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Abstract: Gene therapy is opening unprecedented opportunities for novel therapeutic approaches.
Based on the concept of rescuing function mutations by co-expressing the correct gene to allow
biological functions to be restored, it requires the use of viral vectors to ensure the proper delivery of
therapeutic genes. In this context, recombinant adeno-associated viruses (rAAV) are the most widely
used vectors. Their biomanufacturing process requires the insertion of the therapeutic gene into the
rAAV (full capsids). However, a percentage of rAAV that do not contain the desired gene (empty
capsids), as well as partly filled capsids, might also be produced, potentially impacting the efficiency
of the therapy. Therefore, the determination of the rAAV capsids’ full/empty ratio needs to be
monitored to ensure consistent product quality and efficacy. Anion-exchange chromatography (AEX)
can serve this need. In this contribution, thorough AEX method development, including a mobile
phase, a stationary phase and gradient conditions, has highlighted its potential in supporting gene
therapy. Taking advantage of the fact that viral capsids follow an “on/off” retention behavior, the
application of a step gradient approach to the rAAV serotype 8 (rAAV8) allowed the unprecedented
separation of rAAV8 full/empty capsids, with a resolution gain of 3.7 as compared to the resolution
obtained with a fully optimized linear gradient. Finally, the developed analytical approach allowed a
precise and accurate baseline separation and quantification of full and empty rAAV8 capsids, with
the potential to be applied as a high-throughput quality control (QC) method.

Keywords: anion-exchange chromatography; step gradient; gene therapy; recombinant adeno-
associated virus; full/empty ratio

1. Introduction

Gene therapy represents one of the greatest scientific advances in recent years and
is opening extraordinary opportunities to treat or prevent genetic disorders linked to
severe and rare diseases. This new therapeutic strategy is based on the concept that
gene expression can be effectively modulated at the transcriptional level by replacing,
inactivating or introducing genes into cells [1,2]. Supported by the scientific breakthroughs
in the understanding of genotype-to-phenotype relationships, gene therapy allows the
design of new therapeutic approaches based on “therapeutic gene delivery”. Indeed, to be
effective, the therapeutic gene of interest (new or working copy of a missing or nonworking
gene) needs to be properly delivered to human cells [3]. AAVs (adeno-associated viruses)
have emerged as safe and attractive vectors for gene delivery [4], and recent approvals of
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AAV-based therapies by the Food and Drug Administration Agency (i.e., Luxturna in 2017
and Zolgensma in 2019) have confirmed that these delivery systems have a promising and
bright future in the gene therapy era [5–9].

Twelve different AAV serotypes are known and characterized by specific target tissue
tropism. An AAV is composed of the protein capsid which contains a viral genome. The
capsid comprises around 60 copies of three viral proteins VP1, VP2, VP3 (at a 1:1:10 ratio,
respectively) assembled into an icosahedron of 26 nm in diameter. The genome is composed
of single-stranded DNA of about 4.8 kb. The structure of the genome is relatively simple
as it is composed of three genes flanked by two inverted terminal repeats (ITRs) at the
ends [10]. The first gene is the Rep gene which encodes four proteins (Rep78, Rep68, Rep52
and Rep40) produced from the same sequence but from different promoters and through
alternative splicing [11]. They are useful for targeting viral integration, viral replication,
transcription and packaging of viral DNA into the viral capsid [11]. The second gene is
the Cap gene which encodes the three viral capsid proteins (VP1, VP2 and VP3) that are
different despite the same genetic sequence, due to translation from different start codons
and alternative splicing. The third gene encodes the assembly activation protein (AAP) and
is located within the Cap coding sequence [11,12].

Given its simplicity, the AAV genome might be easily engineered to produce a recom-
binant AAV (rAAV) missing the viral DNA encoding the viral proteins (Rep and Cap).
Indeed, the ITRs sequences of the viral genome are conserved to maintain the transcrip-
tional activity, while the rest of the viral sequence is replaced by an expression cassette
containing the therapeutic gene called a transgene [8]. The transgene allows the expression
of a desired protein that might be, for example, a missing or nonfunctional protein related
to a specific pathological state [13].

During the production of an rAAV, there is a risk of retaining impurities in the sam-
ple [14]. For example, the DNA may not be integrated properly in the capsids and give raise
to the presence of empty capsids, which may correspond to ratios of 10% to 90% of total
capsids [15]. Empty rAAVs and partially filled capsids are therefore product-related impuri-
ties that may reduce the effective concentration of the final drug, compete for binding sites
and decrease the efficacy of the drug [16]. According to the FDA, these impurities need
to be monitored and reported as the full/empty (F/E) ratio [17]. Because of the similarity
to the desired AAV vector product, empty capsids are difficult to avoid or eliminate [18].
From an analytical point of view, they represent an issue as they have the same size as
the full capsids and minor pI differences. Various analytical strategies were suggested to
characterize empty capsid content, including electron microscopy, quantitative polymerase
chain reaction (PCR), Elisa assay, UV absorbance spectrophotometry, analytical ultracen-
trifugation (AUC) or charge detection mass spectrometry (CDMS) [19,20]. In addition, as
full rAAVs are loaded with negatively charged DNA within their structures, they have
a slightly lower pI than empty rAAV capsids do (generally a difference in the range of
0.4 pH units), and this feature might be exploited in the attempt to separate and quan-
tify full and empty capsids by anion-exchange chromatography (AEX) [21–26]. In this
contribution, thorough AEX method development, including a mobile phase, a stationary
phase, and gradient scouting, has highlighted the potential of the step gradient elution
mode in supporting gene therapy. Taking advantage of the fact that viral capsids follow an
“on/off” retention behavior [27,28], the application of a step gradient approach allowed
the unprecedented separation of full/empty capsids related to rAAV serotype 8 (rAAV8).
Finally, the developed analytical approach allowed a precise and accurate baseline separa-
tion and quantification of full and empty rAAV8 capsids, with the potential to be applied
as a high-throughput quality control (QC) method.

2. Results and Discussion
2.1. Preliminary Selection of Column Hardware and Evaluation of Sample Stability

Generic salt-mediated AEX gradient conditions reported in Section 3.3.1 were used
for a preliminary screening of different column hardware (Table 1). Four strong anion-
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exchanger adsorbents, all functionalized with quaternary ammonium and differing in
terms of matrix composition (monolith or nonporous beads) and column material (stain-
less steel, PEEK or PEEK-lined stainless steel) were tested to determine their efficacy in
resolving empty and full rAAV8 capsids. PP and PS are Thermo columns packed with
either nonporous particles or monolith using PEEK housing, respectively. AX is an Agilent
column packed with nonporous particles and PEEK housing, while the QS is a Tosoh
column packed with nonporous particles. The latter is composed of stainless-steel tubing
and PEEK frits. To work within the column pressure limits, the flow rate was decreased
from 0.7 mL/min (used with PP and AX columns) to 0.5 and 0.35 mL/min when using the
QS and PS columns, respectively. As reported in Figure S1, appropriate peak resolution
(Rs) was obtained with the PP (Rs = 1.07) and PS (Rs = 1.00) columns. Based on these
results, the PP column was selected for the rest of study. First, rAAV8 capsids’ stability was
evaluated over time by considering freshly diluted samples prior to analysis and samples
analyzed after 1, 3 or 7 days after dilution. In addition, the samples were diluted in either
water or a PBS buffer enriched with 0.001% poloxamer 188 (generic formulation buffer) to
also evaluate the impact of the dilution solvent on virus stability. As reported in Figure S2,
samples diluted in water were quite unstable, showing remarkable variations of the peak
areas already after 1 day, with a relative standard deviation (RSD) calculated over the 7 days
corresponding to 10.1% and 41.7% for the full and empty rAAV8 peak areas, respectively.
In addition, the full/empty ratio of the rAAV8 viral capsids was also found to increase over
time (RSD = 20.5%) when using water as the sample diluent. Conversely, rAAV8 dilutions
performed in the formulation buffer (PBS + 0.001% poloxamer 188) resulted in more stable
samples over time. More limited variations of the rAAV8 full (RSD = 8.6%) and empty
(RSD = 8.3%) peak areas were observed in such dilution conditions, and the measurement
of the full/empty ratio was much more precise (RSD = 3.4%). The generic formulation
buffer was therefore selected as the preferential diluting solvent, and the remaining rAAV8
analyses were always performed within 3 days from sample preparation to limit variability
related to sample stability.

Table 1. List of investigated chromatographic columns and their properties (chemistry: quater-
nary ammonium for all columns). PEEK and SS stand for polyether ether ketone and stainless
steel, respectively.

Acronym Name Provider Column
Hardware

Column
Dimensions

(mm)

Particle
Size (µm)

PP ProPac
SAX-10 Thermo Nonporous

PEEK 50 × 4 10

PS ProSwift
SAX-1S Thermo

Monolith
PEEK-lined

SS
50 × 4.6 -

AX Bio-SAX Agilent Nonporous
PEEK 50 × 4.6 5

QS TSKgel
Q-STAT Tosoh

Nonporous
SS tubing,
PEEK frits

100 × 4.6 7

2.2. Optimization of the Mobile Phase Conditions

Method development was carried out to further optimize the separation of empty and
full rAAV8 capsids. Multiple buffer types, pH and salt types were screened to optimize the
gradient conditions. The first optimized parameter was the buffer type. The reference BTP
buffer was compared to four alternative biological buffers (Good’s buffers) having different
pKa and chemical structures (Table 2), namely AMPD, AMPSO, CHES and CAPSO. The
chromatograms obtained with these different buffered mobile phases (pH 9.0) are reported
in Figure 1.
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Table 2. List of investigated buffers and their chemical structures.

Buffer Name Acronym MW (g/mol) pKa (25 ◦C) Structure

2-Amino-2-methyl-1,3-propanediol AMPD 105.15 8.8
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Figure 1. Screening of several buffer types. Empty (red line), full (blue line) and mix of full and
empty (violet line) rAAV8 capsids analyzed in AEX mode by using five different buffer types, namely
AMPD, BTP, AMPSO, CHES and CAPSO. Gradient conditions: generic linear gradient consisting of
buffer pH 9.0 in combination with NaCl as eluent salt. Acronyms legend: E = empty rAAV8 capsid,
F = full rAAV8 capsid, Rs = peak resolution, F/E = full/empty ratio, n.a. = not available.

The full/empty ratio (F/E) and the chromatographic resolution (Rs) were used as
benchmarks to determine the most suitable buffer type. However, no remarkable differences
were detected, the full/empty ratios were not significantly affected (ranging from 1.08 to
1.28), and the resolution was only slightly better when using the AMPSO buffer (Rs = 0.84)
in comparison to that of the reference BTP buffer (Rs = 0.80).

A mobile phase consisting of an AMPSO buffer was then screened at different pH
(8.6–9.4, accounting for 0.2 pH unit intervals) to evaluate the impact of this parameter on
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separation quality. As reported in Figure 2, a slight decrease of retention time was observed
when increasing the mobile-phase pH.
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resolution, F/E = full/empty ratio, n.a. = not available.

This behavior is in line with the AMPSO pKa being equal to 9. When using mobile
phases buffered at pH values lower than its pKa (here 8.6 and 8.8), a higher amount of
the AMPSO neutral form is present in the solution, while with mobile phases buffered at
pH values above the pKa (here 9.2 and 9.4), a higher amount of the negatively charged
form of the AMPSO is expected in the solution. As only the negatively charged form of
the AMPSO buffer is competing with the analytes for the binding to the positively charged
stationary phase, a slight decrease of retention times was observed when increasing the
mobile-phase pH. Although the full/empty ratios were not significantly affected by pH
variation (ranging from 1.00 to 1.09), a higher resolution was obtained at pH 9.4 (Rs = 0.93)
as compared to that at pH 9.0 (Rs = 0.70).

Then, three different salt types were screened as eluents for separating full and empty
rAAV8 capsids. Figure 3 shows the corresponding chromatograms obtained by using the
reference NaCl salt in comparison to those with KCl and TMAC in an AMPSO buffer
(pH 9.4). Notably, although the full/empty ratios were not significantly impacted (ranging
from 0.96 to 1.09), TMAC allowed a better resolution (Rs = 1.14) in comparison to that with
the reference NaCl (Rs = 0.93). Finally, the optimized gradient conditions (AMPSO buffer
pH 9.4 in combination with TMAC as eluent salt) were tested at three different mobile
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phase flow rates, namely 0.7, 0.3 and 0.1 mL/min. As illustrated in Figure S3, 0.3 mL/min
was selected as the best compromise between chromatographic resolution, peak intensity
and mobile phase consumption.
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In the end, it is worth mentioning that despite the exhaustive method optimization,
resolution between full and empty rAAV8 capsids was only slightly increasing between
“BTP buffer pH 9.0 in combination with NaCl as eluent salt, flow rate 0.7 mL/min”, and
“AMPSO buffer pH 9.4 in combination with TMAC as eluent salt, flow rate 0.3 mL/min”.
An alternative strategy was therefore applied to boost the separation of the full/empty
viral capsids.

2.3. Optimization of the Step Gradient Method
2.3.1. Development of a Step Gradient Method

As described in Section 2.2, it remains difficult to improve selectivity between full
and empty capsids simply by tuning the stationary phase and mobile phase under AEX
conditions. Therefore, the gradient elution profile was optimized. Indeed, it is well known
from the early days of chromatography that large proteins show a specific elution behavior
under reversed phase liquid chromatography (RPLC) conditions, where the retention is
extremely sensitive to mobile phase composition [27,28]. This particular retention behavior
has been described as on/off or bind and elute mechanism, and can be explained as follows:
the retention of a large solute is nearly infinite in a weak eluent (this corresponds to the “on”
or “bind” state, where the protein species are fully adsorbed at the column inlet), while only
a limited increase in eluent strength results in a huge retention decrease (this corresponds
to the “off” or “elute” state, as the protein migrates towards the column outlet without
any further interactions). In practice, we have recently developed a strategy combining
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isocratic steps and very short steep gradient segments at protein elution composition, to
tune selectivity as desired [29,30]. This strategy was successfully applied to monoclonal
antibodies in replacement of linear gradients, even if the latter are often more robust
and easier to transfer. To the best of our knowledge, this innovative strategy has only
been applied once in AEX for the separation of empty and full capsids of recombinant
adeno-associated viruses, and the authors of this work named their strategy “modular
discontinuous gradient” [22]. In the present work, this “step gradient approach” was
evaluated to improve the separation of full and empty rAAV8 capsids. However, to easily
obtain the final step gradient conditions, while avoiding a tedious trial-and-error method
development approach, we used the HPLC modeling software DryLab. Based on two
initial AEX gradients from 0 to 60% B in 15 and 45 min and the measurement of retention
times for the two species, the software was able to establish the retention models of rAAV
species and simulate any type of gradient, including potential isocratic steps at a given
ionic strength. For the rAAV8 sample, DryLab modeled the following gradient: 2% B held
at the beginning of the gradient for 1 min. Then, the gradient increased from 2% to 17.5% B
in 5 min, the isocratic step held for 4 min, and then gradient was increased from 17.5% to
60% B in 5 min. Finally, we added a washing step at 100% B for 5 min and an equilibration
step of the column at 2% B for 5 min. The optimal conditions suggested by DryLab were
experimentally verified, but various isocratic hold compositions around the optimal value
were tested (i.e., 17%, 17.5%, 18% and 18.5% B). The corresponding chromatograms were
reported in Figure 4. As expected, the complete separation of full and empty rAAV8 peaks
was obtained whatever the isocratic step composition. To assess the best conditions, two
main figures of merit were evaluated in Figure 4, namely the full/empty ratio and the
chromatographic resolution.
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Figure 4. Optimization of the isocratic step volumetric concentration. Mix of full and empty rAAV8
capsids analyzed in AEX mode by using the AMPSO buffer pH 9.4 in combination with TMAC
as eluent salt and the step gradient elution mode including a 4n min isocratic step (red line) hold
at different % B, namely 17% (black line), 17.5% (blue line), 18% (pink line), and 18.5% (green
line). Acronyms legend: E = empty rAAV8 capsid, F = full rAAV8 capsid, Rs = peak resolution,
F/E = full/empty ratio.

When using an isocratic composition of 17% or 17.5% B, the peak corresponding to the
empty capsid (first eluted peak) was very broad (insufficient eluent strength and focusing
effect). Therefore, the full/empty ratios were too high, probably due to incomplete elution
of the empty capsid species (one part of the empty capsid was eluted together with the
full capsid). On the other hand, when using 18.5% B, peak shapes were quite good and
resolution was maximal (Rs of 5.02), but the full/empty ratio was not in agreement with
the theoretical expectations (only 0.68). Finally, when using 18% B, the resolution was
still very good (Rs of 3.72), peak tailing/broadening was acceptable, and the full/empty
ratio was close to the expected value (1.14). It was particularly interesting to notice that
the full/empty ratio could be modified depending on the gradient elution program. This
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critical aspect has to be taken into account when using the method in a QC environment.
Indeed, a small modification of the volumetric composition can already have a significant
effect on the final chromatogram (both resolution and full/empty ratios may be affected).
This means that the HPLC pumping system has to be highly accurate, which should not be a
problem with modern HPLC/UHPLC systems. In the present work, a quaternary pumping
system (low-pressure mixing technology) was used, which is known to be less accurate
in terms of composition delivery than a binary system (high-pressure mixing system).
Therefore, the experiments reported in Figure 4 were not carried out under the best possible
conditions offering the highest robustness, but they already proved the applicability of
the procedure.

Besides the ionic strength employed at the isocratic step, the duration of the isocratic
segment can also be tuned to modify selectivity and resolution. It is indeed important
to keep in mind that segment duration will only affect the retention of the next eluting
peak (full capsid) and will have no effect on the previously eluted peak (empty capsid).
Similarly to what was done for the optimization of volumetric composition, the segment
duration suggested by DryLab (4 min) was experimentally tested, but three longer isocratic
durations were also evaluated, namely 6, 8 and 10 min. The corresponding data are reported
in Figure 5.
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analyzed in AEX mode by using the AMPSO buffer pH 9.4 in combination with TMAC as eluent salt
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When isocratic step duration was too long, a decrease in the peak intensity and peak
area corresponding to the full species was observed, while the peak corresponding to
empty species was absolutely not affected (Figure 5). This implies that the full species
were improperly eluted during the long isocratic step, leading to quantitative loss of these
species. This result was reflected by an incorrect full/empty ratio (value too low) after a
long isocratic step. Thus, the 4 min isocratic step was selected to avoid this phenomenon.
It is also important to notice that a shorter isocratic step was not tested, as we need to
maintain a sufficient resolution between the two species. Following the optimization of step
gradient conditions, a systematic comparison was conducted between the generic method
(Figure 6A), the optimized linear gradient (Figure 6B) and the optimized step gradient
method (Figure 6C).
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Figure 6. Empty (red line), full (blue line) and mixture of full and empty (violet line) rAAV8 capsids
analyzed in AEX mode by using three different elution strategies, namely a generic linear gradient
consisting of BTP buffer pH 9.0 in combination with NaCl as eluent salt (A), an optimized linear
gradient consisting of AMPSO buffer pH 9.4 in combination with TMAC as eluent salt (B) and
an optimized step gradient including a 4 min isocratic step hold at 18% B (C). Acronyms legend:
E = empty rAAV8 capsid, F = full rAAV8 capsid, Rs = peak resolution, F/E = full/empty ratio.

As already discussed in Section 2.2., the gain in terms of chromatographic resolution
between chromatograms reported in Figure 6A,B was quite modest, while the ratio of
full/empty remained comparable. On the other hand, the resolution improvement was
remarkable when applying the step gradient method (Rs of 3.72), while the full/empty
ratio remained comparable (1.14). This confirms the interest to develop AEX methods
involving the use of a step gradient for rAAV.

2.3.2. Method Validation by Full/Empty Quantification

To check the applicability of the developed step gradient AEX method for the char-
acterization of rAAV8, two different types of samples, including both the full and empty
capsids, were obtained from two different providers (i.e., Sirion Biotech and Virovek).

With rAAV8 obtained from Sirion Biotech, the retention time of rAAV8 empty capsids
was slightly larger than for the Virovek supplier. This can be explained by a vector pro-
duction process that leads to a different number of negative charges on the capsid, which
may induce somewhat larger retention of the sample. Thus, the separation conditions for
full and empty capsids for the rAAV8 from Sirion Biotech were slightly different, and the
isocratic step was set at 18.5% for mobile phase B instead of 18.0% to allow adequate elution
of the Sirion empty capsids.

For this part of the work, 11 mixtures with both full and empty capsids co-mixed in
different percentages (ranging from 0 to 100% of full capsids) in PBS buffer were analyzed.
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Figure 7 shows the corresponding chromatograms of all co-mixtures, with 0:100 and 100:0
empty/full sample corresponding to the pure full and empty capsids, respectively. As
shown in the chromatograms, the full capsids sample from Virovek already contained
about 10% of empty capsids, while this value dropped to only 1–2% for the Sirion Biotech
rAAV8. On the other hand, the empty capsid samples from the two providers already
contained more than 14% of full capsids. In Figure 7, we have also graphically represented
the experimental vs. theoretical percentages of full rAAV8 capsids in the mixtures. The
experimental values were exclusively obtained from the peak areas. As illustrated, a linear
change in the peak area of both peaks (the R2 values were higher than 0.995 for the two
different samples), with corresponding changes in percent peak areas of empty and full
rAAV8 capsids, was monitored. These observations demonstrated that the area of each
peak was additive, linear and specific to the empty and full rAAV8 capsids. This confirms
that the developed method has the potential to be used in a QC environment, as it is precise,
linear and sufficiently robust.
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salt. Acronyms legend: E = empty rAAV8 capsid, F = full rAAV8 capsid, F/E = full/empty ratio.

3. Materials and Methods
3.1. Chemical and Reagents

Bis-Tris propane (BTP, ≥99.0%), 2-amino-2-methyl-1,3-propanediol (AMPD, ≥99.0%), N-
(1,1-dimethyl-2-hydroxyethyl)-3-amino-2-hydroxypropanesulfonic acid (AMPSO, ≥ 99.0%),
2-(cyclohexylamino)ethanesulfonic acid (CHES, BioUltra, ≥99.5%), 3-(cyclohexylamino)-2-
hydroxy-1-propanesulfonic acid (CAPSO, ≥99% anhydrous basis), magnesium chloride
hexahydrate (BioXtra, ≥99.0%), hydrochloric acid solution (1 N), sodium chloride (BioUl-
tra, for molecular biology, ≥99.5%), potassium chloride (BioUltra, for molecular biology,
≥99.5%), tetramethylammonium chloride (TMAC, LiChropur, ≥99.0%) were purchased
from Sigma-Aldrich (Buchs, Switzerland). Sodium hydroxide solution (1 N) was obtained
from VWR Chemicals. Phosphate-buffered saline (PBS) and poloxamer 188 were obtained
from Roche Diagnostics GmbH (Penzberg, Germany). Water was provided by a Milli-Q
purification system from Millipore (Bedford, MA, USA).
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3.2. Sample Preparation

The concentration of rAAV samples was expressed as the number of viral particles
per mL (vp/mL). In the present work, rAAV8 samples were obtained either from Virovek
(Hayward, CA, USA) at a concentration of 2.00 E + 13 vp/mL or from Sirion Biotech
(Graefelfing, Germany) at 5.00 E + 13 vp/mL. In both cases, they were stored at −80 ◦C.
Prior to the analyses, empty and full samples were diluted to 1.00 E + 12 vp/mL in the
appropriate solvent (water, phosphate buffer solution with 0.001% poloxamer 188 or mobile
phase used for the experiment). For the “mix sample” containing both the full and empty
capsids, appropriate volumes of the full diluted sample and the empty diluted sample were
taken and mixed to obtain the desired ratio of full and empty capsids in the aliquot. All the
samples were analyzed within 72 h and stored at 4 ◦C after the sample preparation.

3.3. Instrumentation and Experimental Conditions

AEX analyses were performed on an ACQUITY UPLC H-Class system (Waters, Mil-
ford, MA, USA) equipped with an auto-sampler, including an injection loop of 50 µL, a
quaternary solvent delivery pump, and a fluorescence detector (FD). Data were acquired
using FLR excitation at 280 nm and emission at 350 nm. Table 1 lists the chromatographic
columns investigated in this work that were kept at room temperature during the analyses.
Twenty microliters of 1.00 E + 12 vp/mL samples were injected in all cases, corresponding
to a column load of 2.00 E + 10 vp. Acquisitions were performed in salt-gradient mode
and applied to full, empty, and mixed rAAV8 samples. Data acquisition and instrument
control were performed by Empower Pro 3 software (Waters, Milford, MA, USA). Reten-
tion and resolution modeling was performed with DryLab® 4 software (Molnár-Institute,
Berlin, Germany).

3.3.1. Generic Linear Gradient

Mobile phase A was composed of 65 mM BTP and 2 mM magnesium chloride hex-
ahydrate in water adjusted at pH 9.0 with sodium hydroxide solution 1 M. Mobile phase
B was composed of 65 mM BTP, 2 mM magnesium chloride hexahydrate, and 500 mM
sodium chloride in water adjusted at pH 9.0 with sodium hydroxide solution 1 M. The
generic gradient started with 2% B held for 3 min. Then, the linear gradient was increased
from 2 to 56% B in 30 min, followed by a washing step performed at 100% B for 5 min
and an equilibration step of the column at 2% B for 6 min. The column was kept at room
temperature, and flow rate was 0.7 mL/min unless stated otherwise.

3.3.2. Optimized Linear Gradient

The optimized mobile phase A was composed of 65 mM AMPSO and 2 mM magne-
sium chloride hexahydrate in water adjusted at pH 9.4 with sodium hydroxide solution
1 M. The optimized mobile phase B was composed of 65 mM AMPSO, 2 mM magnesium
chloride hexahydrate and 500 mM tetramethylammonium chloride in water adjusted at
pH 9.4 with sodium hydroxide solution 1 M. Flow rate was 0.3 mL/min unless stated
otherwise. The same gradient conditions described in Section 3.3.1. were applied.

3.3.3. Optimized Linear Gradient including an Isocratic Step

By using the same mobile phase compositions described in Section 3.3.2., gradient
was modified as follows: 2% B was held at the beginning of the gradient for 1 min. Then,
the gradient was increased from 2 to 18% B in 5 min, the isocratic step at 18% B was held
for 4 min, and then the gradient was increased from 18 to 60% B in 5 min, followed by a
washing step performed at 100% B for 5 min and an equilibration step of the column at
2% B for 5 min. The column was kept at room temperature and flow rate was 0.3 mL/min
unless stated otherwise.
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4. Conclusions

This work focuses on the detailed evaluation of AEX as a suitable technique for
the determination of the full/empty ratio, a critical quality attribute of rAAV. Before the
analysis, it is important to consider the stability of rAAV, which was found to be critical in
pure water. Therefore, a mixture of PBS and Poloxamer 188 has to be ideally considered as
sample diluent.

In this study, thorough method development was carried out using the rAAV serotype
8 (rAAV8) as a model sample. As highlighted, whatever the type of material (monolith or
nonporous silica) and hardware composition (stainless steel or PEEK), the AEX stationary
phase had only a negligible impact on the resolution between full and empty capsids, and
no partially filled capsids could be detected. Various types of buffers were also investigated
(i.e., BTP, AMPD, AMPSO, CHES and CAPSO), and here again, it appeared that the buffers
played a minor role in improving chromatographic resolution. Similarly, whenever the
mobile-phase pH was around 9 (ranging from 8.6 to 9.4), the separation between full and
empty capsids remained almost identical. Finally, three types of salt (TMAC, KCl and
NaCl) were tested to elute the rAAV species in AEX, and only a slight improvement was
observed with TMAC. In the end, when considering the initial and the fully optimized
conditions, resolution between full and empty rAAV8 capsids was only increased from 1.00
(BTP buffer pH 9.0 in combination with NaCl as eluent salt, flow rate 0.7 mL/min) to 1.10
(AMPSO buffer pH 9.4 in combination with TMAC as eluent salt, flow rate 0.3 mL/min),
which is clearly too low.

Interestingly, we found that the best way to improve the AEX separation of full/empty
capsids consisted of applying a step gradient elution mode to take advantage of the on/off
retention behavior of capsids. With these conditions, the gain in terms of chromatographic
resolution was radical (Rs of 3.72), while the full/empty ratio remained comparable (around
1.1). This confirms the interest to develop AEX methods involving the use of a step gradient
for rAAV.

Finally, thanks to the baseline separation of full/empty capsids, we have evaluated the
method from a quantitative perspective. We found that the area of each peak was additive,
linear and specific to the empty and full rAAV8 capsids. This confirms that the developed
method is suitable for a QC environment. In the future, the analytical strategy may also be
applied to other serotypes.

5. Patents

A patent application corresponding to the content of this manuscript has been filed
and is pending.
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