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Abstract: There is evidence that non-coding RNAs play significant roles in the regulation of nutrient
homeostasis, development, and stress responses in plants. Accurate identification of ncRNAs is
the first step in determining their function. While a number of machine learning tools have been
developed for ncRNA identification, no dedicated tool has been developed for ncRNA identification
in plants. Here, an automated machine learning tool, PINC is presented to identify ncRNAs in plants
using RNA sequences. First, we extracted 91 features from the sequence. Second, we combined the
F-test and variance threshold for feature selection to find 10 features. The AutoGluon framework
was used to train models for robust identification of non-coding RNAs from datasets constructed for
four plant species. Last, these processes were combined into a tool, called PINC, for the identification
of plant ncRNAs, which was validated on nine independent test sets, and the accuracy of PINC ranged
from 92.74% to 96.42%. As compared with CPC2, CPAT, CPPred, and CNIT, PINC outperformed
the other tools in at least five of the eight evaluation indicators. PINC is expected to contribute to
identifying and annotating novel ncRNAs in plants.

Keywords: plant; ncRNA identification; AutoGluon; tool

1. Introduction

RNA is the template that codes for the proteins required to create cellular functions.
RNA is structurally similar to DNA, but its function and chemical composition are fun-
damentally different. At a higher level, RNA is divided into two main groups: coding
RNA that accounts for approximately 2% of all RNAs, and non-coding RNA (ncRNA)
that accounts for the majority (>90%) of RNAs [1]. Non-coding RNA refers to all RNAs
that are transcribed from DNA but do not code for proteins. Additionally, ncRNA can be
categorized into two groups according to the size of the sequence: long non-coding RNAs
(lncRNAs) with sequences >200 nucleotides and small non-coding RNAs (sncRNAs) with
sequences shorter than 200 nucleotides [2]. In previous research, ncRNAs have frequently
been referred to as “useless genes” or transcriptional “noise” [3,4]. In contrast, a growing
number of experiments have demonstrated that ncRNAs play important biological roles
in a variety of biological processes, including gene regulation/expression, gene silencing,
RNA modification and processing, as well as multiple important roles in life activities [5–7].
Numerous plant-specific biological processes, including the regulation of plant nutrient
homeostasis, development, and stress responses, have been linked to ncRNAs [8–10]. MiR-
NAs and trans-acting siRNAs, for instance, contribute to leaf senescence in Arabidopsis;
miR164 and its target ORE1 control leaf senescence in Arabidopsis, and as miR164 expres-
sion declines, ORE1 expression eventually increases [11]. In addition, overexpression of
miR398b has been shown to decrease the transcript levels of genes encoding superoxide
dismutase (CSD1, CSD2, SODX, and CCSD), which resulted in the production of reactive
oxygen species (ROS) and increased rice resistance to Magnaporthe oryzae [12,13]. In recent
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years, to facilitate subsequent analyses and research of transcripts, ncRNA identification
has been one of the tasks that needs to be addressed. Numerous bioinformatics methods
and experiments have been developed for ncRNA identification and to evaluate their
functions [14,15]. Genomic SELEX, microarray analysis, and chemical RNA-Seq are the
most commonly used experimental techniques [16]; however, they are costly and time-
consuming. Therefore, bioinformatics may be a more effective means of addressing the
biological aspects of the problem.

Kong et al. developed the Coding Potential Calculator (CPC) in 2007 [17]. The CPC
selected a number of biologically significant features, including ORF quality, coverage,
and integrity. These features were incorporated into a support vector machine for coding
potential identity, but its performance was dependent on sequence comparisons. CPC
was revised in 2017 with the release of CPC2 [18]. CPC2 is faster and more accurate than
CPC, and, as an input to the SVM model, it uses ORF size and integrity, a Fickett score,
and the isoelectric point extracted from the original RNA sequence. CPC2 is a relatively
neutral tool, which makes it somewhat more applicable to transcriptomes of non-model
organisms. CPAT, developed by Wang et al. in 2013, is a logistic-regression-model-based
ncRNA identification tool that classifies ncRNAs and cRNAs based on features such as
ORF size and coverage, Fickett score, and hexamer score [19]. CNCI was proposed by
Liang et al. in 2013, and while it is also based on the same SVM classifier as CPC2, it uses
different features, categorizing ncRNA and cRNA based on ANT features [20]. CNIT is
an updated version of CNCI that was released in 2019. CNIT employs the more robust
integrated machine model XGBoost for classification [21]. Tong et al. introduced CPPred
in 2019 [22] as an SVM-based tool. This tool distinguishes between ncRNAs and coding
RNAs using the same ORF features as CPC2, as well as the isoelectric point, stability index,
gravity three peptide, hexamer score, CTD, and Fickett score features. A number of tools
have been published that can distinguish between ncRNA and coding RNA; however, the
tools have some limitations, for example, their application is mainly limited to vertebrates
and mammals. In addition, these tools rarely consider using plants for model training.
Most tools only use the model plant Arabidopsis, and rarely involve other non-model plants.
Moreover, since ncRNAs of animals are mainly transcribed by polymerase II, while ncRNAs
of plants are mainly transcribed by RNA polymerase II, IV, and V [23], and ncRNAs are
characterized by low-level expression and cross-species conservation [24], these tools for
ncRNA identification in animals cannot guarantee the reliability in plants. Therefore, it is
necessary to construct a powerful tool for ncRNA identification in plants.

Automatic machine learning (AutoML) is the process of applying machine learning to
real-world problems in an automated manner. Since 2013, frameworks have been developed
that have been based on the AutoML concept. AutoWEKA was the first AutoML frame-
work to emerge [25]; it automatically selected models and hyperparameters. Additionally,
H2O [26] and TPOT [27] were created. H2O is a JAVA-based framework that supports
multiple types of grid searches to identify the optimal parameters following the generation
of an integrated model. At its core, TPOT is a tree-based process optimization tool based
on a genetic algorithm. Today, more and more frameworks, such as AutoGluon [28] and
AutoKeras [29], have been developed based on the concept of AutoML. These frameworks
have also been applied to Alzheimer’s disease diagnosis [30], biomedical big data [31], and
additional bioinformatics fields [32].

In this experiment, we developed PINC, an AutoML-based instrument for the identifi-
cation of ncRNAs and cRNAs in plants. The AutoML framework does not require a great
deal of effort and time to optimize the model; it simply accepts the processed data as an in-
put, tunes and sets the framework’s parameters, and then outputs the model automatically.
Our experimental results include a number of significant contributions: (1) By combining
the F-test and variance threshold, 10 out of 91 features were identified as being able to
strongly distinguish between ncRNAs and coding RNA in plants. (2) Using the AutoML
framework, a neutral model for non-coding RNA identification was obtained. (3) We com-
bined the two previous points and developed a tool called PINC for ncRNA identification.
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After comparing PINC with the CPC2, CPAT, CNIT, and CPPred identification tools on
nine independent test sets to validate the performance of PINC, we discovered that PINC
performed exceptionally well on these independent test sets. This suggests that PINC is
a reliable method for ncRNA identification in plants. In addition, users can upload their
data for identification, which facilitates the study of plants that have received less attention.

2. Results
2.1. Training Setup

Once the features were selected, the models were tuned to find the best parameters,
and the results were validated using a five-fold cross-validation procedure. A benchmark
dataset of 4000 randomly selected data from each class was constructed for training and
validation. Meanwhile, to ensure the validity of the experiments, we repeated the above
experiments 100 times. As shown in Figure 1A, the highest accuracy of the 100 experiments
was 95.32% and the lowest was 94.52%, mostly distributed between 94.6% and 94.9%,
with very small fluctuations. For further proof, we averaged the accuracy of every fifth
experiment, as shown in Figure 1B, and the curve fluctuates even less. This result shows
that the randomly selected data is representative of the entire data set. Therefore, we took
4000 randomly selected data from each class as our baseline dataset.
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Figure 1. (A) Graph showing the accuracy of 100 experiments; (B) graph showing the average
accuracy of every 5th experiment out of 100 experiments.

2.2. Performance Comparison of the Feature Selection Methods

In this research, 91 features were filtered using four feature selection methods: F-
test, variance threshold, RF, and variance threshold combined with F-test (VT-F). These
feature selection methods were compared in order to assess their usefulness. These feature
selection methods use learning curves to continuously reduce the number of available
features and to select the most appropriate features. The maximum validation set accuracy
was 94.77 percent when the first 31 features were chosen using F-test filtering, and it was
94.29 percent when the first 25 features were chosen using variance threshold filtering.
For VT-F, features below the mean were first filtered out using a variance threshold, and
then the remaining features were filtered using the F-test, with a maximum accuracy of
95.25 percent when the first 10 features were selected. The evaluation of the three previously
described feature selection methods was based on the AutoGluon model. For RF, the range
of features was narrowed down based on the importance of the features, with the highest
accuracy of 93.27 percent when the first 21 features were selected, and the 21 features
were then fed into AutoGluon with an accuracy of 94.72 percent. In addition to accuracy,
we compared SE, F1, MCC, and SPC performance metrics. Table 1 demonstrates that the
method combining the F-test and variance threshold for feature selection outperformed
the other methods, and the 10 features it selected were GC content, score, cdsStop, cdsSize,
and T, C, GT, GC, ACG, and TAT frequencies. The experiments analyzed the distribution of
ncRNAs and coding RNAs on the dataset for these 10 features, and based on Figure 2, it
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can be seen that they play a significant role in the identification of discriminatory power.
In addition, we conducted a correlation analysis between the ten features selected for the
classification task. Figure 3 showed that, GC content had a weak correlation with the
other features. Score, cdsStop, and cdsSize showed a stronger correlation with the other
features. T, C, GT, GC, ACG, and TAT frequencies had the strongest correlation with the
other features.

Table 1. Comparing the performance of different feature selection methods.

SE SPC ACC MCC F1

F-test 99.49 90.18 94.77 89.95 94.93
VT 99.49 89.24 94.29 89.08 94.49

VT-F 99.79 90.7 95.27 90.91 95.49
RF 90.35 96.52 93.27 86.76 93.39

RF-AutoGluon 99.45 90.14 94.72 89.87 94.89

1 
 

 

Figure 2. Differential distribution of ten features in coding RNAs and ncRNAs.
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2.3. Comparison of Models

Regarding the validation set, in this study, we compared the five-fold cross-validation
results of four AutoML frameworks, AutoGluon, TPOT, H2O, and AutoKeras, to those
of three conventional machine learning models, i.e., random forest, SVM, and Naive
Bayes (Table 2). It is evident that, in general, conventional machine learning models are less
effective than AutoML; three of the four automated machine learning frameworks produced
more effective models than the random forest, the best performing conventional machine
learning model. AutoGluon achieved the best results for five of the eight evaluation metrics
within the AutoML framework: ACC, F1, MCC, NPV, and SE. H2O achieved the best results
for AUC, while Autokeras achieved the best results for PPV and SPC. It is evident that
the AutoGluon framework is more effective than the other frameworks, possibly because
AutoGluon employs per-variable embedding, which improves quality via gradient flow,
whereas the other frameworks merely apply the standard feed-forward architecture to
hot-coded data. The Autokeras effect, which is based on NAS that combines multiple
search strategies such as random search, grid search, etc., is only marginally weaker than
the AutoGluon effect. The goal of NAS is to reduce human intervention and to allow
the algorithm to design the neural network automatically, which consists of three key
components: the search space, the search strategy, and the evaluation strategy. However,
this process is typically very time-consuming. H2O had the highest AUC score, but its
overall performance was comparable to that of conventional machine learning models and
TPOT. H2O is a distributed machine learning platform based on the Java programming
language, unlike other AutoML frameworks. TPOT was the least effective AutoML and
the only framework with overall lower results than conventional machine learning models.
This is likely due to the genetic algorithm employed by TPOT, which tends to converge
on a locally optimal solution prematurely. Consequently, the comparison demonstrates
that the models created by the AutoGluon framework are superior to those created by the
other four automatic machine learning frameworks and the three conventional machine
learning models.

Table 2. Performance comparisons among five automated machine learning frameworks and three
conventional machine learning models.

Model ACC (%) F1 (%) AUC (%) MCC (%) NPV (%) PPV (%) SE (%) SPC (%)

AutoGluon 95.25 95.49 95.25 90.91 99.76 91.55 99.79 90.70
Naive
Bayes 86.97 87.96 86.93 74.83 79.22 94.65 82.16 93.63

SVM 53.14 13.67 53.37 16.93 99.33 0.07 91.65 51.51
RFC 92.10 92.26 92.09 84.26 90.45 93.73 90.86 93.47
H2O 92.98 93.38 96.80 86.60 86.98 98.98 88.38 98.84
TPOT 86.14 86.19 86.15 72.29 86.18 86.10 86.28 86.00

Autokeras 93.70 94.06 94.57 87.95 88.10 99.25 89.39 99.15

2.4. Comparison Tools against Plant Datasets

To evaluate the accuracy of PINC in ncRNA and coding RNA identification, we com-
pared it to CPC2, CPAT, CNIT, and CPPred. We compared the identification accuracy for
nine plant species from four databases, GreeNC, CANTATA, RNAcentral, and Phytozome,
using five different tools. It is evident from the results shown in Figure 4 that our tool
has the highest degree of precision for all nine plants. The large fluctuation of CPPred
indicates that it has poor generalization performance, whereas the other three tools have
some stability. However, it can be seen that the identification accuracy of PINC is greater
than that of the other three tools, indicating that our tool performs the best among the dif-
ferent plant species. To compare the performances of these five tools further, we used eight
metrics: sensitivity (SE), specificity (SPC), accuracy (ACC), F1-score, PPV, NPV, MCC, and
AUC to evaluate and compare the five tools for these nine independent test sets (Table 3).
We plotted the ROC curve (Figure 5); it can be seen that the ROC curve for PINC differs
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from the other tools. A true positive rate is rapidly achieved (1.0) at the cost of a relatively
high false positive rate. Therefore, we have also plotted PR curves (Figure 6) to further
illustrate the performance of PINC. The results showed that the PR curve of PINC did
not fluctuate markedly and had a decreasing trend when the threshold was greater than
0.8. Meanwhile, PR curves illustrated that Precision and Recall values of five plants (Cicer
arietinum, Manihot esculenta, Nymphaea colorata, Sorghum bicolor, and Zea mays) were higher
than the other tools at the same threshold. All those results showed that PINC had the
superior performance for distinguishing ncRNAs from coding RNAs. Solanum tuberosum
outperformed the other tools in seven of the eight evaluation metrics and at least five
of the remaining eight test sets, namely, SE ACC, F1, NPV, and MCC. The high Se score
indicates that the probability of missing is small; therefore, PINC is the best choice for
ncRNA identification. For the specificity SPC score, only one dataset was higher than the
other tools, with four datasets performing best on CNIT and two datasets performing best
on CPC2 and CPAT, respectively. However, the difference between the SPC of PINC and
the SPC of the other tools was not large, and all tools had high performances above 86.99%.
Among the five tools, PINC was the most effective for ncRNA identification in the nine
plants. This indicates that our tool has a strong generalization to plants, which is crucial for
non-model plants.
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Table 3. Nine plants’ performance indicators were compared using five tools.

Species Tool SE (%) SPC (%) ACC (%) F1 (%) PPV (%) NPV (%) MCC (%) AUC (%)

Cicer
arietinum

PINC 98.76 92.46 96.42 97.20 95.70 97.72 92.34 95.61
CPC2 76.01 92.91 84.45 83.04 91.50 79.42 69.92 96.50
CPAT 89.27 88.75 89.01 89.05 88.84 89.18 78.02 96.26
CNIT 65.65 94.67 80.10 76.81 92.54 73.23 62.99 94.36

CPPred 71.24 87.70 79.46 77.65 85.32 75.24 59.75 89.72
Gossypium

darwinii
PINC 98.61 86.84 92.74 93.16 88.29 98.41 86.08 92.72
CPC2 85.25 90.62 87.94 87.60 90.09 86.00 75.99 95.23
CPAT 95.03 84.02 89.53 90.07 85.61 94.42 79.54 93.65
CNIT 63.23 90.73 76.98 73.31 87.21 71.16 56.13 90.67

CPPred 80.78 86.59 83.89 82.36 84.00 83.80 67.59 91.66
Lactuca
sativa

PINC 98.80 87.00 92.99 93.47 88.68 98.60 86.54 92.90
CPC2 70.14 90.96 80.56 78.30 88.58 75.30 62.49 93.56
CPAT 87.24 82.50 84.84 85.03 82.94 86.90 69.79 92.00
CNIT 51.95 92.24 72.03 65.08 87.09 65.59 48.26 89.79

CPPred 64.39 84.06 74.23 71.42 80.16 70.24 49.42 84.12
Manihot
esculenta

PINC 99.82 87.12 94.45 95.40 91.36 99.72 88.99 93.47
CPC2 87.82 85.14 86.48 86.66 85.53 87.48 72.99 92.15
CPAT 93.55 81.73 87.64 88.33 83.66 92.68 75.81 91.13
CNIT 62.73 86.18 74.46 71.06 81.94 69.82 50.33 91.30

CPPred 87.5 80.08 84.79 85.19 83.00 86.78 69.68 88.97
Musa

acuminata
PINC 99.22 87.22 93.23 93.61 88.61 99.11 87.08 93.22
CPC2 90.12 88.99 89.62 90.6 91.09 87.83 79.02 94.71
CPAT 71.69 88.82 80.25 78.41 86.54 75.79 61.42 91.84
CNIT 65.08 88.28 76.66 73.63 84.77 71.6 54.85 90.14

CPPred 76.44 86.1 81.27 80.33 84.64 78.48 62.84 89.24
Nymphaea

colorata
PINC 98.82 91.94 95.44 95.66 92.69 98.70 91.08 95.38
CPC2 82.69 93.85 88.28 87.57 93.06 84.45 77.03 97.08
CPAT 82.9 91.39 87.14 86.57 90.59 84.24 74.56 95.10
CNIT 55.21 92.38 73.79 67.81 87.88 67.34 51.27 92.24

CPPred 84.89 86.59 85.74 85.62 86.36 85.14 71.49 91.56
Solanum

tuberosum
PINC 99.73 84.53 92.99 94.06 89.00 99.60 86.41 92.13
CPC2 67.23 86.99 77.11 74.60 83.79 72.63 55.31 90.61
CPAT 86.69 78.61 82.65 83.31 80.18 85.54 65.51 89.47
CNIT 58.76 88.49 73.62 69.02 83.63 68.20 49.49 88.12

CPPred 60.64 81.75 71.20 67.80 76.87 67.50 43.38 81.24
Sorghum

bicolor
PINC 99.9 87.69 95.79 96.92 94.11 99.79 90.69 93.79
CPC2 94.38 87.32 90.85 91.16 88.16 93.95 81.91 96.42
CPAT 86.65 88.71 87.68 87.55 88.46 86.93 75.38 95.71
CNIT 75.04 85.34 80.19 79.10 83.63 77.40 60.71 92.89

CPPred 91.81 85.04 88.42 88.80 85.98 91.21 77.02 94.28

Zea mays PINC 99.71 90.38 96.30 97.16 94.74 99.45 92.12 95.04
CPC2 90.81 90.88 90.85 90.84 90.87 90.82 81.70 96.63
CPAT 76.52 91.37 83.96 82.64 89.82 79.63 68.67 95.07
CNIT 65.24 90.10 77.69 74.49 86.78 72.24 57.15 92.50

CPPred 84.83 87.92 86.38 86.16 87.54 85.29 72.80 93.05
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3. Discussion

In the field of bioinformatics, automated machine learning methods are now beginning
to be implemented. In our experiments, we compared four automatic machine learning
frameworks that are good matches for the more recently introduced frameworks and
the older frameworks. For all the automatic machine learning frameworks, we used
the same preprocessing methods to process the data as a raw input, then, we adjust the
parameters of each framework in order to find the most suitable parameters, and finally
we output the model. In general, we consider automatic machine learning frameworks to
be black boxes and do not examine frame-specific methods for automatically optimizing
parameters and integrating the model for direct output. Automated machine learning
frameworks automatically optimize models, thereby reducing the time and effort devoted
by researchers and, to a certain extent, allowing non-experts in machine learning to solve
bioinformatics problems.

Utilizing high-quality features is one way to improve performance in machine learning.
It is necessary to find features that are suitable for ncRNA identification in the study because
providing or discovering good features is one of the most important tasks in machine
learning. We extracted k-mer frequency features, coding sequence features, and other
features during our experiments. Despite the fact that traditional k-mer features have been
used in a variety of studies, such as gene identification [33], subcellular localization [34],
and sequence analysis, it has been demonstrated that the k-mer frequency is highly effective
at detecting ncRNAs [35]. Many tools have also used features related to coding sequences
and some other features [36]. Ninety-one extracted features were filtered using our feature
selection method; the filtered features successfully identified ncRNAs and it was the most
precise tool, to date, for ncRNA identification in all plant species.

For ncRNA identification, there are additional factors to consider, such as the trade-
off between sensitivity and specificity. At present, the number of ncRNAs is small as
compared with the number of coding RNAs identified. To prevent ncRNAs from being
missed, high sensitivity is important. Currently, CPAT, CNCI, CPPred, and CPC2 are less
sensitive and focus more on identifying coding RNAs, but this requires an additional
step to screen for non-coding RNAs. In contrast, the high sensitivity of PINC reduces the
necessity for additional filtering processes. Moreover, PINC demonstrated a higher rate of
accuracy than any other tool among the nine plants evaluated. Although some tools for
non-coding RNA identification have reached over 85 percent accuracy, increased accuracy
is not meaningless, as large amounts of data have become available due to advances in
sequencing technology, and it is possible that for every one percent increase, hundreds of
additional correct RNAs can be identified. Here, PINC achieves a high degree of ncRNA
identification precision. This may be because the model in PINC adopts the stacking
strategy, while other tools use single models such as SVM, logistic regression, and xgboost.
For a long time, the performance of combining the predicted results of multiple models has
been better than that of a single model, and the variance has been significantly reduced [37].
In the experiment, we selected the default basic model in the AutoGluon framework. Here,
the basic model is trained separately, and then the prediction of the basic model is used
as a feature to train the stacked model. Stacked models can improve the shortcomings
of a single-model prediction and can take advantage of their interactions to improve the
prediction ability [38]. In addition, it can be seen from the feature level distribution map
described earlier that these features also have strong discrimination ability.

In addition, we plan to continue research in two areas: first, deep learning, which
can automatically extract features, reduce the time required to extract features, and can
improve the accuracy of cross-species recognition. In contrast, we should consider machine
learning techniques to gain a deeper understanding of these RNA types and to investigate
their biological significance. In addition, for plants, only a handful of ncRNA functions
have been identified; once these functions are identified, new mechanisms can be explored
and new features can be added to PINC to improve our tool further.
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4. Materials and Methods

Figure 7 depicts the tool’s overall workflow, which consists of three steps: (1) dataset
construction, (2) feature extraction and selection, and (3) model construction.
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To create the dataset, RNA sequences were obtained from the GreeNC, CANTATA,
RNAcentral, and Phytozome databases. Secondly, feature selection methods were used to
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extract and filter features. Finally, machine learning models were compared to determine
the most effective model for ncRNA identification.

4.1. Dataset Construction

To construct the experimental dataset, we considered two factors. On the one hand,
the diversity of plants and the abundance of annotation data were taken into consideration.
On the other hand, considering the balance of the data, we chose four plants as our training
and validation datasets (Table 4), which included two model plants, i.e., Arabidopsis thaliana
and Oryza sativa, in addition to two non-model plants, i.e., Glycine max and Vitis vinifera. We
used ncRNAs as the positive sample data and coding RNAs as the negative sample data in
the dataset. Negative samples were obtained from Phytozome.v13 [39]. Positive samples
were obtained from three public databases, including GreeNC [40], CANTATA [41], and
RNAcentral [42]. For all data, first, we used cd-hit-est-2D in the CD-hit tool [43] to eliminate
redundant sequences between the test and training sets at a threshold of 80% [22,35,44,45].
Second, in order to balance the datasets, random selections of 4000 data were made for
each plant, of which 2000 were positive samples and 2000 were negative samples. The
positive sample data consisted of 1800 lncRNAs and 200 sncRNAs, and the negative sample
data consisted of 2000 mRNAs (Table 5) [18,46]. Thus, the baseline dataset consisted of
a total of 16,000 protein sequences from four plants. Meanwhile, we analyzed the length
distribution of the positive and negative datasets, as shown in Figure 8. The median length
of the coding RNAs data was 1029 and the data were mostly concentrated in the range of
0–2000. The ncRNA data had a median length of 321 and the data were mostly concentrated
in the range of 0–1000. Finally, we proportionally divided the dataset into 70% training
data and 30% validation data. Additionally, nine independent test sets were created for
nine plants. (Table 6): Cicer arietinum, Gossypium darwinii, Lactuca sativa, Manihot esculenta,
Musa acuminata, Nymphaea colorata, Solanum tuberosum, Sorghum bicolor, and Zea mays. To
eliminate redundant sequences, the data for these nine independent test sets were taken
from the four databases mentioned above and filtered at a threshold of 80%.

Table 4. Training set data for the model.

Species Noncoding Coding

Total Used Total Used

Arabidopsis
thaliana 45,910 2000 27,416 2000

Glycine max 8599 2000 71,358 2000
Oryza sativa 11,338 2000 42,189 2000
Vitis vinifera 4301 2000 55,564 2000

Total 70,148 8000 196,527 8000

Table 5. Detailed description of the training set data.

Size

Non-coding RNAs Long ncRNAs 1800
Small ncRNAs 200

Coding RNAs mRNAs 2000
Overall 4000
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Table 6. Plant dataset for testing.

Species Coding Noncoding Total

Cicer arietinum 2099 2099 4198
Gossypium darwinii 5622 5622 11,244

Lactuca sativa 4682 4682 9364
Manihot esculenta 2808 2808 5616
Musa acuminata 2059 2063 4122

Nymphaea colorata 1708 1708 3416
Solanum tuberosum 8282 8282 16,564

Sorghum bicolor 8657 8657 17,314
Zea mays 7406 7406 14,812

4.2. Feature Extraction and Selection

This experiment initially extracted 91 features (Table 7). The 86 features of k-mer
frequency, sequence length, and GC content were obtained using the Python script program
(https://github.com/midisec/PINC, accessed on 22 August 2022); the five features of Score
and CDS were obtained using the UCSC Genome txCdsPredict program in the browser
(http://hgdown-load.soe.ucsc.edu/admin/jksrc.zip, accessed on 11 November 2014) [47].
These features can be classified into three categories: k-mer frequency features, CDS-related
features, and other features. The k-mer frequency describes all possible frequencies for
the presence of k nucleotides in a sequence, based on methods that have initially been
implemented in whole genome shotgun assemblers. When k = 1, each nucleotide can
contain a maximum of four A, C, G, or T. When k equals 2, the calculation involves the
dinucleotide frequency (i.e., AA, AT, AG, AC, . . . , TT) and a total of 42= 16 species. When
k = 3, the calculated three-nucleotide frequencies (i.e., AAA, AAT, AAG, AAC, . . . , TTT)
are computed for a total of 43= 64 species. By combining 1–3-mer frequencies for a total
of 84 features, k-mer frequencies can capture rich statistical information about negative
profiles in plant genomes, according to some research [48]. CDS is the result of encoded
proteins that are interchangeable with ORF in some ways, but differ slightly [49]. The
features Score, cdsStarts, cdsStop, cdsSize, and cdsPercent comprise the second major
category of features. Score is the predicted protein score; if it is >800, there is a 90% chance
that it is a protein, and if it is >1000, it is virtually certain that it is a protein. cdsStop is the
end of the coding region in the transcript, cdsSize is cdsStop minus cdsStart, and cdsPercent
is the ratio of cdsSize to the total sequence length. Other features include sequence length
and GC content, which are widely used for ncRNA identification. Sequence length indicates
the total length of the sequence. GC content is the ratio of guanine and cytosine to the other
four DNA bases.

https://github.com/midisec/PINC
http://hgdown-load.soe.ucsc.edu/admin/jksrc.zip
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Table 7. All features considered in this paper.

Features Description Source

k-mer frequency
1–3 k-mer = 84

PINC1 nt = 4 features; 2 nt = 16 features
3 nt = 64 features

Score Values >800 are likely to be a protein, >1000 must
be protein txCdsPredict

cdsStarts NT position of CDS starts from the transcript and is
based on zero txCdsPredict

cdsStop nt position for the CDS end txCdsPredict
cdsSizes cdsStop-cdsStart txCdsPredict

cdsPercent (cdsStop + cdsStart)/total nt sequence size txCdsPredict
Sequence length Total nucleotide length of the sequence PINC

GC content C+G
A+C+G+T PINC

There may be redundant features among the 91 features listed above; therefore, we
employed feature selection to filter them. For the feature selection method, redundant
features were filtered out using a combination of variance threshold filtering and the F-test.
Variance threshold filtering is used to filter features based on their own variance. The
smaller a feature’s variance, the less significant its variation, and these insignificant features
are eliminated. F-test is a method to determine the relationship between each feature and
label. The GC content, Score, cdsStop, cdsSize, and T, C, GT, GC, ACG, and TAT frequencies
were among the 91 features identified by this combined feature selection method. Finally,
these 10 features were used as the model input.

4.3. Model Construction

Machine learning (ML) is currently utilized in a variety of fields to solve numerous
difficult problems. Nevertheless, model construction for machine learning requires human
intervention. Manual intervention is required in the feature extraction, model selection, and
parameter adjustment processes, which require professionals to optimize and can waste
a significant amount of time and resources if errors occur. To reduce these repetitive devel-
opment costs, the concept of automating the entire machine learning process, automatic
machine learning, has been conceived (AutoML). The definition of AutoML is that it is
a combination of automation and ML [50]. From an automation standpoint, AutoML can
be viewed as the design of a framework to automate the entire machine learning process,
allowing models to automatically learn the correct parameters and configurations without
manual intervention. From the standpoint of machine learning, AutoML is a system that
is highly capable of learning and generalizing given data and tasks. Recent research on
AutoML has focused on the neural network architecture search (NAS) method, which
employs a search strategy to test and evaluate a large number of architectures in a search
space, and then selects the one that best meets the objectives of a given problem by max-
imizing the adaptation function. However, the NAS faces two obstacles to the method:
first, the amount of computation is excessive, resulting in increased resource consumption.
Second, instability may vary each time and the search structure is altered, resulting in
varying precision. In our experiments, we compared four automatic machine learning
frameworks, AutoGluon, H2O, TPOT, and Autokeras, with three conventional machine
learning models, SVM, RF, and Naive Bayes. We determined that AutoGluon was the
superior framework, and therefore it was used as the classifier. AutoGluon contains 26 base
models including random forest, XGBoost, and a neural network, and in our experiments,
we used all the base models for training the model [51]. AutoGluon is an open-source
machine learning training framework for tabular data. It is a framework that attempts to
avoid a hyperparametric search as much as possible, training multiple models concurrently
and weighting them using a multi-layer stacking strategy to obtain the final output.
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4.4. Performance Evaluation

Several widely used performance metrics were evaluated in the experiments, including
sensitivity (SE), specificity (SPC), accuracy (ACC), F1-score, positive predictive value (PPV),
negative predictive value (NPV), and the Matthews correlation coefficient (MCC). To
evaluate the performance of the classifier numerically and visually, the area under the
curve (AUC) and ROC curves were also used. These definitions are as follows:

Sensitivity(SE) = TP
TP+FN

Speci f icity(SPC) = TN
TN+FP

Accuracy(ACC) = TP+TN
TP+FN+FP+TN

F1 = 2×TP
2×TP+FP+FN

PPV = TP
TP+FP

NPV = TN
TN+FN

MCC = TP×TN−FP×FN√
(TP+FN)×(TP+FP)×(TN+FP)×(TN+FN)

TP represents true positives, the number of correctly identified positive samples,
while FN, TN, and FP represent false negatives, true negatives, and false positives, the
number of incorrectly identified positive samples, correctly identified negative samples,
and incorrectly identified negative samples, respectively.

5. Conclusions

Various tools have been developed to distinguish between ncRNAs and coding RNAs,
the majority of which have used scientific computational methods to differentiate sequences
and to accelerate the annotation of various human genes. In addition to nucleotides with
high discriminatory power in 1–3-mer, we also extracted other features such as the se-
quence’s definition, composition, and function. Moreover, we combined F-test and variance
threshold filtering and found that the combined method was superior to the individual
methods of F-test and variance threshold filtering. A number of automated machine
learning and traditional machine learning frameworks were also used for modeling, in
which the validation set was carefully evaluated and analyzed, including the use of cross-
validation on the validation set available, with AutoGluon performing the best. Then, we
compiled these into a tool called PINC and compared it to nine other tools on nine test sets,
demonstrating that PINC performed better than other tools on all of these species. For user
convenience, a user-friendly web (http://www.pncrna.com/, accessed on 22 August 2022)
has been developed, where the output can be obtained simply by entering a FASTA se-
quence or file. Overall, PINC has excellent predictive properties, permits cross-species
plant identification, and is a practical and user-friendly tool.
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