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Abstract: Both four-component relativistic and nonrelativistic computations within the GIAO-DFT(PBE0)
formalism have been carried out for 15N and 59Co NMR shielding constants and chemical shifts of
a number of the nitrogen-coordinated complexes of cobalt. It was found that the total values of the
calculated nitrogen chemical shifts of considered cobalt complexes span over a range of more than
580 ppm, varying from −452 to +136 ppm. At that, the relativistic corrections to nitrogen shielding
constants and chemical shifts were demonstrated to be substantial, changing accordingly from ca. −19 to
+74 ppm and from −68 to +25 ppm. Solvent effects on 15N shielding constants and chemical shifts
were shown to have contributions no less important than the relativistic effects, namely from −35 to
+63 ppm and from −74 to +23 ppm, respectively. Cobalt shielding constants and chemical shifts were
found to vary in the ranges of, accordingly, −20,157 to −11,373 ppm and from +3781 to +13,811. The
relativistic effects are of major importance in the cobalt shielding constants, resulting in about 4% for the
shielding-type contributions, while solvent corrections to cobalt shielding constants appeared to be of
less significance, providing corrections of about 1.4% to the gas phase values.

Keywords: four-component relativistic NMR calculations; transition metal complexes; nitrogen-coordinated
complexes of cobalt

1. Introduction

Noble metal complexes have become of primary importance in many areas of modern
chemistry; however, the high cost of noble metals essentially hinders their large-scale
application and industrialization. In this respect, extensive attention has been paid to the
non-noble metal complexes, such as those of cobalt, rhodium, ruthenium, and iridium,
providing the most interest and perspective. In particular, cobalt complexes are extensively
studied nowadays as potentially important synthetic products capable of exhibiting antiul-
cer and anti-microbial activities [1–6]. The present study deals with cobalt ionic complexes
with nitrogen-donor ligands that represent a potential interest in biochemistry.

Nitrogen and cobalt NMR spectroscopy makes up an efficient tool for the structural
elucidation of cobalt ammine complexes. Chemical shifts of both NMR-active nitrogen
isotopes, 14N (S = 1) and 15N (S = 1/2), span over the range of about 900 ppm [7]. The
59Co isotope has 100% natural abundance and its chemical shift range is extremely wide,
being about 20,000 ppm [8], which is the largest among the known NMR scales. In this
regard, accurate theoretical predictions of the NMR chemical shifts provide a powerful
tool for the structural elucidation of organic and bioorganic molecules, transition metal
complexes, and related species [9–13]. In this respect, NMR chemical shifts, nitrogen and
cobalt in particular, represent an undoubted challenge [14–18]. Moreover, cobalt complexes
are computationally demanding on their own, as they possess intricate electronic structures
characterized, in particular, by the energetically low-lying transitions [19], which assume
an important role in electron correlation effects.
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This work represents an important part of our study on the computational aspects of
the NMR shielding constants of the transition metal complexes. The primary concern of
the present study was to estimate the 15N NMR chemical shifts (CSs) in a large variety of
nitrogen-coordinated cobalt complexes within the framework of density functional theory
(DFT) [20]. To the best of our knowledge, despite a good deal of experimental information
on the nitrogen chemical shifts of cobalt ammine complexes reported so far [21–24], the
corresponding computational results are practically absent.

In our previous paper [25], the first attempt to estimate the 15N NMR chemical shifts
of three pentaamine aqua complexes of cobalt(III), rhodium(III), and iridium(III) at the
nonrelativistic and four-component relativistic DFT-PBE0 [26,27] levels of theory has
been made. The relativistic results appeared to be very close to the experiment. That is
why we adopted many aspects of the presented computational protocol in the present
study. Moreover, in that work, we found noticeable relativistic corrections to the nitrogen
shielding constants (of up to 20 ppm) in the cobalt pentaamine complex as a result of
the manifestation of the so-called relativistic “Heavy Atom on Light Atom” (HALA)
effect, originally described by Nomura and Takeuchi [28]. In the present paper, we
consider relativistic corrections to nitrogen chemical shifts in a large number of nitrogen-
coordinated cobalt complexes with different ligands and investigate the role of the HALA
effect in more detail. Another part of the present study deals with the calculation of
cobalt shielding constants (SCs) in the nitrogen-coordinated cobalt complexes within
the same DFT-based methodology. In our previous paper [25], we evaluated the cobalt
shielding constant in the [Co(NH3)5H2O]3+ complex at the four-component DFT-PBE0
level to be approximately −18,236 ppm, while relativistic correction was found to be
892 ppm, which is 4.8% of the total relativistic value.

Since the mid-1990s, transition metal chemical shifts [29,30] have routinely been
calculated at the DFT level, including 59Co NMR chemical shifts as the prime goal of
such computations [19,31–37]. The first attempts to calculate 59Co NMR chemical shifts
using the density functional approach were made by Chan et al. [19]. They calculated
59Co chemical shifts and chemical shift anisotropies of several hexacoordinated Co(III)
complexes using the sum-over-states density functional perturbation theoretical method
using individual gauges localized orbitally (SOS-DFPT-IGLO) [38,39]. From the solid-state
NMR data presented in their paper, it followed that they underestimated the isotropic
chemical shifts of 59Co approximately by two times as compared to the experiment. Later,
Chan et al. [31,32] continued the study of the computational protocol for the 59Co chemical
shifts in hexacoordinated cobalt(III) complexes and, as a result, it was found that hybrid
DFT exchange-correlation (XC) functionals were more suitable for the 59Co shielding
calculations, as compared to the pure XC functionals. It was also found that the gauge-
including atomic orbitals (GIAO) [40–42] scheme provided cobalt CSs of a better agreement
with the experimental values than the IGLO [38,39] scheme did.

Godbout et al. [33] performed the density functional calculations of the isotropic
59Co NMR CSs of some anionic, cationic, and neutral Co(III) complexes using a hybrid
XC B3LYP functional [43,44] within the GIAO formalism. Those results appeared to be
of average quality, deviating from the experimental data by no more than 2000 ppm
for the cobalt shift scale, covering the range of 20,000 ppm. Overall, Godbout et al.,
reached several important conclusions, namely that (i) f -type functions do not appear to
be essential for the correct description of a cobalt atom in the calculations of its shielding
constant at the DFT level; (ii) the relativistic effects are not important in this case, so there
is no need to apply the relativistic level of theory; (iii) there are no systematic differences
between shielding constants calculated for anionic and cationic complexes, so the charge
field effects are small.

The hybrid density functional theoretical study of 59Co NMR chemical shifts and
shift tensor components in the hexacoordinated Co(III) porphyrin system has been carried
out by Xu and Au-Yeung [34]. They applied the B3LYP/6-311G ** level of theory using
experimental geometry and obtained an excellent agreement with the solid-state NMR
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experimental data. It was found that the diamagnetic shielding of 59Co is close to that of the
free atom value of 2166 ppm calculated by Malli [45] and that agreement between the HF
method and experimental results is very poor, confirming the fact that electron correlation
effects play an essential role in cobalt shielding calculations.

Advanced computations of cobalt chemical shifts that covered the range of about
20,000 ppm have been carried out by Grigoleit et al. [35] for the representative series of
electron-rich organometallic and high-valent inorganic Co(III) complexes. In that study, the
GIAO-DFT-B3LYP approach had been used in both static calculations on the equilibrium
geometries as well as in combination with the methods that include zero-point and classical
thermal effects. Mean absolute deviations between averaged and experimental δ(59Co)
values reported in Ref. [35] appeared to be of the order of 500–760 ppm over a chemical shift
range of almost 20,000 ppm. The authors had come to a very important conclusion about
the vibrational and solvent effects on 59Co NMR chemical shifts, namely that taking into
account the zero-point and thermal averaging effects results in the insignificant deshielding
of 59Co nuclei. At that, the largest errors originate in the solvation effects, which are to
be addressed by means of employing the highest feasible level of theory by implying an
appropriate solvation model.

Density functional calculations of 59Co NMR chemical shifts using the zeroth-order reg-
ular approximation (ZORA) [46] were reported in [36,37]. Thus, Ooms and co-authors [36]
presented an experimental solid-state 13C and 59Co NMR study of five octahedral Co(III)
cations, corroborated by ZORA-DFT calculations, which were carried out without tak-
ing into account solvent or vibrational corrections. Indeed, calculated CSs agreed well
with the experimental values; however, a significant deviation of more than 2300 ppm for
[Co(CH3)(en)2(N3)]+ (en = ethylenediamine) was found. In another paper by Senn et al. [37],
the ligand-field density functional theory (LF-DFT) approach was employed for the calcula-
tions of 59Co NMR shielding tensor of all four diastereoisomers of tris(1,2-ethanediamine)
cobalt(III) complex ion, [Co(en)3]3+. Those results were compared with the conventional
ZORA-DFT calculations and with corresponding experimental values. It was found that the
LF-DFT approach slightly overestimated (by several hundreds of ppm) while ZORA-DFT
slightly underestimated the experimental values.

In this paper, we shall employ a full four-component GIAO-DFT approach with
hybrid functional PBE0 to calculate 59Co NMR chemical shifts in a wide series of nitrogen-
coordinated cobalt complexes and to pinpoint the typical magnitudes of relativistic effects
for cobalt shielding constants and chemical shifts. Predicted cobalt chemical shifts will
allow one to determine a range of informative 59Co NMR spectra for the related nitrogen-
coordinated cobalt complexes.

2. Results and Discussion

Stereochemical structures, together with calculated geometric parameters of complexes
1–27 optimized at the DFT-PBE0/ATZP level, are shown in Figure 1. The corresponding
calculated 15N shielding constants (σtot), together with theoretical (δtot) and experimental
chemical shifts (δexp), are given in Table 1.

In Table 1, σGP, ∆solv, ∆rel, and σtot stand, respectively, for the gas phase values
of nitrogen shielding constants, solvent corrections to nitrogen SCs, relativistic correc-
tions to nitrogen SCs, and total values of nitrogen SCs, while δtot and δexp are the total
theoretical and experimental nitrogen chemical shifts. Basic gas phase values were calcu-
lated at the DFT-PBE0 level of theory using relativistic Dyall’s core-valence basis set of
triple zeta quality, dyall.cv3z [47,48], on cobalt atoms, aug-pcS-2 [49] on nitrogen atoms,
aug-cc-pVDZ [50,51] on oxygen atoms, pc-2 [52,53] on carbon atoms, and pc-1 [52,53] on
hydrogens. For the sake of convenience, the mentioned basis set scheme will be referred to
as BaS. In all calculations of shielding constants, we have used GIAO formalism to treat the
gauge origin problem [13,54].
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[Со(NH3)5I]2+ (4) [Со(NH3)5CH3]2+ (5) [Со(NH3)5CN]2+ (6) 
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[Со(NH3)5CO3]+ (10) [Со(NH3)5H2O]3+ (11) cis-[Co(NH3)4(NO2)2]+ (12) 

 
  

cis-[Co(NH3)4CO3]+ (13) cis-[Со(NH3)4(H2O)Cl]+ (14) cis-[Co(NH3)4(H2O)2]3+ (15) 

Figure 1. Cont.
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fac-[Co(NH3)3(H2O)3]3+ (19) cis-[Co(NH3)2(NO2)4]− (20) cis-[Co(NH3)2(CO3)2]− (21) 

   
cis,mer-[Co(NH3)2(NO2)3CH3]− (22) cis,fac-[Co(NH3)2(NO2)3CH3]− (23) trans,mer-[Co(NH3)2(NO2)3CH3]− (24) 

   
[Со(NH3)6]3+ (25) trans-[Co(NH3)4(NO2)2]+ (26) trans-[Co(NH3)2(NO2)4]− (27) 

Figure 1. Equilibrium geometries of the nitrogen-coordinated cobalt complexes 1–27, obtained at 
the PBE0/ATZP level of theory. Figure 1. Equilibrium geometries of the nitrogen-coordinated cobalt complexes 1–27, obtained at the

PBE0/ATZP level of theory.

Used in our calculations, the hybrid PBE0 functional represents the combination
of the PBE generalized gradient functional [55], in which all parameters (except those
related to the local spin density) are fundamental constants, with a 25% admixture of the
Hartree−Fock (HF) exchange.

Solvent corrections to the 15N SCs were estimated as the differences between the SC
values obtained at the DFT-PBE0/BaS level within the polarizable continuum model using
the integral equation formalism (IEF-PCM) [56,57], specified for the H2O solvent, and the
GP values, evaluated at the same level of theory.
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Table 1. 15N NMR shielding constants and chemical shifts (both in ppm) of amino groups in
1–27 calculated at the GIAO-DFT-PBE0 nonrelativistic and four-component relativistic levels
of theory.

Cmpd. Formula σGP ∆solv ∆rel σtot δtot
1 δexp

2

trans

1 [Co(NH3)5F]2+ 283.8 3.2 3.8 290.8 −426.2 −451.2
2 [Co(NH3)5Cl]2+ 271.6 −11.7 11.1 271.0 −408.2 −434.9
3 [Co(NH3)5Br]2+ 266.2 −2.8 13.7 277.1 −413.8 -
4 [Co(NH3)5I]2+ 256.5 1.6 15.3 273.4 −410.4 -
5 [Co(NH3)5CH3]2+ 249.5 1.7 −1.6 249.6 −388.9 −382.0
6 [Co(NH3)5CN]2+ 257.1 2.2 −11.8 247.5 −387.0 −401.8

[Co(NH3)5CN]2+ −174.8 63.2 10.0 −101.6 −70.9 -
7 [Co(NH3)5NO2]2+ 273.0 3.5 12.2 288.7 −424.3 −416.1

[Co(NH3)5NO2]2+ −239.0 −34.6 65.0 −208.7 26.0 -
8 [Co(NH3)5OH]2+ 273.5 2.7 15.0 291.2 −426.6 −429.2
9 [Co(NH3)5N3]2+ 269.6 5.1 12.8 287.5 −423.2 −430.3

[Co(NH3)5(N=N=N)]2+ 210.6 2.6 −11.3 201.9 −345.7 -
[Co(NH3)5(N=N=N)]2+ −17.1 −5.5 −0.7 −23.4 −141.7 -
[Co(NH3)5(N=N=N)]2+ 33.0 50.2 −5.9 77.3 −232.8 -

10 [Co(NH3)5CO3]+ 270.0 9.0 0.4 279.4 −415.9 −437.5
11 [Co(NH3)5H2O]3+ 298.2 −1.5 17.1 313.8 −447.0 −447.0
12 cis-[Co(NH3)4(NO2)2]+ 269.8 4.2 17.2 291.2 −426.5 −416.0

cis-[Co(NH3)4(NO2)2]+ −254.0 −25.3 61.2 −218.1 34.6 -
13 cis-[Co(NH3)4CO3]+ 267.1 6.0 11.6 284.7 −420.6 −436.7
14 cis-[Co(NH3)4(H2O)Cl]+ to H2O 282.9 −0.3 24.2 306.8 −440.7 −445.2

cis-[Co(NH3)4(H2O)Cl]+ to Cl 262.7 4.8 15.8 283.3 −419.4 −431.0
15 cis-[Co(NH3)4(H2O)2]3+ 287.4 −1.2 20.3 306.5 −440.4 −444.0
16 mer-[Co(NH3)3(NO2)3]3+ 264.7 6.2 20.0 290.9 −426.2 −412.2

mer-[Co(NH3)3(NO2)3]3+ to NO2
− −290.2 −6.6 38.9 −257.9 70.6 -

mer-[Co(NH3)3(NO2)3]3+ to NH3 −262.9 −18.7 51.2 −230.4 45.7 -
17 fac-[Co(NH3)3(NO2)3]3+ 245.8 1.9 12.9 260.6 −398.8 -

fac-[Co(NH3)3(NO2)3]3+ −282.6 −18.6 49.9 −251.3 64.6 -
18 mer-[Co(NH3)3(H2O)3]3+ 281.8 −1.2 38.3 318.9 −451.6 −443.3
19 fac-[Co(NH3)3(H2O)3]3+ 287.4 −1.5 28.5 314.4 −447.5 -
20 cis-[Co(NH3)2(NO2)4]− 232.8 2.4 12.4 247.6 −387.1 -

cis-[Co(NH3)2(NO2)4]− to NO2
− −303.8 −4.1 41.3 −266.6 78.5 -

cis-[Co(NH3)2(NO2)4]− to NH3 −279.7 −15.3 44.0 −251.0 64.4 -
21 cis-[Co(NH3)2(CO3)2]− 254.7 8.5 50.6 313.8 −447.0 −436.7
22 cis,mer-[Co(NH3)2(NO2)3CH3]− to NO2

− 238.4 5.2 31.5 275.1 −411.9 -
cis,mer-[Co(NH3)2(NO2)3CH3]− to CH3 226.9 1.2 −10.9 217.2 −359.5 -
cis,mer-[Co(NH3)2(NO2)3CH3]− to NO2 −337.2 −7.4 73.8 −270.8 82.3 -
cis,mer-[Co(NH3)2(NO2)3CH3]− to NH3 −304.2 −20.4 43.8 −280.8 91.3 -

23 cis,fac-[Co(NH3)2(NO2)3CH3]− 240.5 5.5 18.3 264.3 −402.2 -
cis,fac-[Co(NH3)2(NO2)3CH3]− to CH3 −334.8 −12.4 17.0 −330.2 136.1 -
cis,fac-[Co(NH3)2(NO2)3CH3]− to NH3 −305.9 −19.0 44.4 −280.5 91.1 -

24 trans,mer-[Co(NH3)2(NO2)3CH3]− to
NO2

− −322.0 −7.3 39.3 −290.0 99.7 -

trans,mer-[Co(NH3)2(NO2)3CH3]− to CH3 −318.8 −9.1 17.8 −310.1 117.9 -

cis

1 [Co(NH3)5F]2+ 256.1 −1.2 20.3 275.2 −412.0 −417.5
2 [Co(NH3)5Cl]2+ 260.3 −0.4 24.1 284 −420.0 −419.9
3 [Co(NH3)5Br]2+ 264.0 10.4 25.5 299.9 −434.4 -
4 [Co(NH3)5I]2+ 258.1 3.9 24.2 286.2 −422.0 -
5 [Co(NH3)5CH3]2+ 268.9 −0.3 24.3 292.9 −428.1 −428.8
6 [Co(NH3)5CN]2+ 271.0 1.0 −19.2 252.8 −391.8 −425.9
7 [Co(NH3)5NO2]2+ 261.3 3.9 22.2 287.4 −423.1 −416.1
8 [Co(NH3)5OH]2+ 255.7 −1.0 20.1 274.8 −411.7 −419.2
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Table 1. Cont.

Cmpd. Formula σGP ∆solv ∆rel σtot δtot
1 δexp

2

cis

9 [Co(NH3)5N3]2+ 261.0 0.9 22.5 284.4 −420.4 −422.2
10 [Co(NH3)5CO3]+ 254.1 0.3 26.6 281.0 −417.3 −419.1
11 [Co(NH3)5H2O]3+ 271.0 −1.3 26.8 296.5 −431.3 −420.1
12 cis-[Co(NH3)4(NO2)2]+ 239.1 2.3 14.7 256.1 −394.7 −401.8
13 cis-[Co(NH3)4CO3]+ 256.8 −1.3 20.4 275.9 −412.7 −416.7
14 cis-[Co(NH3)4(H2O)Cl]+ 260.4 −0.9 23.9 283.4 −419.5 −417.2
15 cis-[Co(NH3)4(H2O)2]3+ 266.4 −1.1 28.7 294.0 −429.1 −416.6
16 mer-[Co(NH3)3(NO2)3]3+ 228.4 2.1 13.7 244.2 −384.0 −393.2
18 mer-[Co(NH3)3(H2O)3]3+ 261.9 −1.4 17.3 277.8 −414.4 −413.4
24 trans,mer-[Co(NH3)2(NO2)3CH3]− 237.6 2.6 16.5 256.7 −395.3 −397.5
25 [Co(NH3)6]3+ 271.7 −0.9 26.1 296.9 −431.7 −422.8
26 trans-[Co(NH3)4(NO2)2]+ 251.9 2.5 20.3 274.7 −411.6 −409.0

trans-[Co(NH3)4(NO2)2]+ −279.2 −9.6 34.1 −254.7 67.8 -
27 trans-[Co(NH3)2(NO2)4]− 223.9 0.8 12.3 237.0 −377.5 −381.1

trans-[Co(NH3)2(NO2)4]− −291.2 −1.6 40.1 −252.7 65.9 -
1 Linear regression equation: δ = σ−B

A , B = −179.90, A = −1.1045. The points of [Co(NH3)5F]2+ (trans-orientation),
[Co(NH3)5Cl]2+ (trans-orientation), [Co(NH3)5CN]2+ (cis-orientation) and [Co(NH3)5CO3]+ (trans-orientation)
were excluded when evaluating the parameters of the linear regression model. 2 Experimental values were taken
from Ref. [21].

Relativistic corrections to the 15N SCs were evaluated within the GIAO-DFT-PBE0
method as the differences between the four-component relativistic values and the approx-
imated nonrelativistic values. In all the four-component calculations, we generated the
small-component basis space by applying the unrestricted kinetic balance (UKB) [58] to
the large-component basis set. This was done in order to approximate the magnetic kinetic
balance (MKB) condition [59], because, as was found by Olejniczak et al. [60], the GIAOs
make MKB an atomic one [61]. As a result, it becomes possible to obtain the magnetic
balance by extending the orbitals, retrieved from a self-consistent field (SCF) calculation
with the restricted kinetic balance (RKB) condition [58] by extending with their UKB com-
plement. In both relativistic and approximated nonrelativistic four-component calculations,
we have used the same basis set scheme, BaS, as in the nonrelativistic calculations. The only
difference is that all basis sets were taken in an uncontracted form, BaS(un). This is due
to the poor suitability of the nonrelativistic contraction schemes for the four-component
relativistic calculations [62].

In order to obtain the correct nonrelativistic limit, we have investigated the conver-
gence of the nitrogen shielding constant in [Co(NH3)6]3+ with the increasing of the speed of
light value (c ~ 137.036 a.u.) by several times, namely starting from 700 a.u. (~5c) to 2000 a.u.
(~14c) in the four-component GIAO-DFT-PBE0 calculations. The corresponding graph is
presented in Figure 2. In that way, the values at 1800–2000 a.u. can solidly be regarded as
the converged ones. Thus, we have chosen c = 1800 a.u. (we will call it the “13c scheme”)
to calculate the approximated nonrelativistic values of nitrogen shielding constants.

The total values of nitrogen SCs in Table 1 represent the sum of σGP, ∆solv, and ∆rel:

σtot = σGP + ∆solv + ∆rel (1)

The total values of nitrogen chemical shifts δtot in Table 1 were calculated using the lin-
ear regression analysis [63–65]. The strategy of this approach consists of the mapping of the
observed chemical shifts onto the predicted shielding constants, in which the relationship
is simulated by the linear model:

σ = Aδ + B (2)

The coefficient A represents a slope (the tangent of the line angle) and B is the intercept
of the model with the σ-axis (which corresponds to the approximated shielding constant of
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the reference compound). In the absence of systematic errors, coefficient A takes the value
of −1, while B becomes σref. In the present case, total nitrogen SCs (σtot) were mapped
to available experimental CSs (δexp), and the parameters of the linear regression model
were obtained as A = −1.1045 and B = −179.90. The correlation plot of the final calculated
15N NMR chemical shifts (δtot) versus corresponding experimental values (δexp) is shown
in Figure 3. In general, given that total CSs span the range from −451.6 to +136.1 ppm
(a range of more than 580 ppm), the agreement of the calculated nitrogen CSs with the
experiment is rather good: the correlation coefficient is 0.901, the corrected mean absolute
error (CMAE) is 6.5 ppm, and the mean absolute percentage error (MAPE) is only 1.14%.
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As can be seen in Table 1, the relativistic corrections to nitrogen shielding constants
can be substantial, varying from −19 ppm in [Co(NH3)5CN]2+ (cis-orientation) to 74 ppm
in cis,mer-[Co(NH3)2(NO2)3CH3]− (trans-orientation to NO2), see Figure 4. In an absolute
value, the relativistic corrections to the nitrogen SCs can reach up to 37% of the relativistic
SCs. Apparently, large relativistic corrections to nitrogen shielding constants are due to
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the well-known SO-HALA effect [66] on nitrogen shieldings initiated by the neighboring
cobalt atom.
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The mechanism of the SO-HALA effect consists of the interaction of the spin-orbit
coupling (SOC) at the heavy atom with the magnetic dipole at the light nucleus. Namely,
in the presence of an external magnetic field, SOC produces additional electronic spin
polarization, which propagates to the light nucleus and changes the magnetic field at the
light nucleus via the FC interaction [67,68]. Due to its nonlocal character, the sign and
magnitude of the SO-HALA effect can give information about the electronic structure of
the heavy atom and its surroundings [69–72]. In particular, it reflects the coordination
environment of the heavy atom center [73] and gives information on the polar/covalent
character of the heavy–light atom bond [72,74]. Moreover, from the sign of the SO-HALA
effect, one can deduce the character of the frontier orbitals participating in the SO-HALA
mechanism. Namely, the deshielding SO-HALA effect is associated with the occupied
σ-type heavy–light atom bonding molecular orbitals, while the π-type orbitals provide a
shielding-type SO-HALA effect [68,75]. These findings were confirmed for hydrogen and
carbon shielding constants by Kaupp et al. [76–79], Bagno et al. [80], and Ruiz-Morales
et al. [81], who carried out the full four-component DFT investigations of the SO-HALA
effects in the transition-metal complexes involving molecular orbital analysis.
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Based on our results, it follows that the magnitude and sign of this effect are dependent
on the electronic nature of ligands. Apparently, this can be explained by the concept
discussed above. Indeed, the sign of the SO-HALA effect observed in the series of cobalt
complexes 1–27 is likely defined by the interplay of the involvement of the occupied σ-
and π-type metal d-orbitals in the bonding metal orbital with the NMR spectator nitrogen
atom, which should be influenced by the electronic nature of the ligands sharing the same
cobalt–nitrogen bonding orbital. The positive sign of most of the relativistic corrections
to nitrogen SCs in compounds 1–27 is due to the fact that the negative paramagnetic
contributions decrease in their absolute values when going to the relativistic consideration,
while diamagnetic terms stay practically unchanged. This indicates that the observed
SO-HALA effect provides shielding-type contributions to the paramagnetic terms, resulting
in their increase if one takes into account their negative sign. Based on these observations,
the occupied π-type metal d-orbitals play a predominant role in the observed SO-HALA
effect on the nitrogen SCs in most of the considered cobalt complexes 1–27. Otherwise, the
SO-HALA effect is probably governed by the σ-type occupied metal d-orbitals.

Based on the simplified IUPAC formula for chemical shift [82,83], we have also es-
timated the relativistic corrections to nitrogen chemical shifts as the differences between
the relativistic correction to nitrogen shielding constant in nitrogen reference compound
(nitromethane, CH3NO2) and those in cobalt complexes 1–27:

∆relδ = ∆relσref − ∆relσ (3)

According to the present results, relativistic correction to the nitrogen SC in CH3NO2
is only 5.3 ppm. Subtracting the relativistic corrections to nitrogen SCs in compounds
1–27 from this value (5.3 ppm) gives relativistic corrections to the nitrogen CSs of ca. −68 to
+25 ppm.

An important conclusion that can be arrived at from these figures is that the relativistic
SO-HALA corrections to the nitrogen chemical shifts in the vast majority of cases are nega-
tive (i.e., of the shielding type), shifting nitrogen signals to a higher field. The magnitude
of the SO-HALA effect on nitrogen is dependent on the nature of ligands and sometimes it
can be rather substantial, so we recommend applying the relativistic level of theory when
calculating nitrogen CSs in the nitrogen-coordinated complexes of cobalt.

Additionally, we have evaluated solvent corrections to the nitrogen SCs and CSs; see
Table 1 and Figure 5. Solvent corrections to SCs were found to be of −34.6 to +63.2 ppm in
this series. Based on the solvent correction to nitrogen SC in nitromethane of −11.2 ppm
(∆solvσref), we estimated the solvent corrections to nitrogen CSs in the whole series of 1–27 as:

∆solvδ = ∆solvσref − ∆solvσ (4)

Solvent corrections to nitrogen CSs were found to be in the range of −74.4 to +23.4 ppm.
In view of the significance of solvent corrections to nitrogen CSs, we suggest taking them
into account when calculating nitrogen CSs in the nitrogen-coordinated complexes of cobalt.

Additionally, we have calculated 59Co NMR shielding constants and chemical shifts
within the same computational protocol as was used for nitrogen. However, in view of the
lack of experimental data for cobalt NMR, we did not apply the linear regression analysis
for cobalt chemical shifts. Instead, we used the approximated IUPAC formula [82,83]:

δtot = σtot(ref) − σtot, (5)

where σtot(ref) is the total value of cobalt SC of the reference [Co(CN)6]3−, and σtot is the
total cobalt SC of the given compound. These results are presented in Table 2.

To calculate the correct nonrelativistic values of σ (which are needed for the evaluation
of ∆relσ), we have studied the convergence of the cobalt σ value in the hexacyanocobaltate
(III) anion [Co(CN)6]3− with the increasing of the speed of light, in the same way as was
done for the nitrogen SC. The corresponding graph is presented in Figure 6.
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Table 2. 59Co NMR shielding constants and chemical shifts (ppm) of 1–27, calculated at the GIAO-
DFT-PBE0/BaS nonrelativistic and four-component relativistic levels of theory. 

Cmpd. Formula σnr σrel Δrelσ 1 Δsolvσ 2 σtot 3 δnr 4 δrel 5 Δrelδ 6 Δsolvδ 7 δtot 8 
1 [Со(NH3)5F]2+ −10,394.4 −10,039.7 354.7 −221.1 −15,963.4 3675.1 3550.2 −124.8 230.9 3781.1
2 [Со(NH3)5Cl]2+ −14,224.8 −13,813.3 411.5 −351.9 −15,479.7 7505.4 7323.8 −181.6 361.7 7685.5
3 [Со(NH3)5Br]2+ −15,554.1 −15,102.6 451.5 −496.5 −15,560.0 8834.8 8613.1 −221.7 506.3 9119.4
4 [Со(NH3)5I]2+ −15,124.0 −14,715.5 408.5 −403.4 −13,126.6 8404.7 8226.0 −178.7 413.2 8639.2
5 [Со(NH3)5CH3]2+ −14,331.6 −13,440.4 891.2 −132.8 −13,538.3 7612.3 6951.0 −661.3 142.6 7093.6
6 [Со(NH3)5CN]2+ −12,300.9 −11,850.6 450.3 120.1 −13,199.3 5581.6 5361.1 −220.4 −110.2 5250.9
7 [Со(NH3)5NO2]2+ −15,244.7 −14,681.2 563.5 −207.4 −14,586.5 8525.4 8191.7 −333.6 217.2 8409.0
8 [Со(NH3)5OH]2+ −16,051.5 −15,397.3 654.2 −198.4 −15,265.4 9332.1 8907.8 −424.3 208.2 9116.0
9 [Со(NH3)5N3]2+ −15,959.8 −15,200.1 759.7 −279.8 −15,103.9 9240.5 8710.7 −529.8 289.6 9000.3
10 [Со(NH3)5CO3]+ −16,649.2 −15,473.8 1175.4 −180.3 −15,008.2 9929.9 8984.4 −945.5 190.1 9174.5
11 [Со(NH3)5H2O]3+ −19,128.1 −18,236.5 891.6 −274.8 −18,393.9 12,408.8 11,747.0 −661.8 284.6 12,031.6
12 cis-[Co(NH3)4(NO2)2]+ −14,130.2 −13,662.1 468.1 −209.8 −13,621.5 7410.9 7172.7 −238.2 219.7 7392.3
13 cis-[Co(NH3)4CO3]+ −15,914.4 −15,255.3 659.1 −418.3 −15,249.1 9195.0 8765.8 −429.3 428.2 9194.0
14 cis-[Со(NH3)4(H2O)Cl]+ −17,032.5 −16,333.1 699.3 −242.1 −16,271.4 10,313.1 9843.7 −469.5 251.9 10,095.6
15 cis-[Co(NH3)4(H2O)2]3+ −18,696.1 −17,945.5 750.6 −252.9 −17,942.9 11,976.8 11,456.0 −520.8 262.7 11,718.7
16 mer-[Co(NH3)3(NO2)3]3+ −13,349.6 −12,947.8 401.8 −7.1 −12,806.9 6630.3 6458.4 −171.9 17.0 6475.4
17 fac-[Co(NH3)3(NO2)3]3+ −13,740.3 −13,375.0 365.3 −50.4 −13,279.2 7021.0 6885.6 −135.5 60.2 6945.8
18 mer-[Co(NH3)3(H2O)3]3+ −21,251.8 −19,978.9 1272.8 −311.7 −20,157.4 14,532.5 13,489.5 −1043.0 321.5 13,810.9
19 fac-[Co(NH3)3(H2O)3]3+ −19,478.0 −18,746.8 731.2 −242.4 −18,809.3 12,758.7 12,257.4 −501.3 252.2 12,509.6
20 cis-[Co(NH3)2(NO2)4]− −13,551.3 −13,204.7 346.7 105.0 −13,015.0 6832.0 6715.2 −116.8 −95.2 6620.0
21 cis-[Co(NH3)2(CO3)2]− −18,115.3 −16,493.3 1622.0 −209.6 −16,275.4 11,396.0 10,003.8 −1392.1 219.4 10,223.2

22 
cis,mer-[Co(NH3)2(NO2)3CH
3]− 

−12,948.1 −12,188.7 759.4 −63.5 −12,219.8 6228.8 5699.2 −529.6 73.4 5772.6

23 
cis,fac-
[Co(NH3)2(NO2)3CH3]− 

−12,684.5 −12,287.6 396.9 221.1 −12,057.4 5965.2 5798.1 −167.1 −211.3 5586.8

24 
trans,mer-
[Co(NH3)2(NO2)3CH3]− 

−11,844.1 −11,475.9 368.2 132.2 −11,372.5 5124.8 4986.5 −138.3 −122.3 4864.1

25 [Со(NH3)6]3+ −15,961.7 −15,470.5 491.2 −232.2 −15,667.9 9242.4 8981.1 −261.4 242.0 9223.1
26 trans-[Co(NH3)4(NO2)2]+ −14,042.9 −13,548.9 494.0 67.4 −13,283.8 7323.5 7059.4 −264.1 −57.6 7001.9
27 trans-[Co(NH3)2(NO2)4]− −13,131.6 −12,790.0 341.6 46.7 −12,664.6 6412.3 6300.5 −111.7 −36.9 6263.6
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Table 2. 59Co NMR shielding constants and chemical shifts (ppm) of 1–27, calculated at the GIAO-DFT-PBE0/BaS nonrelativistic and four-component relativistic
levels of theory.

Cmpd. Formula σnr σrel ∆relσ
1 ∆solvσ 2 σtot

3 δnr
4 δrel

5 ∆relδ
6 ∆solvδ 7 δtot

8

1 [Co(NH3)5F]2+ −10,394.4 −10,039.7 354.7 −221.1 −15,963.4 3675.1 3550.2 −124.8 230.9 3781.1
2 [Co(NH3)5Cl]2+ −14,224.8 −13,813.3 411.5 −351.9 −15,479.7 7505.4 7323.8 −181.6 361.7 7685.5
3 [Co(NH3)5Br]2+ −15,554.1 −15,102.6 451.5 −496.5 −15,560.0 8834.8 8613.1 −221.7 506.3 9119.4
4 [Co(NH3)5I]2+ −15,124.0 −14,715.5 408.5 −403.4 −13,126.6 8404.7 8226.0 −178.7 413.2 8639.2
5 [Co(NH3)5CH3]2+ −14,331.6 −13,440.4 891.2 −132.8 −13,538.3 7612.3 6951.0 −661.3 142.6 7093.6
6 [Co(NH3)5CN]2+ −12,300.9 −11,850.6 450.3 120.1 −13,199.3 5581.6 5361.1 −220.4 −110.2 5250.9
7 [Co(NH3)5NO2]2+ −15,244.7 −14,681.2 563.5 −207.4 −14,586.5 8525.4 8191.7 −333.6 217.2 8409.0
8 [Co(NH3)5OH]2+ −16,051.5 −15,397.3 654.2 −198.4 −15,265.4 9332.1 8907.8 −424.3 208.2 9116.0
9 [Co(NH3)5N3]2+ −15,959.8 −15,200.1 759.7 −279.8 −15,103.9 9240.5 8710.7 −529.8 289.6 9000.3

10 [Co(NH3)5CO3]+ −16,649.2 −15,473.8 1175.4 −180.3 −15,008.2 9929.9 8984.4 −945.5 190.1 9174.5
11 [Co(NH3)5H2O]3+ −19,128.1 −18,236.5 891.6 −274.8 −18,393.9 12,408.8 11,747.0 −661.8 284.6 12,031.6
12 cis-[Co(NH3)4(NO2)2]+ −14,130.2 −13,662.1 468.1 −209.8 −13,621.5 7410.9 7172.7 −238.2 219.7 7392.3
13 cis-[Co(NH3)4CO3]+ −15,914.4 −15,255.3 659.1 −418.3 −15,249.1 9195.0 8765.8 −429.3 428.2 9194.0
14 cis-[Co(NH3)4(H2O)Cl]+ −17,032.5 −16,333.1 699.3 −242.1 −16,271.4 10,313.1 9843.7 −469.5 251.9 10,095.6
15 cis-[Co(NH3)4(H2O)2]3+ −18,696.1 −17,945.5 750.6 −252.9 −17,942.9 11,976.8 11,456.0 −520.8 262.7 11,718.7
16 mer-[Co(NH3)3(NO2)3]3+ −13,349.6 −12,947.8 401.8 −7.1 −12,806.9 6630.3 6458.4 −171.9 17.0 6475.4
17 fac-[Co(NH3)3(NO2)3]3+ −13,740.3 −13,375.0 365.3 −50.4 −13,279.2 7021.0 6885.6 −135.5 60.2 6945.8
18 mer-[Co(NH3)3(H2O)3]3+ −21,251.8 −19,978.9 1272.8 −311.7 −20,157.4 14,532.5 13,489.5 −1043.0 321.5 13,810.9
19 fac-[Co(NH3)3(H2O)3]3+ −19,478.0 −18,746.8 731.2 −242.4 −18,809.3 12,758.7 12,257.4 −501.3 252.2 12,509.6
20 cis-[Co(NH3)2(NO2)4]− −13,551.3 −13,204.7 346.7 105.0 −13,015.0 6832.0 6715.2 −116.8 −95.2 6620.0
21 cis-[Co(NH3)2(CO3)2]− −18,115.3 −16,493.3 1622.0 −209.6 −16,275.4 11,396.0 10,003.8 −1392.1 219.4 10,223.2
22 cis,mer-[Co(NH3)2(NO2)3CH3]− −12,948.1 −12,188.7 759.4 −63.5 −12,219.8 6228.8 5699.2 −529.6 73.4 5772.6
23 cis,fac-[Co(NH3)2(NO2)3CH3]− −12,684.5 −12,287.6 396.9 221.1 −12,057.4 5965.2 5798.1 −167.1 −211.3 5586.8
24 trans,mer-[Co(NH3)2(NO2)3CH3]− −11,844.1 −11,475.9 368.2 132.2 −11,372.5 5124.8 4986.5 −138.3 −122.3 4864.1
25 [Co(NH3)6]3+ −15,961.7 −15,470.5 491.2 −232.2 −15,667.9 9242.4 8981.1 −261.4 242.0 9223.1
26 trans-[Co(NH3)4(NO2)2]+ −14,042.9 −13,548.9 494.0 67.4 −13,283.8 7323.5 7059.4 −264.1 −57.6 7001.9
27 trans-[Co(NH3)2(NO2)4]− −13,131.6 −12,790.0 341.6 46.7 −12,664.6 6412.3 6300.5 −111.7 −36.9 6263.6

1 ∆relσ = σrel − σnr; 2 ∆solvσ = σsolv − σGP; 3 σtot = σGP + ∆relσ + ∆solvσ; 4 δnr = σnr(ref) − σnr; 5 δrel = σrel(ref) − σrel; 6 ∆relδ = δrel − δnr ≡ ∆relσ(ref) − ∆relσ;
7 ∆solvδ = δsolv − δGP ≡ ∆solvσ(ref) − ∆solvσ; 8 δtot = δrel + ∆solvδ ≡ δnr + ∆relδ + ∆solvδ = σtot(ref) − σtot.
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As can be seen in Figure 6, the calculated σ varies insignificantly (within 1 ppm)
starting from 1800 a.u. To calculate the nonrelativistic limit for the cobalt shielding, we
have also chosen the “13c scheme”.

As follows from Table 2, the total calculated SCs of cobalt (σtot) are negative, varying
from −20,157 to −11,373 ppm, depending on ligands. The relativistic effects were found to
play a significant role for 59Co SCs, providing, on average, a shielding-type contribution of
about 4% in the range of 2–10% of the total values; see Figure 7.
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At that, the total cobalt CSs (δtot) span over the range from 3781 to 13811 ppm. Given
such a wide range of cobalt CSs, it is interesting to compare calculated values with the
experimental data whenever it is possible. Having no experimental data for the whole
series of considered compounds, we can at least make a comparison for a couple of cobalt
complexes; namely, for cis-[Co(NH3)4CO3]+ (13) and [Co(NH3)6]3+ (25). According to
the solid-state NMR data, the cobalt chemical shifts of compounds 13 and 25 referenced
to [Co(CN6)]3− are 9691 ppm [33] (9700 ppm [19]) and 8153 ppm [33] (8176 ppm [35]),
respectively. Our total calculated values for these compounds are, accordingly, 9194.0 and
9223.1 ppm. Hence, the discrepancy between our theoretical values and the solid-state
NMR experimental values for compounds 13 and 25 is about 500 (5% to δtot) and 1000 ppm
(11% to δtot), respectively. Based on the analysis of previous calculations of 59Co NMR
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CSs [19,33,35,36], we have achieved rather good accuracy for the calculated cobalt chemical
shifts in this paper.

The relativistic corrections can be estimated as 2–14% with an average relative value
of about 5%, which is far from being negligible. In that way, we do not agree with God-
bout and Oldfield [33] that taking into account relativistic effects when calculating cobalt
chemical shifts is not essential to reproduce the experimental data. On the contrary, the
relativistic level of theory is essentially important, because relativistic corrections to 59Co
NMR chemical shifts of cobalt complexes may be of minor significance in some com-
pounds, but can reach up to 14% of the total value for other complexes. The magnitude
of the relativistic effects is determined by the electronic structure of a compound under
consideration, and it is difficult to say a priori whether it is appropriate to neglect the
relativistic corrections.

Solvent effects in the 59Co shielding constants appeared to be less important than the
relativistic ones, giving an overall contribution of about 0.1–3.2% to the gas phase values;
see Figure 8.
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3. Materials and Methods

The geometry optimization of the nitrogen-coordinated complexes of cobalt 1–27 was
performed at the DFT-PBE0/ATZP level using the GAUSSIAN 09 code [84]. As was shown
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earlier [85], the contribution of relativistic geometry to the resulting 15N NMR shielding
constants was insignificant and could safely be ignored. Therefore, in the present study,
the optimization of the geometric parameters of the studied complexes was carried out at
the non-relativistic level of theory. The corresponding Cartesian coordinates of all studied
compounds are given in the Supplementary Materials.

All four- and one-component calculations of the 15N and 59Co NMR shielding con-
stants were performed with the GIAO-DFT-PBE0 method within the Dirac 2016 [86] and
Gaussian 09 [84] programs. We have used the DFT formalism at all levels due to the fact that
it represented the most suitable tool for our study. Indeed, it takes into account the electron
correlation effects via the XC potential and scales as O(n4) [87] at the same time. Despite
some disadvantages connected with its inability to systematically improve the accuracy of
the results [88] and some issues of triplet instability problems [89], the DFT approach is
capable of providing high-quality results, which are comparable to those obtained within
the modern ab initio correlated wavefunction-based methods [90].

Therefore, the DFT formalism provides an alternative avenue for the rigorous
quantum mechanical calculations of the NMR properties of larger molecular systems,
which are beyond the reach and scope of the ab initio correlated wavefunction-based
methods. That is why DFT has become very popular in the calculations of the NMR
parameters of transition metal complexes (see introduction), and we decided not to
digress from a well-proven computational method. Moreover, it is worth noting that,
for today, the density functional approach is the only available means of simultaneous
taking into account electron correlation and relativistic effects when applied under a
relativistic framework.

In all calculations of shielding constants, we used the PBE0 XC functional. This
functional indeed provides very accurate results for NMR chemical shifts. In particular, a
computational study of the performances of the PBE and PBE0 functionals in application
to the shielding constants of light NMR nuclei of the first and second periods was carried
out by Adamo and Barone [91]. In that study, they chose quite a large reference set,
which included molecules with different hybridizations and chemical environments
of the nuclei of interest. It was demonstrated that the PBE0 protocol appeared to be
competitive with the low-order perturbation post-HF techniques (such as MP2) for the
“well-behaved” systems and provided significantly improved results in the presence of
strong correlation effects.

As a result, we carried out geometry optimizations of all nitrogen-coordinated com-
plexes of cobalt using this functional. This was done in line with the recent findings by
Giovanetti et al. [92], who studied the effects of the geometry on fluorine spin–spin cou-
pling constants and reached the conclusion that geometry optimization at the same level of
theory as that used for the calculation of spin–spin coupling constants generally improves
the quality of the final results.

We suppose that this observation can be explained as follows: using the same particu-
lar functional in both the geometry optimization and calculation of any triplet property
provides the most stable results in the sense of the triplet instability problem [89]. In the
present case, we deal with relativistic corrections, which can be expressed as multiple
response functions of different orders depending, in particular, on the matrix elements
of hyperfine triplet operators of different types [93,94]. Thus, guided by this reasoning,
we decided not to introduce any additional factors that can disturb the stability of all
relativistic DFT calculations and used the same XC functional in both equilibrium geometry
and shielding constant calculations.

4. Conclusions

Both four-component relativistic and nonrelativistic computations within the GIAO-
DFT(PBE0) formalism were carried out for 15N and 59Co NMR shielding constants and
chemical shifts of a number of the nitrogen-coordinated complexes of cobalt. It was found
that the total values of the calculated nitrogen chemical shifts of the cobalt complexes
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span over the range of more than 580 ppm, varying from −452 to +136 ppm. At that, the
relativistic corrections to nitrogen shielding constants and chemical shifts were found to
be substantial, varying from −19 to +74 ppm and from −68 to +25 ppm, respectively. The
positive sign of the most part of the relativistic corrections to nitrogen SCs was found to
be due to the fact that the negative paramagnetic contributions decrease in their absolute
values when referring to the relativistic consideration, while diamagnetic terms stay practi-
cally unchanged. This indicates that the observed relativistic SO-HALA effect initiated by
cobalt gives the shielding-type contributions, resulting in the increasing and decreasing of
the nitrogen SCs and CSs, respectively, shifting the latter to a higher field. In this sense, we
recommend not neglecting the relativistic level of theory when calculating the nitrogen CSs
in the nitrogen-coordinated complexes of cobalt. Solvent corrections to nitrogen SCs and
CSs were shown to vary from −34.6 to +63.2 ppm and from −74.4 to +23.4 ppm, accord-
ingly. Cobalt SCs (−20,157 to −11,373 ppm) and CSs (+3781 to +13,811 ppm) were found
to be essentially large. The relativistic effects were demonstrated to play a significant role
for cobalt SCs, resulting in shielding-type contributions of 4% on average, while solvent
corrections to the cobalt SCs appeared to be less significant, affecting the gas phase values
by 1.4% on average.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms232113178/s1.
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