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Supporting Information 
 
 

 
 

 
Figure S1. Boxplots showing the variance of cell morphological parameters within groups of different 
phenotypes for each cell line. Data comprises cells from all passages and for growth times in the range 
24–48 hours. Dots mark outliers. Asterisks indicate groups with a statistically significant (P < 0,05) 
difference between the mean values of the parameters. 
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Figure S2. Mean accuracy of the phenotype classification models based on different subsets of colony 
morphological parameters as predictors. The values were obtained by averaging the cross-validation 
accuracies of classification models based on all possible subsets containing a given number of 
parameters (starting with two parameters). The error bars show the standard error of the mean. 
 
 

 
 

Figure S3. Mean accuracy of the phenotype classification models based on different subsets of four 
cell morphological parameters as predictors (Area, Perimeter, Minor axis, and Shape factor). The 
values were obtained by averaging the cross-validation accuracies of classification models based on all 
possible subsets containing a given number of cell parameters (starting with two parameters). The 
error bars show the standard error of the mean. 
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Figure S4. Fluorescence immunostaining of embryonic bodies (EBs) derived from hESC H9 and hiPSC 
AD3 after their manual clonal and bulk expansion. Representative positive confocal immunostaining 
images for common three germ layers markers: beta-III tubulin (TUJ1): for ectoderm, smooth muscle 
actin (alpha-SMA) for mesoderm, and alpha-fetoprotein (AFP) for endoderm. Immunofluorescence 
using this set of germ layer markers is particularly advantageous in that each of these markers is not only 
preferentially expressed in certain cell lineages, but each marker also displays a distinguishing cellular 
localization pattern that serves as an extra measure of visual confirmation. Please note an anti-TUJ1 
staining is typically brightest for elongated cells with characteristic neuronal like projections (A, D, G). 
Cells that robustly express SMA display lined patterns of actin filament staining, which cells are often 
found in large layered groupings or as isolated, large cells (C, F, I). Anti-AFP staining commonly 
identifies tight clusters of cells (B, E, H). Scale bar: 50 µm. 
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Figure S5. Expression of 13 genes (pluripotency marker genes: NANOG, OCT4, DPPA4; ectoderm marker genes: SOX1, 
NESTIN; mesoderm/mesendoderm marker genes: RUNX2, MIXL1, MSX2, HAND1, BRACHYURY(T); endoderm marker 
genes: CDX2, GATA4, SOX17) in differentiating embryonic bodies derived from the hESC line H9 and hiPSC line AD3, 
measured in a clonal (gray) and nonclonal (white) colony of each line. Data are presented as mean ± SEM. *, P < 0,05; **, 
P < 0,01. Red asterisks point out the comparison of gene expression between clonal and nonclonal colonies, black asterisks 
point out the comparison between two different cell lines. 
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Text S1. Classification with manual cross-validation 

 
Classification models in the main text were trained and validated using the Wolfram Mathematica function 
Classify with the default ‘ValidationSet’ option. In this form, the function performs the training on a data with 
automatic cross-validation, in which validation sets are automatically sampled from the data during the training 
process, so the user does not need to manually split the data into training and validation datasets. As a control, 
we performed computational experiments on classification on the cellular data with the manual cross-validation. 
First, we randomly selected 10% of the cellular data as the test dataset. Second, we randomly split the rest of the 
data into a training dataset (80% of the split data) and validation dataset (20%), where the validation dataset was 
aimed to evaluate the model performance during training. The proportion of cells from each cell line in the data 
remained the same across all data subsets considered. We repeated the last procedure 50 times, so at the output 
we had one test dataset and 50 pairs of training and validation datasets. We used each pair of these training and 
validation datasets to retrain the classification models using either four morphological parameters (‘full model’) 
or the two best parameters (Perimeter and Shape factor; ‘minimal model’) as predictors, by running (50 times) 
the following command in Mathematica: 
 
Classify[training_set, Method ® “NeuralNetwork”, ValidationSet ® validation_set, PerformanceGoal ® 
"Quality"], 
 
where training_set is one of the 50 training datasets, validation_set is the corresponding validation set used to 
validate the model performance during the training, and all other options were the same as in the computational 
experiments used to train the classification models reported in the main text. After obtaining 50 classification 
models resulted from the multiple running of this command, we calculated the classification accuracy of all 
models on their training and validation datasets and on the test dataset (Figure S6). 
 Figure S6 shows that the values of classification accuracy calculated on all data subsets are, on average, 
very close to each other and very close to the accuracy values reported in the text. Accuracy on the validation 
sets was 69±2% for the full model as compared to 69±3% reported in the main text, and 67±2% for the minimal 
model compared to 68±3% reported in the main text. A statistically significant (P < 0.05) difference between 
accuracy on different datasets was recorded only for the training datasets vs. the validation and test datasets for 
the minimal model (Figure S6), but the absolute values of the average accuracy on these datasets differed from 
each other by only one percent, which allows us to consider the slight overtraining observed for the minimal 
model as inessential. Therefore, we conclude that the model training procedure with the default options for 
validation that was used in the main text produced reliable results. 
 
 

       
 
Figure S6. Classification accuracy values of the full (left panel) and minimal (right panel) models from the 
computational experiments with the manual cross-validation, obtained on the train, validation, and test datasets. 
The average accuracy ± SD for the full model: 69±1% (training datasets), 69±2% (validation datasets), and 
69±1% (test dataset). The average accuracy ± SD for the minimal model: 68±1% (training datasets), 67±2% 
(validation datasets), and 68±2% (test dataset). Mann–Whitney test for the difference between accuracy on 
different datasets: train vs. validation, P = 0.11 (full model) and P = 0.002 (minimal model); train vs. test, P = 
0.99 (full model) and P = 0.02 (minimal model); validation vs. test, P = 0.17 (full model) and P = 0.48 (minimal 
model).
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Table S1. List of qRT-PCR primers. 

 

 Gene Forward Primer Reverse Primer 
Pluripotency marker 

genes DNMT3B GGA GAC TCA TTG GAG GAC CA ACG ACG CAC CTT CGA CTT AT 

 SALL4 AGC ACA TCA ACT CGG AGG AG CCT GGG TGG TTC ACT GGA G 
 IGF1R AGG GGT TTG TGA TCC ACG AC TGC CCT TGA AGA TGG TGC AT 
 CD9 AAG TTA GCC CTC ACC ATG CC CTG AGA GTC GAA TCG GAG CC 
 DPPA4 TGC CCT AAG AAA AAG GCA GA CTC AGC TTC AAT TGT TGG CA 
 OCT4 GAG AAC CGA GTG AGA GGC AAC C CAT AGT CGC TGC TTG ATC GCT TG 

 NANOG AAT ACC TCA GCC TCC AGC AGA TG TGC GTC ACA CCA TTG CTA TTC TTC 
 REX1 TGT CCT CAG GCT GGG TAG TC TGA TTT TCT GCC GTA TGC AA 
 SOX2 TTG TTC GAT CCC AAC TTT CC ACA TGG ATT CTC GGC AGA CT 
 KLF4 TTA CCA AGA GCT CAT GCC ACC GCG AAT TTC CAT CCA CAG CC 

Ectoderm marker genes SOX1 GGA ATG GGA GGA CAG GAT TT ACT TTT ATT TCT CGG CCC GT 
 NESTIN GAGAGGGAGGACAAAGTCCC CCA CTT CCT CAG ACT GCT CC 

Mesoderm/ 
mesendoderm marker 

genes 
RUNX2 

CCG CCT CAG TGA TTT AGG GC  GGG TCT GTA ATC TGA CTC TGT CC 

 MIXL GAGACTTGGCACGCCTGT GGT ACC CCG ACA TCC ACT T 
 HAND1 ACC AGC TAC ATC GCC TAC CTG ATG TCC CTA TTA ACG CCG CTC CAT 
 MSX2 TGG ATG CAG GAA CCC GG AGG GCT CAT ATG TCT TGG CG 
 T CAG TGG CAG TCT CAG GTT AAG AAG GA CGC TAC TGC AGG TGT GAG CAA 

Endoderm marker genes CDX2 CTC GGC AGC CAA GTG AAA AC CTC CTT TGC TCT GCG GTT CT 
 SOX17 CGC ACG GAA TTT GAA CAG TA GGA TCA GGG ACC TGT CAC AC 
 GATA4 TCC AAA CCA GAA AAC GGA AG AAG GCT CTC ACT GCC TGA AG 

Housekeeping genes RN18S GAA ACT GCG AAT GGC TCA TTA A GAA TTA CCA CAG TTA TCC AAG TAG GA 
 RPLI3A CCT GGA GGA GAA GAG GAA AGA GA TTG AGG ACC TCT GTG TAT TTG TCA A 
 GAPDH TGC ACC ACC AAC TGC TTA GC GGC ATG GAC TGT GGT CAT GAG 

 


