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Abstract: Microalgal lipids are essential for biofuel and dietary supplement production. Lipid
engineering for higher production has been studied for years. However, due to the complexity of lipid
metabolism, single-gene engineering gradually encounters bottlenecks. Multiple gene regulation
is more beneficial to boosting lipid accumulation and further clarifying the complex regulatory
mechanism of lipid biosynthesis in the homeostasis of lipids, carbohydrates, and protein metabolism.
Here, three lipid-related genes, DOF, LACS2, and CIS, were co-regulated in Chlamydomonas reinhartii
by two circles of transformation to overexpress DOF and knock down LACS2 and CIS simultaneously.
With the multiple regulations of these genes, the intracellular lipids and FA content increased by 142%
and 52%, respectively, compared with CC849, whereas the starch and protein contents decreased
by 45% and 24%. Transcriptomic analysis showed that genes in TAG and FA biosynthesis were
up-regulated, and genes in starch and protein metabolism were down-regulated. This revealed that
more carbon precursor fluxes from starch and protein metabolism were redirected towards lipid
synthesis pathways. These results showed that regulating genes in various metabolisms contributed
to carbon flux redirection and significantly improved intracellular lipids, demonstrating the potential
of multiple gene regulation strategies and providing possible candidates for lipid overproduction
in microalgae.

Keywords: DOF-type transcription factor; long-chain acyl-CoA synthetase; citrate synthase; gene
overexpression; antisense knockdown; transcriptome analysis; triacylglycerol; Chlamydomonas reinhardtii

1. Introduction

Microalgae lipids show great potential in biorefinery for edible oil, functional foods,
biofuel, and animal feed production [1,2]. Lipid metabolism is a very sophisticated and
dynamic metabolic process that involves several pathways, including fatty acid (FA) syn-
thesis, TAG synthesis, and FA oxidation, which are interconnected. For example, FAs
can directly participate in TAG synthesis as side chains, and they can also be oxidized
to provide acyl-CoAs as substrates for lipid biosynthesis. In addition, lipid metabolism
is closely associated with carbohydrate and protein metabolism to establish a complex
regulation network of carbon and nitrogen substance metabolism [3].

C. reinhardtii, a model photoautotrophic microalga, is a promising material for trans-
genic engineering because of its high photosynthetic efficiency, fast growth rate and diverse
transformation systems [4]. Lipid engineering for higher production has been widely
studied in C. reinhardtii regarding FA synthesis, Kennedy pathway, transcription factors,
and NADPH generation [5]. FA synthesis, the first step of lipid formation, occurs in the
chloroplast of C. reinhardtii using acetyl-CoA as a substrate. Acetyl-CoA carboxylase (ACC),
malonyl-CoA ACP transacylase (MAT), 3-ketoacyl-ACP synthase (KAS), 3-ketoacyl-ACP
reductase (KAR), 3-hydroxyacyl-ACP dehydrase (HD), and enoyl-ACP reductase (ENR)
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are the key enzymes involved in this process [5]. Glycerolipids are synthesized stepwise
in the Kennedy pathway through the catalysis of glycerol 3-phosphate acyltransferase
(GPAT), lysophophatidic acid acyltransferase (LPAT), phosphatidic acid phosphatase (PAP),
and diacylglycerol acyltransferase (DGAT). Because transcription factors can control the
expression of multiple genes, recently, they were considered as important targets for lipid
engineering. Transcription factor crDOF [6], CrMYB1 [7], and BZIP1 [8] in C. reinhardtii
were demonstrated to be associated with lipid synthesis.

Efforts have been made in the overexpression of key genes in FA synthesis, Kennedy
pathway or transcription factors, and by the knockdown of competing pathway genes to
enhance lipid production. For example, overexpressing an endogenous DOF transcription
factor (CrDOF) regulates carbon and nitrogen substance metabolism in plant cells, resulting
in a total of 126.01 µg/mg of intracellular FAs that increased by 23.24% in C. reinhardtii [6].
Similarly, overexpression of soybean DOF increased the total lipids by 46.4~52.9% and
1.8~2.3-fold in Chlorella ellipsoidea and C. reinhardtii, respectively [9,10]. Overexpression of
CrDGTT4 in C. reinhardtii resulted in a 2.5-fold increase in TAG during phosphate starvation
condition [11]. On the other hand, knockdown of long-chain acyl-CoA synthetase (LACS2)
which can active FA into CoA thioesters increased the lipid content by 55% [12]. Knockdown
of the citrate synthase (CIS1), a rate-limiting enzyme in the tricarboxylic acid cycle which is
predicted to be located in the mitochondria [13], rose the TAG by 169.5% in C. reinhardtii [14].

Due to the complexity of the lipid metabolism network, multiple gene regulation
always performs better than regulation of a single gene. For example, co-expression of
GPAT1 and LPAT1 increased TAG content 2.3 fold, and co-expression of GPAT and DGAT2
caused a 3.6-fold increase in total lipids in Phaeodactylum tricornutum [15]. Additionally,
combined overexpression of GPAT, LPAT, and DGAT in Neochloris oleoabundans led to a
4.5-fold increase in TAG [16]. However, multiple gene regulation of lipid biosynthesis in
C. reinhardtii is still scarce for technical reasons.

In this study, multiple gene regulations in lipid, carbohydrate, and protein metabolism
were conducted by iterative circles of gene transformations to redirect the intracellular car-
bon fluxes. Furthermore, transcriptome analysis was used to elucidate the effect of multiple
regulations on lipid metabolism networks and to provide potential gene candidates for
industrial application of microalgal lipid production.

2. Results
2.1. Co-Regulation of DOF, LACS2, and CIS1 in C. reinhardtii

Co-regulation of several genes in C. reinhardtii is challenging work, but it can be
a promising method for lipid accumulation due to its complicated metabolic network.
Referring to earlier publications, we focused on overexpression of crdof and knockdown of
cracs2 and cis1 for rational control of lipid metabolism [6,12,14]. To achieve this, iterative
circles of gene transformations were conducted. Endogenous DOF was transformed into
wild type (WT) in the first circle to generate the DOF strain. In the second circle, the cracs2
and cis1 of the DOF strain were silenced by RNAi plasmid pMaa7 XIR/LACS2-CIS1IR.
Finally, 150 strains were randomly picked, cultured, and stained by BODIPY. Algae strains
showed varied fluorescence intensities because of the random integration of exogenous
genes in C. reinhardtii. Among them, 33 strains exhibited higher fluorescence intensities
than WT (Figure S1). After PCR verification, eight strains showed expected results. The top
three strains (DLC-4, 7, and 8) with high fluorescence intensities were subjected to qRT-PCR
analysis (Figure S2). Only the mRNA expression levels of CIS and LACS2 in DLC-4 showed
decreased patterns. Thus, DLC-4 was selected for further analysis.

DLC-4 showed slightly lower growth and cell density at the stationary phase than WT
(Figure 1D). The transcription abundances of cracs2, cis1, and crdof in DLC-4 were deter-
mined and are shown in Figure 1. The mRNA levels of crdof increased by 29%, whereas
those of cracs2 and cis1 were reduced by 23.8% and 38.5%, respectively, compared with
those of WT. After heat shock (HS), the mRNA levels of crdof rose by 121%, whereas those
of cracs2 and cis1 decreased by 53.3% and 46.9%. These results showed that two transfor-
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mation circles had achieved multiple gene regulation in C. reinhardtii. As expected, the
overexpression of crdof and knockdown of cracs2 and cis1 were completed in transgenic
strain DLC-4.
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Figure 1. The mRNA expression patterns of crdof, cracs2, and cis1 in the DLC-4 and WT when strains
were treated with HS (HS) and without HS (NH). (A) The expression levels of LACS2. (B) The
expression levels of DOF. (C) The expression levels of CIS1. Statistical significance (one-way ANOVA)
is represented by asterisks (*, **, and *** indicate a difference at p ≤ 0.05, p ≤ 0.01. and p ≤ 0.005,
respectively). (D) Growth curves of the DLC-4 and WT treated with heat shock (HDLC-4 and HWT)
or without heat shock (DLC-4 and WT) at the mid-log phase. Error bars depict SD.

2.2. Lipids, Carbohydrate, and Protein Variety in DLC Strains

With the success of multiple gene regulations in DLC strains, it is necessary to further
analyze their intracellular metabolite changes. Consequently, intracellular neutral lipid
profiles of the DLC-4 strain from day 4 to day 8 with or without HS treatment were analyzed.
As shown in Figure 2A, the DLC-4 strain showed obvious higher levels of neutral lipids
than WT throughout the whole culture time, regardless of whether it was HS treated.
Additionally, the neutral lipids of all strains increased gradually and reached a peak on day
6. Thus, a detailed lipid analysis was conducted on day 6. At that time, the neutral lipids
of the DLC-4 strain showed a 1.2-fold and 0.7-fold increase over those of WT, respectively,
when strains were treated by HS and not. Meanwhile, the TAG droplet distributions of
strains were observed by confocal microscope and are shown in Figure 2B. The number and
size of lipid droplets in the DLC-4 were both remarkably increased compared with those in
WT. Significantly, the DLC-4 presented the strongest fluorescent signal after HS treatment.
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CIS1 in C. reinhardtii significantly improved TAG content. 

Figure 2. Intracellular neutral lipid contents in the DLC-4 and WT when they were treated with
HS (HDLC and HWT) or without HS (DLC and WT) at the mid-log phase. (A) The lipid profile of
strains from day 4 to day 8. Results are shown as the fold changes of the fluorescence intensities of
strain DLC-4 compared with those of the WT strain after BODIFY staining. Error bars depict SD.
(B) The distribution of intracellular neutral lipids in the DLC-4 and WT. Lipid droplets were stained
by BODIFY505/515 and visualized by a confocal microscope. Each scale bar indicates 10 µm.

Microalgae prefer to accumulate more lipids under nutrient-deprivation conditions
(ND). Thus, the intracellular lipids of strains under ND were further separated through
TLC and quantified by GC-MASS. As expected, the TAG and FA bands of strains under
ND were substantially larger than those of strains under normal conditions in the TLC
plate (Figure 3A) Additionally, the TAG and FA bands of the DLC-4 were larger than those
of WT under both normal conditions and ND. This indicated that the DLC-4 synthesized
more TAG and free FAs than WT. The TAG fraction analysis by GC-MASS also showed
that HDLC-4 displayed 8.3% and 21% more TAG than the WT with HS and without
HS, respectively (Figure 3B). In addition, TAG contents of strains were also determined
by BODIPY staining. The DLC-4 exhibited 82% higher fluorescence intensities than WT
under ND. After HS, the DLC-4 showed 142% higher fluorescence intensities than WT
(Figure 3C). These results suggested that multiple gene regulation of DOF, LACS2 and CIS1
in C. reinhardtii significantly improved TAG content.
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Figure 3. Analysis of the TAG in the DLC-4 and WT when they were treated with HS (HDLC and
HWT) or without HS (DLC and WT). (A): Lipids were separated on a TLC plate and visualized with
iodine. The lipids from strains in the nitrogen-replete and nitrogen-deprived conditions are shown
separately in the left and right panels. (B): The TAG content of the DLC-4 and WT separated from
TLC. +N: nitrogen-replete condition, −N: nitrogen-deprived condition. (C): The TAG content of
DLC-4 and WT under nitrogen-deprived conditions when strains were treated with HS (HS) and
without HS (NH). TAG was stained by BODIPY and measured by a microplate reader. Statistical
significance (one-way ANOVA) is represented by asterisks (*, **, and *** indicate a difference at
p ≤ 0.05, p ≤ 0.01, and p ≤ 0.005, respectively). Error bars depict SD.

Total intracellular FA profiles were also analyzed by GC-MASS. The total FA of the
DLC-4 and WT were 159.9 mg/g and 105.0 mg/g, and 133.9 mg/g and 102.6 mg/g dry
cell weight (DCW) when strains were treated with and without HS, respectively. Thus, the
titer and productivity of DLC-4 for lipids were 187.1 mg/L, and 32.2 mg/(L·d). Compared
with WT, the total lipids of the DLC-4 increased by 52% and 31% with and without HS
treatment, respectively (Figure 4A). However, the major lipids were still C16:0, C18:1, and
C18:3 (Figure 4B,C). Moreover, the unsaturated FAs of the DLC-4 rose by 34% and 57%
compared with WT when they were treated with HS and without HS, respectively. The
content of FAs C16:1, C18:1, and C18:3 was increased significantly (p < 0.01) in the DLC-4,
with increases of 48%, 60%, and 33%, respectively, without HS. Similarly, the content of FAs
C16:1, C16:4, C18:1, C18:2, and C18:3 increased significantly (p < 0.01) in the DLC-4, with
increases of 104%, 36%, 90%, 49%, and 43%, respectively after HS. These data indicate that
multiple gene regulation promoted the accumulation of the unsaturated FAs and the total
lipids in C. reinhardtii.
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Figure 4. Total FA and lipid profiles in the DLC-4 and WT. (A) Total FAs of the DLC-4 and WT
when strains were treated with HS (HS) and without HS (NH). (B) The profiles of the total lipids
in the DLC-4 and WT when strains were treated with HS. (C) The profiles of the total lipids in the
DLC-4 and WT when strains were treated without HS. Statistical significance (one-way ANOVA) is
represented by asterisks (* and ** indicate a difference at p ≤ 0.05 and p ≤ 0.01, respectively). Error
bars depict SD.
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Carbohydrate, protein, and lipid metabolisms are closely connected to provide energy
for the organism. As exhibited in Figure S3, after HS, the starch and protein contents in
DLC-4 were 61.9 mg/g and 124.6 mg/g DCW, respectively, which showed a 45% and
24% decrease compared with those in WT, respectively. At the same time, there was no
significant difference in total carbohydrate content. These changes indicated the redirection
of carbon flux in carbohydrate and protein metabolism.

2.3. Differentially Expressed Genes (DEGs) in DLC Strain

To discover the molecular mechanism of the multiple gene regulation in algal cells,
transcriptome analysis of DLC-4 and WT after HS treatment was conducted. Two libraries
were generated, and RNA sequencing was performed on the BGISEQ-500 platform. In this
step, 49.19 and 49.77 million raw reads were obtained for WT and DLC-4, respectively. After
filtering the raw data, 43.48 and 44.33 million clean reads were mapped to the C. reinhardtii
reference genome. Approximately 93.02% of the sequences of WT could be mapped to the
genome, and nearly 90% of the sequences had unique alignment positions on the reference
genome; it was the same case with DLC-4. In both strains, 17379 genes were identified,
among which 2756 genes were differentially expressed. Compared with WT, the number of
up- and down-regulated DEGs in DLC-4 were 2130 and 626, respectively.

2.4. Distributions of DEGs among KEGG Pathways

KEGG pathway classification indicated that the DEGs were clustered into 21 KEGG
pathways. The top five metabolism pathways containing the most DEGs were carbohy-
drate metabolism (127 DEGs), amino acid metabolism (66 DEGs), metabolism of cofactor
and vitamins (64 DEGs), energy metabolism (48 DEGs), and lipid metabolism (46 DEGs,
Figure 5A). KEGG enrichment analysis of lipid metabolism showed that DEGs were en-
riched in the biosynthesis of unsaturated FAs, glycerophospholipid metabolism, glyc-
erolipid metabolism, FA metabolism, FA elongation, and FA degradation (Figure 5B). To
further understand the metabolic flux changes resulting from multiple gene regulations in
the DLC-4, DEGs enriched in FA metabolism, triacylglycerol biosynthesis, and carbohydrate
metabolism were focused on.

DEGs involved in the synthesis of acetyl-CoA, the main building block for de novo
FA synthesis, are pyruvate decarboxylase (PDC), phosphofructokinase (PFK), pyruvate
kinase (PYK), and pyruvate carboxylase (PYC). The PDC, PFK, and PYK are up-regulated,
and PYC is down-regulated in the DLC-4. In the FA synthesis pathway, critical genes
in the FA synthase complex, such as β-ketoacyl-acyl carrier protein synthase (KASI and
KASII) and 3-ketoacyl-acyl carrier protein reductase (KAR), were up-regulated in the
DLC-4. In the TAG synthesis pathway, phospholipase A2 (PLA2), lysophospholipase A2
(LYPLA2), phosphatidic acid phosphatase 2 (PAP2), diacylglycerol acyltransferase (DGAT),
and phospholipid: diacylglycerol acyltransferase (PDAT) were all also up-regulated in the
DLC-4. Meanwhile, ∆12 fatty acid desaturase and acyl carrier protein desaturase (ADD)
involved in unsaturated FA synthesis were up-regulated in DLC-4. Furthermore, several
DEGs converting TAG into free FAs, such as triacylglycerol lipase 2 (LIP2) and glycerol-ester
acyl hydrolase 1 (GEA1), were found up-regulated in the DLC-4. This potentially enhanced
the recycle rate of FAs, therefore profoundly accelerating the redirection of carbon flux
towards lipid metabolism.

Four starch synthase (SS) genes were down-regulated in the carbohydrate metabolism,
and α-amylase (α-AMY), crucial for amylolysis, was up-regulated in HDLC-4. Furthermore,
cis1 was down-regulated in support of the knockdown of cis1 in HDLC-4. These data
indicate that carbohydrates, predominantly starch, were inhabited under the control of
multiple gene regulation. In amino acid metabolism, branched-chain amino acids (BCAA)
play an essential role in the homeostasis of TAG biosynthesis [17]. Five BCTA genes
involved in BCAA catabolism were up-regulated in HDLC-4.
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Figure 5. KEGG pathway classification and enrichment of DEGs from DLC vs. WT. (A) KEGG
pathway classification of DEGs. (B) KEGG enrichment of DEGs involved in the lipid metabolism.
The Q value ranges from 0 to 0.3. A Q value closer to zero suggests more considerable enrichment.
Pathways with Q values≤ 0.05 were defined as significantly enriched pathways for the DEGs. (C) The
clustering heatmap of DEGs related to lipid metabolism. For the clustering heatmap, normalized
counts were rescaled between −3 and 3; clustering was based on Pearson correlation.
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As mentioned above, the results of transcriptomic analyses provided applicable proof
to indicate that more carbon precursors were redirected towards lipid metabolism from
carbohydrate and protein metabolism under the regulation of DOF, LACS2, and CIS1,
in accordance with the notable decrease in starch and protein content and remarkable
improvement in TAG and FA content (Figure 3).

2.5. The Expression Levels of DEGs: Real-Time Quantitative PCR

To validate the DEGs data, the expression levels of six genes (ACCD, FAT1, DGAT1,
DGTT4, PAP2, and PDAT1) of DLC-4 and WT were analyzed by qRT-PCR. Under HS treat-
ment, the expression levels of all genes in DLC-4 showed a significant increase compared
with those in WT (Figure 6). Our transcriptome analysis is consistent with this qRT-PCR,
indicative of the reliability of the transcriptome data. Furthermore, when strains were not
treated with HS, the expression levels of ACCD, FAT1, DGAT1, and PAP2 in the DLC-4
were also higher than those in WT. These data indicate that the effects of multiple gene
regulation are relatively stable.
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3. Discussion

Gene overexpression, gene knockdown, and gene knockout are three conventional
gene regulation modes which have already been performed in C. reinhardtii. However,
studies are still focused on single-mode regulation or single-gene regulation. Multiple-gene
regulations and multiple-mode regulations are still sometimes challenging. In terms of
gene regulation mode, gene overexpression has been well developed with diversified tool
boxes [18], and gene knockdown based on artificial miRNA [19] or RNAi has also been
widely used [20]. However, gene knockout needs to be improved. The knockout efficiency
is not high, and the available target gene is limited [21,22]. When further considering
the number of regulations of genes, multiple gene overexpression is common. Using 2A
peptide [23] or tandem expression cassettes, 2–4 genes can be normally expressed [24].
Multiple-gene knockouts need to be developed. Co-knockout of wdtc1 and ppx1 has only
recently been reported [25]. Multiple-gene knockdown using tandem inverted repeats can
achieve co-knockdown of two genes [26]. This paper used two rounds of iterative transfor-
mation to co-regulate three genes in two modes. In the first round, DOF was overexpressed;
in the second round, CIS and LACS2 were knocked down by tandem inverted repeats. This
strategy can couple gene regulation modes and increase the number of regulations of genes,
and provide useful technology for complex metabolic pathway study.

DOF, LACS2, and CIS are involved in multiple metabolic pathways in C. reinhardtii.
Knockdown of LACS2, a gene involved in β-oxidation, increased the total FA by 45%
to 130 mg/g DCW [12]. Silencing the CIS gene could up-regulate PAP2 and DGAT and
increase TAG accumulation by 169.5% [14]. Overexpression of DOF could increase total
FAs by 23% to 125 mg/g DCW. The neutral lipid measured by BODIPY staining increased
twofold [6]. In this study, CIS and LACS2 were silenced, and DOF was overexpressed
simultaneously. Multiple gene regulation reduced protein and starch contents by 24.0% and
45%, respectively. In comparison, the contents of total FAs increased by 52% to 159.9 mg/g,
and the neutral lipid increased by 142%. The content of intracellular unsaturated fatty acids
also increased significantly; for example, the content of c16:1 increased by 104%. These
data suggested that multiple regulations have effects on single regulations.

Starch and lipids, two energy storage substances of C. reinhardtii, compete on carbon
flow with the same carbon precursor glyceraldehyde-3-phosphate (G3P). The metabolisms
of starch and lipid biosynthesis are highly related to each other. In ND condition, C. rein-
hardtii preferred to accumulate starch in the early stage of treatment and lipids in the middle
and late stage of treatment [27,28]. Thus, starch is thought to be degraded to contribute
to the carbon source for lipid accumulation, and enzymes related to starch degradation,
such as amylase and starch phosphorylase, can trigger the lipid synthesis [29,30]. Here,
transcriptome analysis showed that the mRNA levels of genes in starch metabolism in the
DLC-4 were changed. For example, the expression levels of the starch synthesis gene (SS)
decreased, and the expression levels of the α-amylase increased. In addition, the starch in
DLC-4 showed a 45% decrease. These data indicate the carbon flow from starch to lipid.
Recently, some transcription factors were found to control the switches between starch
and lipid synthesis [31]. Phosphorus Starvation Response 1 (PSR1) transcription factor
was demonstrated to be a lipid to starch switch. Overexpression of PSR1 can increase the
starch but reduce the lipid [32]. Meanwhile, the DOF transcription factors were reported be
a starch to lipid switch, which can enhance the lipid but reduce starch [6,33]. Here, after
overexpression of crDOF and knockdown of CIS1 and LACS2 in DLC-4, the changes of
lipid and starch in this strain showed similar results to the previous study. Meanwhile, the
transcriptomic data and the qRT-PCR both showed that ACCD, FAT1, DGAT1, and PAP2
in the DLC-4 were unregulated. These genes were also found to be unregulated in the
strains overexpressing DOF alone [6,33]. Thus, we hypothesize that ACCD, FAT1, DGAT1,
and PAP2 maybe the target genes of DOF. In addition, branched-chain amino acids (valine,
leucine, isoleucine, etc.) can provide precursors and ATP for TAG synthesis [17], and
transcriptome analysis revealed a rise in genes for branched-chain amino acid synthesis,
indicating that there may be more branched-chain amino acids in the DLC-4 to support



Int. J. Mol. Sci. 2022, 23, 10176 10 of 14

TAG synthesis. The above results show that the combinational regulation changed the
carbon flow of engineered algae, and more energy and carbon flow were devoted to the
synthesis of the lipids.

There are two TAG synthesis pathways in C. reinhardtii; one is catalyzed by DGAT
using acyl-CoA and diacylglycerol, and the other is catalyzed by PDAT using phospholipids
and diacylglycerol. Two types of DGAT, DGATI and DGAT II, containing one gene (DGAT1)
and five genes (DGTT1-DGTT5), respectively, were found in C. reinhardtii [34]. DGTT1,
DGTT2, and DGTT 3 showed little effect on lipid synthesis, whereas DGAT1 and DGTT4
could increase TAG [35]. The transcriptome and qRT-PCR results after HS also showed that
the expression of these two genes increased significantly. We also found that the content of
C18:1 increased by 36%, possibly caused by the increase in DGTT4 expression due to C 18:1
being the preferred substrate of DGTT4 [11].

Based on the above data, we proposed the schematic diagram of lipid metabolism of
C. reinhardtii after multi-gene regulation (Figure 7). We believe that the intracellular carbon
flow is altered under the co-regulation of the above genes. On the one hand, more carbon
flows towards FA de novo synthesis and the TAG assembly. On the other hand, the carbon
flow to starch and protein synthesis is reduced, causing a decrease in the intracellular starch
and protein.
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4. Materials and Methods
4.1. Strain, Vectors, and Culture Condition

C. reinhardtii CC849 was obtained from the Chlamydomonas Resource Center and used
as WT strain. E. coli Trans-T1 was used for regular DNA manipulation. Vector pJD-crdof
was used for DOF gene overexpression with HSP70A-RBCS2 promoter. Vector pMaa7
XIR/LACS2-CIS1IR was applied to conduct RNAi of LACS2 and CIS1 genes [36]. Two
vectors were transformed into WT to perform multiple regulations, and the successful
transformant was named DLC.

Algae were cultured in tris-acetate-phosphate (TAP) medium under continuous light
(60 µmol m−2 s−1) at 25 ◦C. Nitrogen deprivation was performed in a TAP-N medium
(KCL substituted for NH4CL) when cells were grown to the mid-logarithmic phase. To
induce overexpression of crdof, the DLC-4 was grown to 1 × 105 cells/mL in TAP and
subjected to heat shock (40 ◦C for 30 min). Then cells were continuously cultured at 25 ◦C
for another 48 h.
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4.2. Plasmid Construction and Transformation

The DOF, LACS2, and CIS genes used in this paper were cloned using primers listed in
Table S1. DOF expression plasmid pJD-crdof was constructed by inserting crdof into vector
pJD-luc under the control of the HSP70A-RBCS2 promoter. LACS2- and CIS1-silencing
plasmid pMaa7 XIR/LACS2-CIS1IR was created by concurrent reverse insertion of cracs2,
cis1, and the 3′-untranslated region of Maa7 into vector pMaa7 XIR under the control
of the RBCS2 promoter. Transformation of plasmids pJD-crdof and pMaa7 XIR/LACS2-
CIS1IR into C. reinhartii was performed by the glass bead agitation method. Hygromycin
(10 µg/mL), L-Tryptophan (1.5 mmol/L), and 5-fluoroindole (5 µmol/L) were applied to
the selection of the transformants. To validate successful transformants, genomic DNA
from the algae cells was extracted and used as a template for PCR amplification of the
LACS2-CIS1 fragment in the pMaa7 XIR/LACS2-CIS1IR vector.

4.3. Quantitative Reverse Transcription-PCR (qRT-PCR)

Total RNA was isolated by Takara RNAiso Plus Kit according to its instructions, and
cDNA was synthesized by Takara Reverse Transcriptase M-MLV using oligo-dT as the
reverse primer according to its protocol. With KOD SYBR Qrt-PCR Mix (TOYOBO), one µL
of cDNA was used for qRT-PCR, based on its instructions, on an ABI Prism 7900 Sequence
Detection System.

4.4. Neutral Lipid Analysis

Intracellular neutral lipid content was determined by BODIPY staining [6]. In this step,
200 µL of cells at approximately 1.5 × 106 cells/mL concentration were washed twice by
0.01 mol/L PBS buffer and incubated with two µL BODIPY 505/515 for 10 min in darkness.
After washing with the same volume of 0.01 mol/L PBS, the fluorescence intensity was detected
by a microplate reader (Molecular Devices, Sunnydale, CA, USA) with excitation at 480 nm
and emission at 510 nm. Meanwhile, the BODIPY stained cells were also observed by a laser
scanning confocal microscope (Carl Zeiss, Oberkochen, Germany) with excitation at 488 nm
and emission at 550 nm, to visualize the distribution of the intracellular lipid droplets.

4.5. Lipid Extraction and Thin-Layer Chromatography (TLC)

Total lipids were extracted according to Bligh with a slight modification. Briefly,
10 mg dry cells were incubated with boiling ethanol for 5 min. Cells were disrupted by
0.5 g glass beads (0.5 mm) for 10 min at 4 ◦C. The cellular lysate was collected. Then,
3 mL of chloroform/methanol (1:2, v/v) was added with shaking for 1 min, then 1 mL of
chloroform and 1.8 mL of ddH2O were added with shaking for 20 s. The chloroform layer
was transferred to a new tube. Two rounds of addition extraction were performed using
500 µL of chloroform. The chloroform layer was pooled and dried in N2, and lipids were
dissolved in 100 µL of chloroform.

Ten µL of lipid samples were spotted onto a TLC plate (silica gel 60, F254) with
soybean oil as a control. Chromatography was conducted in hexane/ether/acetic acid
(70:30:1, v/v/v) mixture. Lipid bands were visualized by iodine vapor. TAG bands were
scraped from the plate and mixed with 1 mL of chloroform/methanol (1:2, v/v). TAG was
then extracted and dried in N2.

4.6. Gas Chromatography Mass Spectrometry (GC-MASS) Analysis

A TAG extraction or 5 mg dry cells were used for quantitative analysis. Samples were
incubated with 1 mL of 2 mol/L NaOH-CH3OH solutions with shaking for one hour. After
saponification at 75 ◦C for 15 min, samples were mixed with 1 mL of 4 mol/L HCl-CH3OH
and incubated at 75 ◦C for 30 min. Then, three times, 1 mL of hexane was used for FA
methyl ester (FAME) extraction. After filtration, the FAMEs were dried in N2 and dissolved
in 500 µL of methylene chloride. FAMEs were analysed by GC-MASS according to the
previously reported method [6]. The gas chromatography column was VF-23 ms with a size
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of 30.0 m × 320 µm × 0.25 µm. The Thermo Polaris Q mass spectrometry was equipped
with an HP-5MS column, 30 mm × 0.25 mm, film thickness = 0.25 µm.

4.7. Carbohydrate and Protein Analysis

Algae in the stationary phase were harvested and washed with ddH2O. Then, cells
were weighed after lyophilization. The total carbohydrate was analyzed according to a
previous report [37]. Briefly, 0.1 mg dry cells were resuspended in 1 mL ddH2O in a tube.
Then, 1 mL of freshly prepared 6% phenol and 5 mL of H2SO4 were added to the tube. The
sample was incubated at room temperature for 10 min and 30 ◦C for 20 min. After proper
dilution, absorbance at 485 nm was measured and compared with a standard glucose
concentration curve. The protein content was determined using the BCA method. Then,
0.1 mg algal cells were resuspended in 1 mL of 15 mM KH2PO4 (pH 4.5) and 2 mL of
20% NaOH in a tube. After boiling for 10 min, the tube was centrifuged at 1000× g for
10 min. The supernatant was used for protein content determination.

4.8. Transcriptome Sequencing and Data Analysis

Transformant and WT were cultured under the same conditions. The total RNA was
isolated by a Takara RNAiso Plus Kit. The mRNA library and paired-end sequencing were
performed by Beijing Genomics Institute (Shenzhen, China) using an Illumina HiSeq 4000.
The transcriptome was assembled using Trinity and annotated using Trinotate. Differential
expression genes were identified using HCE 3.5. They were classified for the categories
using the annotation of GO and KEGG pathways with the DAVID. The transcriptomic
data have been deposited into CNGB Sequence Archive (CNSA) [38] of China National
GeneBank DataBase (CNGBdb) with accession number CNP0003418.

4.9. Statistical Analysis

All experiments were conducted in three biological replicates. The data are shown as
the mean values. Significance was analyzed by the two-tailed Student’s t-test; *, **, and ***
represent p < 0.05, p < 0.01, and p < 0.05, respectively.

5. Conclusions

In this study, crdof was successfully overexpressed whereas cracs2 and cis1 were si-
lenced in C. reinhardtii. Total intracellular FAs and TAG elevated remarkably, but starch and
protein content decreased, which suggested promoting lipid metabolism and redirecting
carbon flux from carbohydrate and protein metabolism pathways. These results were
further supported by transcriptome and qRT-PCR analysis of some rate-limiting step genes
in lipid, carbohydrate, and protein metabolism. Serving as references, our results provide
gene candidates for lipid improvement in other algae species.
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