, τ1, 0)

, (8)
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are usually deconvoluted in several exponential components, which are described by Equa-
tion (3). For the multiphase system consisting of m phases in the case of slow (compared to
td) molecular exchange between the phases:

A(g) =
m

∑
i=1

p′iexp(−γ2g2δ2tdDsi) (9)

where Dsi is the self-diffusion coefficient of the i-th component and:

p′i = pi exp
(
− 2τ

T2i
− τ1

T1i

)
/

m
∑

i=1
piexp

(
− 2τ

T2i
− τi

T1i

)
,

m
∑

i=1
pi = 1

(10)

Here pi is the relative amount of the nuclei belonging to the molecules characterized
by the self-diffusion coefficient Dsi. The value pi is called the population of the i-th phase.
For the long T1 and T2 values, it is usually assumed that pi ≈ p′i. The details of the
experimental curve decomposition in several exponential diffusion decays were described
previously [44].

We have decomposed diffusion decays on two or three exponential components;
the values m in Equation (9) were two or three, accordingly. Between different phases
(individual and associated molecules), a molecular exchange occurs. The lifetime in phase
is τ. In the case of fast exchange rate τ << td (td is diffusion time), the exponential diffusion
decay is observed, which is characterized by the average self-diffusion coefficient:

D = Σpi·Dsi (11)

For slow rate exchange conditions, τ >> td multi-exponential diffusion decay shape
according to Equation (9) is observed, and pi and Dsi do not depend on diffusion time td.

If phase exchange time is comparable with diffusion time τ ≈ td, the slowly moving
molecule phase population exponentially decreases with increasing diffusion time, and
lifetime τ may be estimated [49,50].

4. Conclusions

The self-organization of a series of differently functionalized fullerene derivatives
dissolved in the solvents of different polarity and suspension of RBCs was investigated
with pulsed field gradient NMR spectroscopy of 1H, 19F, 31P nuclei. No aggregation
was observed for the fullerene derivatives containing nonpolar functional groups I–V in
carbon disulfide, deuterated chloroform, and toluene-d8 solutions. The hydrodynamic
diameters calculated from Stokes–Einstein equation are equal to individual molecule
van der Waals diameters (1.2–1.4 nm). Therefore, Stokes–Einstein model is correct for
hydrodynamic size calculations. The fullerene derivatives bearing polar functional groups
such as -COOH, -COOK, -P(O)(OH)2, -SO3Na showed a strong tendency to aggregate.
The revealed diameters of the aggregates varied from 2.2 nm to 9.6 nm depending on the
solvent and temperature. The water-soluble fullerene derivatives VII–XIII demonstrated
the most stable aggregates with a diameter of about 5 nm. An analysis of the concentration
dependences showed that in solutions, the number of associated molecules of water-
soluble derivatives of fullerenes increases with increasing concentration. Aggregated
lifetimes were estimated from the analysis of diffusion decay shape dependence on the
diffusion time. Associate lifetime increases with increasing fullerene derivatives aqueous
solution concentration.

Self-diffusion of water-soluble fullerene derivatives XI–XIII in RBCs was characterized
using 1H PFG NMR. Were obtained and analyzed the diffusion decays of the molecules
of compounds XI–XIII in a suspension of RBCs. It was found that a fraction of fullerene
derivative molecules shows a self-diffusion coefficient of about (5–6)·10−12 m2/s, indepen-
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dent of fullerene derivative type, which matched the coefficient of the lateral diffusion
of lipids in the RBCs membrane (DL = (5–7) 10−12 m2/s). This experimental finding evi-
dences the absorption of the fullerene derivatives by RBC. The obtained results suggest
that fullerene derivative molecules are probably fixed on the RBC surface. The average
lifetime of the fullerene derivative molecule on RBC was estimated as 440 ± 70 ms for
compound XI, 470 ± 70 ms for compound XII, and 1200 ± 300 ms for compound XIII.
An experimental dependence of the lifetime of molecules of compound XI in the RBC
membrane on the concentration of the compound in suspension was obtained. It was
shown that with increasing concentration, the lifetime also increases.

Thus, pulsed field gradient NMR was shown to be a versatile technique for the
investigation of self-organization and interactions of the fullerene derivatives with blood
cells, providing essential information which could be projected on their behavior in-vivo
after intravenous administration while screening as potential drug candidates.
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