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Abstract: High-quality atomic models providing structural information are the results of their refine-
ment versus diffraction data (reciprocal-space refinement), or versus experimental or experimentally
based maps (real-space refinement). A proper real-space refinement can be achieved by comparing
such a map with a map calculated from the atomic model. Similar to density distributions, the maps
of a limited and even inhomogeneous resolution can also be calculated as sums of terms, known as
atomic images, which are three-dimensional peaky functions surrounded by Fourier ripples. These
atomic images and, consequently, the maps for the respective models, can be expressed analytically
as functions of coordinates, atomic displacement parameters, and the local resolution. This work
discusses the practical feasibility of such calculation for the real-space refinement of macromolecular
atomic models.

Keywords: real-space refinement; refinement programs; atomic images; map calculation; shell
decomposition; inhomogeneous resolution; CPU time

1. Introduction

Even though structural biology deals with biological objects of different complexi-
ties, sizes, and levels, very impressive results and information have been obtained from
macromolecular studies at the atomic level. Two principal methods for such studies, X-
ray or neutron crystallography (MX) and cryo-electron microscopy (cryo-EM), describe
macromolecular models in terms of positions rn, n = 1, 2, . . . , N, of the atomic centers
and of the uncertainties of these positions. Below, we discuss only an isotropic uncertainty
characterized for each atom by its own atomic displacement parameter (ADP) Bn.

The experimental information of these methods is available in different terms. In
cryo-EM, the experiment gives the maps of the electrostatic scattering potential ρobs(r)
as a result of 3D reconstruction from 2D experimentally observed projections. These
maps have a limited resolution, which usually varies from one region to another [1]. In
MX, the experiment results in a set of Fourier coefficients Fobs(s) of the electron density
distribution, or rather the magnitudes Fobs(s) = |Fobs(s)| of these complex values, which
are also known as structure factors. After all, these data are converted into maps ρobs(r) of
a limited resolution. This procedure consists of several steps, but it is applied only once
for a certain period of work and this experimentally based map is used then for validation
and the improvement of atomic models. In what follows, we refer to both experimental
distributions ρobs(r) as a ‘density distribution’. In both cases, this function is considered in
a crystal: a real one in MX and a virtual one, containing an isolated macromolecular object
per unit cell, in single-particle cryo-EM.

Atomic models are refined by their best fit to the experimental data; for a recent
review, see [2]. For such model-to-data comparisons, model information is expressed in
the same terms as the data, Fcalc(s; {rn, Bn}) or ρcalc(r; {rn, Bn}), and some score function
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is calculated. Reducing this function value is expected to be an indicator of a model
improvement. Depending on the type of information and respective score functions,
structural biologists talk about reciprocal-space refinement

min
{rn,Bn}

freciprocal(Fcalc(s; {rn, Bn}); Fobs(s)) (1)

and real-space refinement

min
{rn,Bn}

freal(ρcalc(r; {rn, Bn}); ρobs(r)). (2)

Each of these two types of refinement has its features (e.g., [2,3]) based on the properties
of structure factors and density distributions. Each atom, and more generally each piece
of the density distribution, contributes to all structure factors. By this reasoning, an
appropriate reciprocal-space refinement requires the coordinates and diffraction parameters
of all atoms in the unit cell [4], as well as a contribution from all disordered regions, in
particular that from the bulk solvent [5]. Differing from this, each atom significantly
contributes to the density only in a relatively small region of the space around the atomic
center. As a consequence, to calculate an accurate density distribution in the vicinity of
an atom, one requires the parameters of only a few atoms: those close to the atom under
consideration. Except for the atoms at the molecule surface, especially in the regions
partially occupied [6], this density is not influenced by the disordered solvent either [7].
This suggests real-space refinement as the method of choice [8], especially in earlier studies
of work when only a partial atomic model is available. Then, the refinement of the inner
part of such a model can be performed, ignoring the missed parts of the model and
a contribution from the disordered regions, and this step can be completed later with
reciprocal-space refinement [3].

The minimization of the chosen score function is usually performed iteratively and
is ruled by its gradient with respect to the atomic parameters {rn, Bn}. While ρobs(r) is
obtained only once for a whole refinement procedure in cryo-EM, or is updated from
time to time in MX, the maps ρcalc(r; {rn, Bn}) are calculated for each model tried during
real-space fit.

To obtain model structure factors Fcalc(s; {rn, Bn}) or model density maps ρcalc(r; {rn, Bn})
from the atomic parameters, refinement programs use transition modules from one param-
eter level to the next one. Refinement can require several consecutive transition steps, as
Figure 1 shows [9,10]. These calculations should provide sufficiently accurate structure fac-
tors or a map and be fast enough to make such calculations useful in practice. An efficient
algorithm to calculate the gradient is automatically defined by inverting the scheme of the
function calculation [9].

The scheme relating different model levels (Figure 1) is hierarchic and direct. This
means that one can routinely pass from a previous level of model data to the next one and
not necessarily the opposite way. In particular, one can generate a density map on any fine
grid from an atomic model and then calculate a set of Fourier coefficients (structure factors)
of this grid function. On the contrary, given a set of structure factors, one cannot recover
the exact density distribution at any fine grid but only an approximation to it, a map of a
limited resolution, calculated as a Fourier series with this set. While the architecture of the
reciprocal-space atomic refinement programs is quite established, this is not yet the case for
real-space refinement programs. In this work, we discuss the overall scheme and practical
steps for such procedures.
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Figure 1. Levels of macromolecular parameterization in MX and cryo-EM. By ‘density distribution’, 
we consider various kinds of scalar functions in space, such as an electron or nuclear scattering 
density distribution in crystallography or scattering electrostatic potential in cryo-EM, etc. The term 
‘density map’ stands for maps of any of these distributions. Atomic parameters are usually the 
coordinates of the centers of atoms and their displacement parameters, ADP. Common parameters 
may be dihedral angles [11–13], rigid-body parameters [14], common ADP values for all atoms of 
the residue [15] or TLS parameters [16,17], or something else, describing common features of an 
atomic group. Black arrows show the step-by-step hierarchic recalculation of the model parameters; 
the red and blue arrows illustrate alternative direct calculations of structure factors and maps from 
model parameters. 
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fine grid from an atomic model and then calculate a set of Fourier coefficients (structure 
factors) of this grid function. On the contrary, given a set of structure factors, one cannot 
recover the exact density distribution at any fine grid but only an approximation to it, a 
map of a limited resolution, calculated as a Fourier series with this set. While the 
architecture of the reciprocal-space atomic refinement programs is quite established, this 
is not yet the case for real-space refinement programs. In this work, we discuss the overall 
scheme and practical steps for such procedures. 

2. Results 
2.1. Gaussian Atomic Model 

In MX and cryo-EM, the atomic scattering factor is a Fourier transform of a density 
distribution of an immobile isolated atom placed in the origin, and it is usually 
approximated by a weighted sum of a few Gaussian functions, 𝐾ீ௔௨௦௦~1 − 5 [18–23]. 
Coefficients of this sum depend on the diffraction method, given the chemical type of 
atoms, and eventually on the atomic environment [24]. In what follows, to simplify the 
illustrations and unless the opposite is written, we consider a ‘movable’ virtual single-
Gaussian atom 𝑛 of a unit ‘charge’ for which its scattering function (structure factor with 
index 𝐬 when the atom is placed in the crystal origin, 𝐫𝒏 = 𝟎) is equal to 𝐅𝒏ሺ𝒔; 𝐵௡ሻ =  exp ቈ− ሺ𝑏஺ + 𝐵௡ሻ|𝒔|ଶ4 ቉   . (3) 

Here, 𝑏஺ is the parameter of this immobile Gaussian atom, representing the rate of 
decrease in the atomic scattering factor with resolution (or, respectively, the width of the 

Figure 1. Levels of macromolecular parameterization in MX and cryo-EM. By ‘density distribution’,
we consider various kinds of scalar functions in space, such as an electron or nuclear scattering
density distribution in crystallography or scattering electrostatic potential in cryo-EM, etc. The term
‘density map’ stands for maps of any of these distributions. Atomic parameters are usually the
coordinates of the centers of atoms and their displacement parameters, ADP. Common parameters
may be dihedral angles [11–13], rigid-body parameters [14], common ADP values for all atoms of
the residue [15] or TLS parameters [16,17], or something else, describing common features of an
atomic group. Black arrows show the step-by-step hierarchic recalculation of the model parameters;
the red and blue arrows illustrate alternative direct calculations of structure factors and maps from
model parameters.

2. Results
2.1. Gaussian Atomic Model

In MX and cryo-EM, the atomic scattering factor is a Fourier transform of a density dis-
tribution of an immobile isolated atom placed in the origin, and it is usually approximated
by a weighted sum of a few Gaussian functions, KGauss ∼ 1–5 [18–23]. Coefficients of this
sum depend on the diffraction method, given the chemical type of atoms, and eventually
on the atomic environment [24]. In what follows, to simplify the illustrations and unless
the opposite is written, we consider a ‘movable’ virtual single-Gaussian atom n of a unit
‘charge’ for which its scattering function (structure factor with index s when the atom is
placed in the crystal origin, rn = 0) is equal to

Fn(s; Bn) = exp

[
− (bA + Bn)|s|2

4

]
. (3)

Here, bA is the parameter of this immobile Gaussian atom, representing the rate of
decrease in the atomic scattering factor with resolution (or, respectively, the width of the
peak of the atomic density, as shown below), and Bn is its isotropic atomic displacement
parameter describing the variation in the position of this atom in time during the experiment
or in space over equivalent copies. The density ρ0

n(r; Bn) corresponding to this atom is
also Gaussian

ρ0
n(r; Bn) = g(r; bA; Bn) =

(
4π

bA + Bn

)3/2
exp

(
− 4π2|r|2

bA + Bn

)
. (4)

Functions Fn(s; Bn) and ρ0
n(r; Bn) are spherically symmetric functions decreasing with

the distance s = |s| and r = |r| to the origin. The values of bA and Bn, typical in structural
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biology, are of order of 101 − 102 Å
2

[25,26]. For bA + Bn ≈ 40 Å
2
, the value of ρ0

n(r; Bn)
at |r| = 2.5 Å decreases to about 0.002 times the function value in the origin. By this
reasoning, when generating a density distribution as a sum of atomic densities, the atomic
contributions are cut out beyond r = |r| > rdens with rdens ∼ 2.5− 3.0 Å.

2.2. Schemes of Reciprocal-Space Refinement

For an atomic model, its structure factors can be directly calculated from atomic
coordinates and displacement parameters, isotropic or anisotropic. In this procedure
(red arrows in Figure 1), each of N atoms of the model directly contributes to each of
the structure factors making, for large macromolecules, the total number of computing
operations too high. Modern macromolecular refinement programs obtain these values
as Fourier coefficients of the respective density distribution calculated on a regular grid
as a function of the model parameters [27,28]. In this two-step procedure (black arrows in
Figure 1), the number of operations is independent of the number of structure factors in
the first step and is independent of the number of atoms in the second step. The grid size is
a common factor which influences the number of operations for both steps.

The two-step scheme is faster but introduces errors in the calculated values of model
structure factors. First, the density is generated within a sphere centered in the atomic
position and with the radius rFT . For a virtual Gaussian atom (4), the error in the Fourier
transform of the atomic density due to this distance cut-off, being expressed with rescaled
parameters x = r/

√
B, X = rFT/

√
B, t = s

√
B, and t = s

√
B, is

∆(X) = |Fexact(t)| −
∣∣∣Fintegral(t; X)

∣∣∣ =
exp
(
− t2

4

)
− 8
√

π
t
∫ X

0 (2πx)exp
(
−4π2x2)sin(2πxt)dx.

(5)

For a given B value, discrepancy (5) is a non-monotonous function of the distance
cut-off X (Figure 2) which suggests that the optimally chosen rFT value may be eventually
different from rdens. The error becomes small for X ∼ 0.4, which, for typical B values,
means rFT ∼ 2.5− 3.5 Å. Increasing rFT increases, as a cube, the number Kgrid of the grid
points to which each atom contributes and the CPU time.
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Extra errors in structure factors occur due to the substitution of the integral Fourier
transform by the discrete Fourier transform (DFT) using a finite regular grid. Increasing
the grid step improves the accuracy but increases Kgrid, again as a cubic function. When
using FFT [29], a compromise between accuracy and the computation time has been
discussed [28,30]. At conventional resolutions D ∼ 2− 3 Å, with the standard choice of
rFT ∼ 2.5− 3.5 Å and the grid step equal to D/4 or D/3, the two steps require CPU time of
the same order of magnitude, Tdensity ∼ TFT . Exact values, e.g., those shown in Section 2.5,
also depend on other parameters, for example, the relative unit cell volume per atom [31].

2.3. Schemes of Real-Space Refinement

Real-space refinement compares the model map of a density distribution with an
experimental one [11]. For an appropriate comparison, the former map should reproduce
the imperfections of the latter. The main sources of imperfections of the maps are their
limited resolution and an uncertainty in atomic positions. In MX, maps may also be
influenced by missed or downweighed reflections. Usually, at the stage of real-space
refinement, eventual experimental errors in the map values are neglected. Similar to
reciprocal-space refinement, different procedures can be envisaged to obtain a density map
from an atomic model.

First, following the principal scheme (Figure 1), given an atomic model, one generates
a respective model density and then applies two consecutive Fourier transforms. The
grid for the density should be sufficiently fine to assure accurate structure factors. A
similar number of calculations is required to obtain a gradient of a real-space score function
with respect to the atomic parameters [9]. In total, using this procedure makes real-space
refinement more time-consuming than the reciprocal-space one.

Instead, the model map can be calculated directly from an atomic model as a sum of
atomic contributions (blue arrows in Figure 1)

ρd(r) =
Natoms

∑
n=1

ρd
n(r− rn; Bn, D) . (6)

Here, ρd
n(r− rn; Bn, D) is no longer an atomic density but its image at a given resolution.

To realize such a procedure, one needs to express these images as a function, ideally an
analytic one, of the atomic coordinates, isotropic displacement parameter Bn, and the
resolution D. While both increasing the Bn value and decreasing the resolution somewhat
similarly blur the central peak of the atomic contribution, their effects are different at a
distance to the atomic center. Atomic images ρd

n(r; B, D) are oscillating functions. Their
central peak is surrounded by spherically symmetric waves of a decreasing amplitude,
known as Fourier ripples.

To avoid the difficulty of modeling atomic images, some programs [32–35] deal only
with the map values in the atomic centers, making the refinement of Bn values impossible.
Some authors model only the central peak [36,37] or take the exact atomic density instead
of its limited-resolution image [11]. To keep the ripples, the atomic images are either
precalculated for some grid of Bn values [38] or parametrized using a step approximation
to scattering functions [39,40].

2.4. Map as an Analytic Function

Fourier ripples are the result of the resolution truncation independent of how this
truncation has occurred, explicitly or implicitly. The effect of ripples coming from neighbor-
ing atoms is prominent at low and medium resolution; moreover, at subatomic resolution,
this effect can strongly bias density deformation maps [41]. The amplitude of these ripples
decreases, as a function of the distance to the center, much slower than the atomic density
itself. The number of atom contributions to a given point increases with the same rate,
giving an important cumulative effect of the ripple truncation [42]. For this reason, to
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calculate the maps accurately, atomic images should include at least a few Fourier ripples
before being cut out at some truncation distance rmap.

To model oscillating images, Urzhumtsev and Lunin [43] suggested decomposing
them into a weighted sum of spherically symmetric terms

Ω(x; µ, ν) =
1
|x|µ

√
1

4πν

[
exp

(
−4π2(|x| − µ)2

ν

)
− exp

(
−4π2(|x|+ µ)2

ν

)]
. (7)

Each such term represents a uniform distribution on the spherical surface of the radius
µ blurred with a Gaussian function with a parameter ν. Thanks to the features of function
(7), an image of a normalized virtual Gaussian atom (4), placed in the origin, with any
value of its atomic displacement parameter Bn and at any resolution D is

gd(r; bA; Bn, D) =
4π

3

M

∑
m=1

κ(m)Ω
(

r; µ(m)D, bA + Bn + ν(m)D2
)

. (8)

Here, µ(m), ν(m), and κ(m) are coefficients of the decomposition of the three-dimensional
interference function

3
sin(2π|x|)− (2π|x|)cos(2π|x|)

(2π|x|)3 ≈
M

∑
m=1

κ(m)Ω
(

x; µ(m), ν(m)
)

. (9)

into the sum over Ω(x; µ, ν) terms (shell decomposition) [43].
The number M of terms in (9) is defined by rmap. With (8), the resolution in (6) may

be individual for each atomic image, D = Dn. This value becomes a parameter of an
atomic model, characterizing how confidently Bn and rn values are found from the given
map. When an atomic density ρd

n(r, B, D) is represented by a few Gaussians, its image is a
respective weighted sum of (8), one per Gaussian.

We illustrated this latter option with Figure 3, which shows a simulated inhomogeneous-
resolution map. This map is directly calculated as (6)–(8) for a protein model of IF2 [44]
placed in a virtual unit cell in space group P1, similar to cryo-EM models. Here, the resolu-
tion was artificially assigned as 2 Å in the center of the molecule, increasing, as a function
of distance, up to 5 Å at its periphery.

Actually, the shell decomposition into a sum of term (7) can be applied to any spher-
ically symmetric oscillating function in space. In particular, an atomic image at a given
resolution D for any Bn can be directly represented as

ρd
n(r; Bn, D) =

4π

3

M

∑
m=1

C(m)Ω
(

r; R(m), Bn + B(m)
)

. (10)

where the coefficients R(m), B(m), and C(m) are calculated for an immobile atom and are
universal for all atoms of the given chemical type. Representation (10) reduces the num-
ber of terms in comparison with (8) and (9), and thus accelerates calculations while the
resolution becomes no more variable.



Int. J. Mol. Sci. 2022, 23, 12101 7 of 11Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 3. Map of an inhomogeneous resolution calculated in a single run. Map resolution varies 
from 2 Å around the molecular center (red sphere) to 5 Å at the periphery. Color arrows indicate 
the regions of a high resolution and small ADP (blue), high resolution and large ADP (magenta), 
low resolution and small ADP (grey), and low resolution and large ADP (red). Figure has been 
prepared using Pymol [45]. 

Actually, the shell decomposition into a sum of term (7) can be applied to any 
spherically symmetric oscillating function in space. In particular, an atomic image at a 
given resolution 𝐷 for any 𝐵௡ can be directly represented as 

𝜌௡ௗሺ𝒓; 𝐵௡, 𝐷ሻ = 4𝜋3 ෍ 𝐶ሺ௠ሻ𝛺൫𝒓; 𝑅ሺ௠ሻ, 𝐵௡ + 𝐵ሺ௠ሻ൯ெ
௠ୀଵ  . (10) 

where the coefficients 𝑅ሺ௠ሻ, 𝐵ሺ௠ሻ, and 𝐶ሺ௠ሻ are calculated for an immobile atom and are 
universal for all atoms of the given chemical type. Representation (10) reduces the number 
of terms in comparison with (8) and (9), and thus accelerates calculations while the 
resolution becomes no more variable. 

2.5. Comparison of Schemes of Real-Space Refinement 
Similar to the structure factor calculation, now we have two ways to obtain an 

accurate model map: a step-by-step numeric and a direct analytic. The former consists of 
three steps. First, 𝑇ௗ௘௡௦௜௧௬ time is required to calculate the exact density distribution on a 
regular and sufficiently fine grid, with each atom contributing within a sphere of a given 
radius 𝑟ி் . Second, FFT is applied to this function requiring 𝑇ிி்_ௌி  time. Finally, one 
more FFT is applied to the obtained Fourier coefficients to produce a map of the required 
resolution on a regular grid, which is usually coarser than the initial one, requiring 𝑇ிி்_௠௔௣ ≤ 𝑇ிி்_ௌி . The map errors become unacceptably large when a too large step ℎௗ௘௡௦௜௧௬ of the initial grid or a too short 𝑟ி் are taken. For conventional resolutions 𝐷~2 −3 Å, the standard values are ℎௗ௘௡௦௜௧௬~𝐷/3 − 𝐷/4 Å and 𝑟ி்~2.5 − 3.5 Å with no need for 
artificial manipulations with displacement parameters and increased 𝑟ி், which may be 
required for lower resolutions [28,30].  

The final map is calculated with the same step as the experimental one, usually ℎ௠௔௣~𝐷/2 − 𝐷/3 Å.  

Figure 3. Map of an inhomogeneous resolution calculated in a single run. Map resolution varies
from 2 Å around the molecular center (red sphere) to 5 Å at the periphery. Color arrows indicate the
regions of a high resolution and small ADP (blue), high resolution and large ADP (magenta), low
resolution and small ADP (grey), and low resolution and large ADP (red). Figure has been prepared
using Pymol [45].

2.5. Comparison of Schemes of Real-Space Refinement

Similar to the structure factor calculation, now we have two ways to obtain an accurate
model map: a step-by-step numeric and a direct analytic. The former consists of three steps.
First, Tdensity time is required to calculate the exact density distribution on a regular and
sufficiently fine grid, with each atom contributing within a sphere of a given radius rFT .
Second, FFT is applied to this function requiring TFFT_SF time. Finally, one more FFT is
applied to the obtained Fourier coefficients to produce a map of the required resolution on
a regular grid, which is usually coarser than the initial one, requiring TFFT_map ≤ TFFT_SF.
The map errors become unacceptably large when a too large step hdensity of the initial grid
or a too short rFT are taken. For conventional resolutions D ∼ 2− 3 Å, the standard
values are hdensity ∼ D/3 − D/4 Å and rFT ∼ 2.5 − 3.5 Å with no need for artificial
manipulations with displacement parameters and increased rFT , which may be required
for lower resolutions [28,30].

The final map is calculated with the same step as the experimental one, usually
hmap ∼ D/2− D/3 Å. The alternative, direct map calculation consists of a single step
requiring CPU time Tdirect. This value depends on the grid step hmap of the map, the same
as above, and on the truncation distance rmap for the atomic images. To obtain accurate
maps, this distance has been recommended to be kD/2, with k equal to 4 or 5, or a higher
integer [42]. The sum over Ω(x; µ, ν) should include the terms significantly contributing
up to this distance.

To compare the computational efficiency of the two ways to calculate the model maps,
we made a numeric experiment with the IF2 model [44] placed in a virtual unit cell with
the sides 80 × 120 × 100 Å in space group P1 remining a cryo-EM case. A conventional
five-Gaussian approximation to the atomic density was used [23]. We made calculations at
the resolution of 2 Å, with varying grid steps and truncation radii. We used the original crys-
tallographic FFT program [46] and our own fast-written rather non-optimized programs to
obtain the model density distributions and to calculate directly the limited-resolution maps.
The CPU time varies with the computer, compiler, and degree of the algorithm optimization.
Additionally, for the same grid, Tdensity and Tdirect can vary if the model contains more or



Int. J. Mol. Sci. 2022, 23, 12101 8 of 11

fewer atoms. This means that when comparing Tdensity + TFFT_SF + TFFT_map with Tdirect,
as obtained below, some margins should be considered.

Figure 4 shows CPU time, as a function of the grid step and truncation radius, for
the components of the three-step map calculation. Tdensity is near proportional to the
number of Gaussians in the approximation. For the given example, using a single-Gaussian
approximation, not used in practice, reduces the respective values by four (not shown).
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Figure 4. CPU time for the three-step map calculation for different grid steps expressed as a part
of the resolution D. (a) CPU time, in seconds, to calculate a density distribution for the test protein
model using different truncation distance rFT . (b) CPU time to calculate FFT on a grid as defined
in (a).

Figure 5 shows CPU time, as a function of the grid step and truncation radius rmap, for
the direct map calculation. We calculated the map for both options, when the resolution is
fixed and the simplified decomposition (10) is used, and for the variable-resolution option.
The latter multiplies CPU time roughly by four, as it was for the density calculation with
multi-Gaussians. One should note that when increasing rmap from 4 Å to 5 Å, we not only
increase the number of grid points to which each atom contributes but also increase the
number of terms in (8) and (10). Inversely, we reduce one term when shortening rmap to
3 Å, the distance of which is not recommended except at early refinement iterations [42].
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3. Discussion

Figure 6 compares CPU time for the different sets of parameter values eventually
applicable in practice, i.e., giving sufficiently accurate maps while not requiring excessive
time. The results are shown when the resulted map is calculated on the grid with the step
D/2, D/3, or D/4; the last group is not expected to be used at the refinement step and is
given for reference.
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Figure 6. CPU time, in seconds, for different values of parameters used to calculate the model
map. Multicolor columns represent the multi-step calculation with the green part for Tdensity, beige
for TFFT_SF, and red for TFFT_map. Index ‘D’ indicates the grid step for the density, as a part of
the resolution, D/3 or D/4; index ‘r’ value is equal to the truncation distance times ten. Blue and
variable-blue columns stand for Tdirect for the fixed-resolution and variable-resolution decompositions,
respectively, as indicated by ‘F’ and ‘V’ letters. The grid step of the resulted model map is equal to
(a) D/2; (b) D/3; and (c) D/4.

The direct map calculation gives the results roughly for the same time or faster than
the multi-step procedure, even when this gain is not of an order of magnitude. Using the
fixed-resolution image decomposition, especially with rmap = 4 Å for the chosen resolution
of 2 Å, is advantageous and can be used as a default option for real-space refinement. Using
rmap = 5 Å at the final refinement iteration is also acceptable and recommended.

A particularly important property of the suggested procedure is the possibility to
routinely calculate the maps of an inhomogeneous resolution from atomic models (Figure 3).
Figure 6 shows that such calculation still be computationally efficient when using rmap = 4 Å
and the output grid step D/2. Theoretically speaking, maps calculated on such grids con-
tain all information which is contained in the maps with a finer grid and, therefore, may be
sufficient for real-space refinement. Calculations of an inhomogeneous-resolution map on
a finer grid or with a larger truncation radius may make Tdensity larger than the total time
of the three-step calculation, but this is the price for the possibility to introduce and refine
individual atomic resolution Dn, and Figure 6 shows that this price is not excessive.

From a qualitative point of view, the mathematical features of (7) lead to a new concept
when the local resolution is associated with atoms. As a consequence, it can be included into
the list of the parameters to be refined and reported as the result of real-space refinement.
A feature of the particular map used for refinement is that it characterizes the confidence
of the atomic parameters. Another important point is that the discrepancy between the
experimental and the model maps becomes an analytic function of all these parameters,
and all necessary partial derivatives required for real-space refinement become analytic
functions as well.
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Concluding, the features discussed above make the real-space refinement of atomic
coordinates and atomic displacement parameters feasible without appealing to reciprocal-
space data and tools.
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