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Abstract: Brown mustard (Brassica juncea (L.) is an important oilseed crop that is mostly used to
produce edible oils, industrial oils, modified lipids and biofuels in subtropical nations. Due to its
higher level of commercial use, the species has a huge array of varieties/cultivars. The purpose of
this study is to evaluate the use of visible near-infrared (Vis-NIR) spectroscopy in combination with
multiple chemometric approaches for distinguishing four B. juncea varieties in Korea. The spectra
from the leaves of four different growth stages of four B. juncea varieties were measured in the Vis-NIR
range of 325–1075 nm with a stepping of 1.5 nm in reflectance mode. For effective discrimination, the
spectral data were preprocessed using three distinct approaches, and eight different chemometric
analyses were utilized. After the detection of outliers, the samples were split into two groups, one
serving as a calibration set and the other as a validation set. When numerous preprocessing and
chemometric approaches were applied for discriminating, the combination of standard normal variate
and deep learning had the highest classification accuracy in all the growth stages achieved up to 100%.
Similarly, few other chemometrics also yielded 100% classification accuracy, namely, support vector
machine, generalized linear model, and the random forest. Of all the chemometric preprocessing
methods, Savitzky–Golay filter smoothing provided the best and most convincing discrimination.
The findings imply that chemometric methods combined with handheld Vis-NIR spectroscopy can
be utilized as an efficient tool for differentiating B. juncea varieties in the field in all the growth stages.

Keywords: Brassica juncea; visible near-infrared; spectroscopy; deep learning; machine learning;
variety discrimination

1. Introduction

Brassica is a genus of plants in the Brassicaceae family. The Brassicaceae family
contains approximately 3709 species and 338 genera and is utilized as a source of oil,
vegetables, mustard sauces, and fodder [1,2]. B. napus, B. rapa, and B. juncea are members
of this seed family that have a strong industrial interest in the oil extraction industries [3].
In tropical and subtropical nations, particularly south-east Asia such as India, China,
Bangladesh, and Pakistan, and parts of Canada, Russia, China, and Australia, Brassica
juncea (L.) Czern & Coss (Indian mustard) is a significant oilseed crop [2]. It is a natural
amphidiploid (AABB, 2n = 36) of Brassica rapa (AA, 2n = 20) and Brassica nigra (BB, 2n = 16)
that is farmed for its edible oil globally [4]. In addition to being used in cooking, Indian
mustard has a wide range of uses in the food and chemical industries, as well as being
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utilized as a biofertilizer. Mustard seedmeal is an excellent feed for poultry animals, and
India has become the world’s largest exporter [5]. Mustard oil has a rich repertoire of
antioxidants and high erucic acid, as well as excellent lubricating and combustion qualities,
and is thus widely used and desired in biodiesel production, the automobile industry, and
the paint industry [6].

Recently, the “Industry 4.0” era has necessitated the development of non-destructive
and environmentally friendly procedures for the simple, rapid, and accurate assessment of
varieties/species based on their composition and oil content. Visible near-infrared (Vis-NIR)
spectroscopy is a vibrational spectroscopy technique that relies on the absorption of elec-
tromagnetic radiation in the visible and NIR range (350–2500 nm) to provide information
about molecular vibrations of chemical bonds involving primary structural components of
molecules [7]. This technique has been reported to discriminate plant species/varieties in
various crops, such as tea [8], apple [9], peach [10], Amaranthus species [11], etc. In addi-
tion, it is used to predict oil content in soybean [12], sugar beet seed [13], sesame seed [14],
and B. napus seed [15]. New sensors, such as portable NIR spectrometers, are currently
being evaluated in a variety of agricultural products [16,17]. Due to their small size, these
sensors are comfortable and portable, allowing them to monitor the industry at various
phases of the supply chain, from harvesting to processing. Multivariate analysis techniques
are frequently employed to extract crucial information from NIR data due to the large
amount of data generated [18]. Principal component analysis (PCA) is used to obtain a
rapid overview of the spectra, whilst multivariate calibration methods such as Discriminant
Analysis (PLS-DA), deep learning and Partial Least Squares Regression (PLSR) allow for the
classification and prediction of desired parameters in samples, respectively [19,20]. In this
study, the specific objectives were to (1) evaluate the capacity of portable Vis-NIR spec-
troscopy to discriminate plant varieties and (2) compare the eight chemometric methods
and their combinations with various preprocessing techniques for effective discriminating
of four different B. juncea varieties.

2. Results and Discussion
2.1. Diffuse Reflectance Spectroscopic Analysis and Preprocessing

Figure 1 shows the average Vis-NIR spectra obtained from the four different growth
stages of four B. juncea varieties, namely, cotyledon stage (Figure 1A,E,I,M), 1–2 leaf stage
(Figure 1B,F,J,N), 3–4 leaf stage (Figure 1C,G,K,O) and 5–6 leaf stages (Figure 1D,H,L,P).
This includes raw spectra and three different preprocessing methods. There are numerous
crossovers and overlapping across the four varieties in all the growth stages (Figure 1A–P);
in other words, the spectra of each variety are quite similar to those of other varieties.
Consequently, the discrimination of varieties directly based on absorbance spectra is dif-
ficult. Therefore, it was necessary to use machine learning methods for the effective
discrimination of four varieties. From 400 to 500 nm, the spectral curve was flat, and
between 550 and 650 nm there was a small peak and again down to their normal position.
This demonstrates that the leaves actively absorb blue (400–500 nm) and red (680 nm)
light while reflecting green light (550 nm) in the visible range [8] which is responsible for
chlorophylls and carotenoids [21,22]. From 650 to 750 nm, there was a sharp increase in
the peak that remained higher absorbance value; later, there are no variations in remaining
wavelength until 1200 nm. These results concurred with our previous research on the
discrimination of B. napus and B. juncea using Vis-NIR spectroscopy [23]. The spectra were
preprocessed to reduce systemic noise and emphasize differences between samples. Using
a number of preprocessing methods simultaneously will help us obtain a greater degree
of classification accuracy and will allow us to select the best preprocessing approach for
each sample [23,24]. It is difficult to discriminate the plant varieties only with the spectra
shown in Figure 1. For effective discrimination, Vis-NIR spectroscopy was combined
with several models and machine learning methods such as discriminant analysis and
principal component analysis (PCA) is important [20,25]. To investigate the qualitative
differences between the four B. juncea varieties, PCA was performed using raw spectra
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(Figure 2). PCA is a powerful data mining technique for data visualization. The principle
of PCA is to determine the linear combinations of the initial variables that contribute to
the differences between samples [26]. These combinations are referred to as principal
components (PCs). As shown in Figure 2A–D, all of the different PCs showed the same
slight pattern of separation for the different samples in the PCA paired plot from PC1 to
PC6, but PC1 vs. PC2 (Figure 2E–H), showed the most visual differences in different growth
stages, respectively. Therefore, outlier detection was performed using these two PCs before
initiating preprocessing for the machine learning methods. Generally, the computerized
iterations allow PC1 to have the maximum information and PC2 to carry the maximum
share of residual information [26].
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Figure 1. Average raw and preprocessed spectra of four growth stages of four B. juncea varieties. Av-
erage raw (A,E,I,M) and preprocessed with different preprocessing methods, namely, normalization
(B,F,J,N), standard normal variate (C,G,K,O), and Savitzky–Golay (D,H,L,P).
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2.2. Chemometric Analysis for Discrimination of Four B. juncea Varieties

The potential of visible-NIR spectroscopy to discriminate or identify plant varieties are
based on leaf spectral properties related to biochemical composition and structure, which
are influenced by a variety of factors such as plant species, development or microclimate
position of the leaf on the plant, etc. [21,27]. To determine the most accurate method for
distinguishing four B. juncea varieties, the classification accuracy of various chemometric
methods combined with different preprocessing methods was assessed. Table 1 shows a
summary of the classification accuracy for the various methods in different growth stages
of four B. juncea varieties. The classification accuracies ranged from 45.0% to 100.0%.
Using chemometric approaches, both raw and preprocessed spectra displayed efficient
discrimination with different classification accuracies.

Table 1. Average classification accuracy of the combinations of preprocessing and machine learning
methods for reflectance spectra from four different growth stages of eight B. juncea varieties.

S. No Model Preprocessing
Average Accuracy (%)

Cotyledon Stage 1–2 Leaf Stage 3–4 Leaf Stage 5–6 Leaf Stage

1 Naïve Bayes

Raw spectra 56.2 55.5 59.1 55.2

Normalization (Area) 61.4 48.0 58.2 58.6

Standard Normal Variate 79.7 62.4 60.8 73.2

Savitzky–Golay (Derivative) 60.0 73.5 77.1 99.8

2 Generalized
Linear Model

Raw spectra 70.0 70.9 71.2 80.7

Normalization (Area) 69.0 78.3 83.7 86.2

Standard Normal Variate 82.8 81.6 85.1 98

Savitzky–Golay (Derivative) 76.2 74.1 79.1 100

3
Fast Large

Margin

Raw spectra 82.8 85.4 87.7 99.8

Normalization (Area) 62.8 52.0 68.7 65.8

Standard Normal Variate 83.1 87.7 91.1 100

Savitzky–Golay (Derivative) 63.8 73.5 86.0 99.9

4
Deep

Learning

Raw spectra 80.3 84.3 87.0 98.2

Normalization (Area) 82.8 86.4 87.8 99.9

Standard Normal Variate 89.0 89.1 92.0 100

Savitzky–Golay (Derivative) 71.7 77.6 88.1 100

5 Decision Tree

Raw spectra 60.3 57.6 54.5 63.5

Normalization (Area) 65.2 50.5 45.0 67.1

Standard Normal Variate 71.7 65.4 54.2 82.0

Savitzky–Golay (Derivative) 45.2 72.5 76.5 51.2

6 Random
Forest

Raw spectra 61.0 58.5 59.9 59.2

Normalization (Area) 72.8 45.4 65.4 72.3

Standard Normal Variate 85.9 71.3 81.3 86.8

Savitzky–Golay (Derivative) 65.9 73.5 77.2 100

7
Support
Vector

Machine

Raw spectra 85.9 86.1 88.6 100

Normalization (Area) 80.0 78.1 80.3 73.2

Standard Normal Variate 88.6 89.2 91.3 100

Savitzky–Golay (Derivative) 66.6 76.5 86.8 100

8
Linear

Discriminant
Analysis

Raw spectra 83.4 79.9 84.9 99.5

Normalization (Area) 86.4 80.6 81.7 99.6

Standard Normal Variate 87.3 80.6 84.9 99.8

Savitzky–Golay (Derivative) 92.5 91.7 86.9 99.6
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In most chemometric analyses, however, preprocessed spectra were found to have
a higher classification accuracy than raw spectra. In some cases, the use of raw spectra
yielded much less classification accuracy with the use of Decision tree (45.0%), Random
Forest (45.4%) and Naïve Bayes (48.0%). The maximum classification accuracy (100%) was
witnessed with the several preprocessing methods in combination with machine learning
methods (Table 1). Especially during the 5–6 leaf stage of plants the classification accuracy
is highest, sometimes. even without preprocessing.

In assessing the effectiveness of classification methods, deep learning, SVM and linear
discriminant analyses were found to have higher level of classification accuracy. Naïve
Bayes and decision tree had the lowest accuracies. Notably, classifications using only
raw spectra still yield average accuracies above 70% at the Cotyledon stage, 1–2 leaf
stage, 3–4 leaf stage and 5–6 leaf stage when using Generalized Linear Model, Fast Large
Margin, Deep Learning, Decision Tree, SVM and linear discriminant analysis. Without
preprocessing the data, the SVM model had a high accuracy of 100% at 5–6 leaf stage.
The SVM is particularly well suited to high-dimensional data, because the value of each
attribute is arbitrary [28].

In assessing the effectiveness of preprocessing on classification, Standard Normal
Variate produced the best classification accuracies in combination with all the other classifi-
cation methods in most cases. Normalization and Savitzky–Golay (derivative) produced
acceptable accuracies (Table 1) depending on the classification method that they were
used in combination with. Previously, various studies used a variety of preprocessing
and chemometric approaches to differentiate plant species. Yee et al. [29] employed NIR
spectra in conjunction with LDA to discriminate potato tuber varieties, with a classification
accuracy of 93%. Chen et al. [30] used SVM to differentiate three tea varietals. Similarly,
Vis-NIR spectroscopy paired with artificial neural networks (ANN) successfully distin-
guished tea plants with a 77.3% accuracy [8]. For on-site tomato variety discrimination,
Xu et al. [21] used PCA, linear discriminant analysis (LDA), and discriminant partial least
squares (DPLS) regression approaches.

Overall, the combination of SNV and deep learning was found to be more effective
in the discrimination of four B. juncea varieties in all the growth stages in our study.
The SNV (100%) was the most effective preprocessing approach for usage with several
chemometric methodologies. The linear discriminant analysis plot for the discrimination
of four B. juncea varieties is shown in Figure 3. The distribution of spectral points and
their compactness varies according to the growth stages. The 5–6 leaf stage of B. juncea
varieties was found to be a promising stage for the variety discrimination. The variety
“Jukgot” was completely separated from the clusters of other varieties, while clusters
of other varieties were closely placed. This implies that the other three varieties share
higher levels of biological composition, but “Jukgot” shares much less with other varieties.
Similarly, LDA was utilized to discriminate between numerous plant varieties, including
sprouting mung bean [31] and melon cultivars [32].
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2.3. Selection of Significant Preprocessing and Chemometric Methods for Discrimination

The effectiveness of preprocessing and machine learning methods was statistically
evaluated (Table 2). The mean percentage of classification accuracy of each chemometric
method paired with various preprocessing procedures revealed significant modeling for the
discrimination of four B. juncea varieties (Table 2). The statistical analysis using analysis of
variance (ANOVA) demonstrated that the sum of square and mean sum of square values of
the various preprocessing and machine learning techniques used had statistical significance
at p ≤ 0.0001 (Table 3). However, when a combination of preprocessing and multiple
machine learning approaches was used, there was no significance with p ≤ 0.0001. (p value
of 0.0389). The confusion matrix illustrates the degree of error in the identification of the
assessed plants, suggesting that SNV combined with deep learning was the most accurate
classification method (Tables S1–S4). Similar results were witnessed by the use of Vis-NIR
spectroscopy in the discrimination of Amaranthus sp. [11] and hybrids between B. napus
and B. juncea [23].

Table 2. Model precisions of different preprocessing and models for the discrimination of four B.
juncea varieties.

Raw Normalize Savitzky–Golay SNV p-Value

Deep Learning 85.45 ± 0.04 a 86.55 ± 0.04 a 78.55 ± 0.06 a 90.11 ± 0.03 ab NS
Decision Tree 47.27 ± 0.08 bc 46.37 ± 0.08 c 31.98 ± 0.09 b 53.17 ± 0.08 c NS

Fast Large Margin 86.36 ± 0.04 Aa 55.52 ± 0.07 Bc 67.55 ± 0.09 B a 87.01 ± 0.03 Aab **
Generalized Linear

Model 62.80 ± 0.07 b 76.51 ± 0.05 a 71.98 ± 0.07 a 82.68 ± 0.04 ab NS

Naïve Bayes 41.70 ± 0.07 c 51.56 ± 0.06 c 56.05 ± 0.11 a 57.20 ± 0.08 c NS
Random Forest 51.73 ± 0.06 bc 58.03 ± 0.06 bc 58.96 ± 0.10 a 74.18 ± 0.06 b NS
Support Vector

Machine 88.79 ± 0.03 Aa 74.15 ± 0.04B ab 75.63 ± 0.06 Ba 91.33 ± 0.03 Aa **

p-value *** *** ** ***

NS, not significant, **, p < 0.01, ***, p < 0.001. Means with different alphabetical small and capital letters show the
significance of the value in the order of column (machine learning) and row (preprocessing), respectively. Same
letters are not significantly different at p ≤ 0.05 based on Tukey’s range test.

Table 3. Analysis of variance of percentage of correctly classified four B. juncea varieties from four
different preprocessing methods and eight different classification models using reflectance spectra.

Source DF SS MS f Value p-Value

Stage 3 4.800979 1.600326 28.26 <0.0001
Pretreatment 3 1.288898 0.429633 7.59 <0.0001

Model 6 9.174862 1.529144 27 <0.0001
Stage ×

Pretreatment 9 0.678759 0.075418 1.33 0.2192

Stage × Model 18 0.932161 0.051787 0.91 0.5614
Pretreatment ×

Model 18 1.725652 0.09587 1.69 0.0389

Stage × Pretreat ×
Model 54 2.605497 0.04825 0.85 0.7601

Error 336 19.03025 0.056638
Total 447 40.23706

DF: degree of freedom. SS: sum of squares. MS: mean sum of squares.

3. Materials and Methods
3.1. Plant Materials

Four B. juncea L. varieties of the Korean peninsula with the following local names:
‘Jukgot’ ‘Chungot’ ‘Dolsangot’ and ‘Earlchungot’ were selected for the discrimination
analysis using Vis-NIR spectroscopy. All the four varieties were purchased from the Asia
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Seed Co., Ltd. Seoul, Republic of Korea. All the varieties were grown in the soil pot at the
greenhouse of the National Institute of Agricultural Sciences, Jeonju, Republic of Korea,
during May–July 2021. The discrimination analysis was performed with different growth
stages of the B. juncea plants, namely, cotyledon stage, 1–2 leaf stage, 3–4 leaf stage and 5–6
leaf stages (Figure 4).
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Figure 4. Representative figures of four different growth stages of four Brassica juncea varieties used
in the study. (A–D), Jukgot; (E–H), Chungot; (I–L), Dolsangot; (M–P), Earlchungot. Growth stages
cotyledon, 1–2 leaf stage, 3–4 leaf stage, 5–6 leaf stage, respectively.

3.2. Vis-NIR Spectral Data Collection

Vis-NIR diffuse reflectance spectra of intact leaves of four B. juncea varieties were
acquired using a handheld integrated portable spectrum analyzer (FieldSpec HandHeld 2,
ASD Inc., Longmont, CO, USA) in the range of 325–1075 nm with a stepping of 1.5 nm
in reflectance mode (log/R). The spectra were taken on the fully inflated leaves’ adaxial
surface, which may easily capture light. In each group, the spectra were acquired from
three distinct sections of the leaf blade. Three spectra were obtained from various parts
of the leaf blade of hundred plants in each group. A total of 300 (3 × 100 = 300) spectra
were collected from each group and used for further analysis. The leaf of the cotyledon
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stage is very small the spectral collection is difficult; therefore, we performed collection in a
single section (1 × 100 = 100). To remove unnecessary noise, the Vis-NIR device’s optical
window was placed directly on the leaf’s face during each spectrum capture, assuring that
the sensor window was entirely covered.

3.3. Preprocessing, Modelling Methods and Statistical Analysis

Background signals arose in the raw spectra of samples due to system settings and
external noise. As a result, numerous preprocessing procedures, such as normalization
(area), standard normal variate (SNV), and derivatives (Savitzky–Golay with first dif-
ferentiation), were used to reduce spectral noise and improve the accuracy of modeling
approaches [20,23]. The efficiency of preprocessing methods was evaluated in comparison
to raw spectra. The preparation computations were carried out using the Unscrambler
X program, version 10.5.1. (CAMO ASA, Oslo, Norway). Several machine learning algo-
rithms were used and compared for effective spectral data visualization and discrimination.
The modeling was performed with RapidMiner studios Version 9.0.002 (RapidMiner, Inc.,
Boston, MA, USA). Deep learning, decision trees, support vector machines (SVM), random
forests, generalized linear model, rapid large margin, Naïve Bayes, and linear discriminant
analysis were used in this study to find the best modeling technique with the highest
classification accuracy [20,23]. The Aquap2 package created by Pollner and Kovacs [33]
was also utilized in R-studio to apply the various preprocessing approaches and perform
linear discriminant analysis. The spectral data points were the inputs for each approach,
and the classes were the identifying labels for four B. juncea varieties. Cross validation
was used to test the models’ predictability across several sample types. For this, the data
were separated into two sets: a training set and a validation set. The training set contained
two-thirds of the data, with the remainder serving as the validation set. The data were
split three times to ensure that each sample was evaluated at least once in the calibration
and validation set. Using one-way analysis of variance, the influence of (1) the scatter
correction method, (2) the eight machine learning methods, and (3) the interaction between
preprocessing and machine learning methods was identified (ANOVA). Tukey’s range test
was employed as a mean comparison procedure with a significance level of p ≤ 0.05.

4. Conclusions

In conclusion, using Vis-NIR spectroscopy in combination with several machine learn-
ing approaches, a simple and rapid discrimination method for B. juncea varieties was
established. Among the various preprocessing and machine learning approaches used,
the combination of standard normal variate and deep learning proved to be the most
accurate, with a 100% classification accuracy of juncea varieties at the 5–6 leaf stage and
accuracies higher than 89%, irrespective of the growth stage. However, when compared
with the standard normal variate, the Savitzky–Golay smoothing performed well with
other chemometrics, indicating that it has better discrimination potential when utilizing
several chemometric approaches. Especially, the discrimination accuracy is higher in the
5–6 leaf stage compared with other stages. Furthermore, it is confirmed that this nonde-
structive technique, which combines handheld Vis-NIR spectroscopy with chemometric
techniques, can be utilized to distinguish between different plant varieties in the field for
rapid identification. It is also advised that a database containing large-scale germplasm
collections of B. juncea and/or other plant varieties be created for effective global use of
the technology.
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