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Abstract: Sunflower (Helianthus annuus L.) is an appropriate crop for current new patterns of green
agriculture, so it is important to change sunflower receptacles from waste to useful resource. However,
there is limited knowledge on the functions of compounds from the essential oils of sunflower
receptacles. In this study, a new method was created for chemical space network analysis and
classification of small samples, and applied to 104 compounds. Here, t-SNE (t-Distributed Stochastic
Neighbor Embedding) dimensions were used to reduce coordinates as node locations and edge
connections of chemical space networks, respectively, and molecules were grouped according to
whether the edges were connected and the proximity of the node coordinates. Through detailed
analysis of the structural characteristics and fingerprints of each classified group, our classification
method attained good accuracy. Targets were then identified using reverse docking methods, and the
active centers of the same types of compounds were determined by quantum chemical calculation.
The results indicated that these compounds can be divided into nine groups, according to their
mean within-group similarity (MWGS) values. The three families with the most members, i.e., the
d-limonene group (18), α-pinene group (10), and γ-maaliene group (nine members) determined
the protein targets, using PharmMapper. Structure fingerprint analysis was employed to predict
the binding mode of the ligands of four families of the protein targets. Thence, quantum chemical
calculations were applied to the active group of the representative compounds of the four families.
This study provides further scientific information to support the use of sunflower receptacles.

Keywords: chemical space network; sunflower (Helianthus annuus L.); essential oils; fingerprint;
clustering

1. Introduction

Sunflower (Helianthus annuus L.) belongs to the Compositae family (Asteraceae), which
originated in South America and spread to China in the seventeenth century [1–3]. Sun-
flower has been widely cultivated in northeast China. After the seeds are used for oil
extraction, sunflower receptacles have largely been discarded [4–6], which not only wastes
resources, but also pollutes the environment. Sunflower receptacles contains many active
compounds, including flavonoids [7,8], alkaloids [9,10], and chlorogenic acid [11,12]. How-
ever, there are few existing studies on the essential oil of sunflower receptacles. Therefore,
it is in line with new pattern of green agriculture to change discarded sunflower receptacles
from waste into a valuable resource.

Essential oils of sunflower are rich in unsaturated fatty acids, such as oleic and linoleic
acids (ω-6), and are considered good for human health [13]. Essential oils of sunflower
receptacles can be obtained by hydrodistillation [14].

In our previous studies, 101 compounds from the essential oils of sunflower (Helianthus
annuus L.) receptacles were identified by gas chromatography-mass spectrometry (GC-
MS) from three varieties of sunflowers, i.e., LD5009, SH363, and S606 [15,16]. The results
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showed that eupatoriochromene may be one of the most important chemical compounds
of sunflower receptacles for reducing uric acid. However, the functions of the other
compounds of essential oils from sunflower receptacles remain unknown.

Chemical space network (CSN) techniques map chemical molecules into a visual
space according to certain characteristics including molecular structure. CSN was initially
designed as a coordinate-free threshold network using the Tanimoto coefficient as a continu-
ous similarity measure [17]. However, it can only reflect the connection between molecules
and not the relative distances of molecules in space. Several studies have proposed more
novel CSNs, such as the TV-CSN [18] and Kamada–Kawai network [19], the latter attempt-
ing to introduce coordinates into the CSN. Compared to the traditional threshold CSN, in
this study we added t-SNE dimensionality reduction to determine the spatial coordinates,
to adapt to component clustering in mixtures with large differences in composition, such
as essential oils.

Protein–ligand interaction fingerprints (IFPs) are binary one-dimensional represen-
tations of the three-dimensional structures of protein–ligand complexes, encoding the
presence or absence of specific interactions between the binding pocket amino acids and
the ligand. IFPs have successfully been applied for post-processing molecular docking
results for G protein-coupled receptor (GPCR) ligand binding mode prediction and virtual
ligand screening [20].

The purpose of this study was to compare the differences in the chemical compounds of
essential oils from sunflower receptacles. Over 100 compounds were clustered by mapping
into a CSN, and representative compounds from each group were selected. The target
molecules of each group were identified using reverse docking to the group’s representative
compound. The active centers of the same type of compounds were determined by quantum
chemical calculation. This study can provide reliable clues for the application of these
compounds, and further scientific information to support the use of sunflower receptacles,
which can reduce the waste of sunflower receptacles and increase the incomes of farmers.

2. Results
2.1. Cluster Analysis

The molecular similarities are shown for 104 compounds (Figure 1). Due to the
complex composition of essential oils, similarity between molecules was found to be
generally low, but the similarities between some molecules were obvious, as in the long-
chain compounds (the upper left corner of the heatmap). A whitish area was observed
in the heatmap (hierarchical clustering is shown in red), representing a large cluster of
endocyclic compounds. Due to the special structure of ceertain molecules, their similarities
with the other 103 molecules are all less than 0.45, so they did not participate in network
generation. Finally, 91 of the 104 compounds had at least one edge with a similarity greater
than 0.45, indicating their participation in the network generation.

The two-dimensional coordinates of 104 molecules calculated by t-SNE dimensionality
reduction can be viewed in Table S2, and were used to help generate the CSN.

According to the edge data in Figure 1 and the node coordinate data in Table S2, we
grouped molecules based on similarity greater than 0.45 and proximate node location.
After filtering out groups whose total number of molecules was less than three, 73 of 91
compounds remained clustered into nine classes; see Figure 2 and Tables S3–S11. We
can see that many related molecules were not grouped together because they were too
far apart, which is exactly as expected after refining the groups. The α-pinene group, d-
limonene group, α-muurolene group, and γ-maalineen group were more or less connected;
traditional methods have difficulty distinguishing molecules that link multiple groups, but
after introducing the coordinates obtained by dimensionality reduction, the four groups
were visually separated. This offered preliminarily proof that our method is feasible for
analysis of essential oils with large differences in components.
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Next, we analyzed the structural characteristics of each group classification. The
linoleic acid group mainly comprised long chain compounds. The α-Pinene group com-
pounds were found to be mainly bicyclic monoterpenes and their oxygen-containing
derivatives. Many structural types of bicyclic monoterpenes exist, including pinene, camp-
ene, carene, and others. Among these, the pinene and camphene types are the most
stable. The first nine examples in Table S3 are pinene type, with a bridged ring skeleton
of 2,6,6-trimethylbicyclo [3.1.1] heptane, pinene, rosinol, myrtenol, and verbenol. All are
typical pinene-type compounds. The last example is a camphene type, with a bridged
ring skeleton of 1,7,7-trimethylbicyclo [2.2.1] heptane. The camphene type compounds
mostly exist as oxygen-containing derivatives, such as 6-camphenone. D-limonene group
compounds are mainly monocyclic monoterpenes and their derivatives including formates,
ketones, alcohols, except cis-Australinol, β-bisabolene, two monocyclic sesquiterpenes, and
enols. γ-Maalineen group compounds are mainly tricyclic sesquiterpenes and their oxygen-
containing derivatives, including acetates, lactones, and alcohols, except for trans-valerian
terpene alcohol acetates, which are acetates of bicyclic sesquiterpenes. The compounds of
epimanoly oxide group are mainly oxygen-containing derivatives of tricyclic or tetracyclic
diterpenes, and include acids, alcohols, ketones, formate esters, and ethers. The group
can be divided into four categories. The first category is tetracyclic diterpene with kau-
rine diterpenes as the core skeleton, like kauri aldehyde, kauri acid, H-Kauran-16-ol, and
enantio–kaurane diterpenes. They are natural products with many important biological
activities including antibacterial, anti-inflammatory, and anti-tumor effects [21]. The second
category is ethyl isopimaric acid with tricyclic diterpene–pimarane diterpene as the core
skeleton. The third category is ribenone and 13-epimanoyl oxide with tricyclic diterpenes–
helichryllane diterpenes (sclareolide) as the core skeleton. Finally, the ricyclic-diterpenes
and long-leaf aldehydes have more complex bridged ring structures. The compounds of
the benzene–butoxymethyl group are alcohols, ethers, and dibutyl esters containing ben-
zene rings. The compounds of trans-sabinol group compounds are bicyclic monoterpene
compounds and their oxygen-containing derivatives, including alcohols and formate esters,
all of which have bicyclic structure of 4-methyl-1-isopropylbicyclo [3.1.0] hexane. The
compounds of desmethoxtencecalin share the structure of benzo-α-pyran, i.e., α-chromene.

In this study, the three families with the most members (the d-limonene (18), α-pinene
(10), and γ-maaliene groups (nine) were designated the protein targets for further study.
Although the linoleic acid group had 10 compounds, they have been found in many plants
and well researched [22], so the linoleic acid group was not considered in the next study.

2.2. Reverse Docking, Structure Fingerprint, and Quantum Chemical Calculation Analysis
2.2.1. d-Limonene Group

There were 18 compounds in the d-limonene group, including d-limonene, the repre-
sentative compound of the group (MWGS value 0.42), as shown in Table S3. The greater the
MWGS value, the more closely a compound is related to other compounds in this family,
and this was used to designate the predicted target protein in PharmMapper [23,24]. The
predicted target was human placental estrone/DHEA sulfatase (ES, PDB ID is 1P49), which
catalyzes the conversion of sulfated steroid precursors such as dehydroepiandrosterone
sulfate (DHEA-S) and estrone sulfate to the free steroid [25]. Estrone sulfatase (ES) is one
of the key enzymes involving in maintaining high levels of estrogen in breast tumor cells.
The presence of ES in breast carcinomas has been related to breast cancer and X-linked
ichthyosis, a disease of the skin [26]. Figure 3A shows the LUMO (lowest unoccupied
molecular orbital) orbits of the d-limonen. LUMO is important for the establishment of the
chemical bond and is integral in the sphere of spectroscopy. It depends on all coordinates
of a system, providing a more efficient sampling method than a geometrical reaction co-
ordinate, to better reflect the activities of the compound. It can be seen that the LUMO is
concentrated on the propylene group, which will obtain electrons more easily and become
chemically more active.
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(C) Active residues around d-limonene docking with ES.

Figure 3B,C show d-limonene group molecules binding in the active pocket of the ES,
and d-limonene interacting with amino acid residues of ES. Subsequently. The interactions
of the receptor to ligand can be determined in several contact types: Pi-orbital (PO), alkyl-pi
(Ak), H-donor (HD), H-acceptor (HA), and sulfur bond (SF). Figure 4 revealed that L74,
V101, V486, C489 and F488 interacted with most of the molecules in this group and hence
may be important residues for ligand-binding to ES.
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2.2.2. α-Pinene Group

There were 10 compounds in the α-pinene group. α-Pinene, the representative com-
pound of the α-pinene group (MWGS value 0.47) was used for the predicted target protein
in PharmMapper (Table S4). The most popular target protein of α-pinene group was
vitamin D binding protein (DBP, PDB ID is 1J78) [27], which has many important func-
tions, containing and transporting vitamin D3 metabolites, binding the globular actin, and
transferring fatty acids to functions in the immune system.

Figure 5A shows the LUMO orbits of α-pinene. It can be seen that the LUMO was
expressed at the C=C group, which can gain electrons more easily and become more
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chemically active. Figure 5B,C shows the binding pose of ten compounds to DBP, and the
representative compound of α-pinene group binding to the target protein. From Table 1,
it can be seen that 10 compounds had interaction with the pi-orbital of F36 and alkyl-pi
interaction with V88 and M107, respectively. Hence, F36, V88, and M107 played important
roles in α-pinene group compounds’ binding to DBP.
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residues around α-Pinene binding to DBP.

Table 1. Fingerprint of the α-pinene group.

No. F36:PO L47:Ak S76:HD S79:HD P87:HA P87:Ak V88:Ak H89:HD H89:PO M107:Ak L110:Ak

51 1 0 0 1 1 0 1 0 1 1 0
19 1 1 0 0 0 0 1 1 0 1 0
31 1 0 0 0 0 0 1 0 1 1 1
14 1 1 0 0 0 1 1 0 1 1 0
39 1 0 0 1 0 0 1 0 1 1 0
40 1 0 0 1 0 0 1 0 1 1 0
42 1 1 1 0 0 1 1 0 1 1 0
27 1 0 0 1 0 0 1 0 1 1 1
32 1 0 0 0 0 0 1 0 1 1 1
1 1 1 0 0 0 1 1 0 1 1 0

PO, pi-orbitals; Ak, alkyl; HD, H-donor; HA, H-acceptor.

2.2.3. γ-Maaliene Group

There were nine compounds in the γ-maaliene group. γ-Maaliene, the representative
compound of the γ-maaliene group (MWGS value is 0.42, see Table S6), was used as the
ligand to predict target protein with PharmMapper. The most popular target protein of
the γ-maaliene group was kinesin-like protein KIF11 (KSP, PDB ID is 2FKY), a motor
protein required for establishing a bipolar spindle during mitosis [28]. KSP inhibitors have
potential as general antiproliferative agents useful for the treatment of cancer.

Figure 6A shows LUMO orbits of the γ-maaliene. It can be seen that LUMO was
expressed at the C=C group between C6 and C7, which can gain electrons more easily and
become more chemically active. Figure 6B,C show the binding pose of nine compounds to
KSP, and the γ-maaliene, the representative compound of the γ-maaliene group, binding to
KIF11. Table 2 shows I36, P137, L214, and R218, which play important hydrophobic roles
for compounds of γ-maaliene group.
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Table 2. Fingerprint of the γ-maaliene group.

No. E116:HA R119:Ak I136:Ak P137:Ak L160:Ak L172:Ak Y211:PO L214:HA L214:Ak E215:HD A218:Ak

59 0 0 1 1 1 0 0 0 1 0 1
68 0 0 1 1 1 0 0 0 1 0 1
81 0 0 1 1 1 0 0 0 1 1 1
58 0 0 1 1 1 0 0 0 1 0 1
65 0 0 1 1 0 0 0 0 1 0 1
89 0 0 1 1 1 1 0 1 1 0 1
49 0 0 1 1 1 0 0 0 1 0 1
57 0 1 1 1 0 0 1 0 1 0 0
77 1 0 1 1 0 0 1 0 1 0 0

PO, pi-orbitals; Ak, alkyl; HD, H-donor; HA, H-acceptor.

3. Discussions

We tested the prepared bitters dataset (Table S13) from BitterDB (https://bitterdb.agri.
huji.ac.il/dbbitter.php, accessed on 29 August 2022) using threshold CSN (THR CSN) and
t-SNE dimensionality reduction CSN (t-SNE CSN), and results are shown in Figure 7. The
Python script is available in the supplementary data. We observed that some molecules in
the traditional THR CSNs were highly aggregated, but molecules with a generally high
similarity in a large central area of the CSN were not subdivided. Molecules were well
allocated to suitable locations in space according to their structural characteristics in t-
SNE CSN. More importantly, the molecules in the center of the space were well clustered
according to whether they were connected and how far apart they were positioned. We
were then able to set the edge length threshold, to separate the group spatially.

t-SNE CSN is essentially a combination of two different representations (t-SNE and
DiceSimilarity) of the 1024-bit Morgan fingerprint. Morgan fingerprinting is very suitable
for terpenoids with complex topology in their essential oils, and our method can fully
mine the information of the Morgan fingerprint. However, since t-SNE cannot deal with
spatial discontinuity in two-dimensional space, wit is possible to obtain many molecules
with higher similarity assigned to the opposite side of the CSN. This requires the design of
algorithms, such as those incorporating machine learning.

https://bitterdb.agri.huji.ac.il/dbbitter.php
https://bitterdb.agri.huji.ac.il/dbbitter.php
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Therefore, compared with THR CSN, t-SNE CSN has the advantage that a large num-
ber of aggregated molecules can be further subdivided after the introduction of coordinates,
which helps to unearth more compound groups.
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4. Materials and Methods
4.1. Cluster Analysis

Firstly, we determined the CSN edges. The SMILES structural formulas of 104 com-
pounds (three isomers added) were queried on PubChem, based on the compound names
inferred from the peak time of GC-MS [15,16]. The Morgan fingerprints of the molecules [29]
were extracted using Rdkit [30–32], where the fingerprint radius was set to two. Fingerprint
similarity uses Dice coefficient, and the calculation formula is as follows:

DiceSimilarity(a, b) =
2× (a∩ b)

a + b
(1)

where a and b are the substructure features of the two molecules, respectively.
We calculated fingerprint similarity among 104 compounds and generated hierarchical

clustering and correlation heatmaps with scikit-learn [33,34]. According to the similarity
data, the similarity threshold was set to 0.45. The similarity of two molecules greater than
the threshold forms an edge in the chemical space network, but the relative position of the
compounds cannot be determined at this stage.

Next, we determined the node coordinates of CSN. Therefore, t-SNE [35,36] was
used to reduce the dimensionality of the Morgan fingerprints of 104 compounds in order
to obtain their relative spatial positions. To unify the number of bits of the fingerprint
vector, the ECFP fingerprint [37] was generated using the explicit bitvectors method during
dimension reduction; the number of bits was set to 1024, and the radius was two.

Then, we built a chemical space network, constructed according to the node coordi-
nates and edge connections generated in the previous two steps.

Finally, we clustered and identified the representative compounds for each group.
According to whether there were edge connections between molecules and whether the
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positions were close, nine groups of compounds were determined manually. The mean
within-group similarity (MWGS) was calculated for the molecules of each group:

MWGS(Si, n) =
(∑n

i=1 Si)− 1
n

(2)

where n is the number of molecules of the group, and is the similarity between the molecule
and the i-th molecule in the group.

The compound with the largest MWGS in the group was considered the representative
compound of the group.

In short, 91 of the 104 compounds participated in the generation of the network,
and finally 73 of them were formed into nine groups, according to edge information and
coordinate information (see Figure 8).
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4.2. Group Docking and Structure Fingerprint Analysis

Using OpenBabel [38,39] to convert the SMILES formula of each group of represen-
tative compounds into mol2 format, we returned to PharmMapper [23,24] to predict the
target. Then, we applied Biovia Discovery Studio to dock all molecules of each group with
the corresponding target proteins. Molecular fingerprints were extracted using a Python
script based on the docking results from Discovery Studio.

4.3. Quantum Chemical Calculations

The quantum chemical calculations were carried out using the B3LYP function [40–43]
implemented in the Gaussian 09 program at the 6–31 G* set [44,45]. Frequency calculations
were performed to obtain free energy corrections at 298.15 K and 1atm pressure. Multi-
wfn [46,47], a multifunctional program for wave function analysis of quantum chemical
calculation results, was used to analyze the weak interaction of the ligands. The number of
grids was set to 200 × 200 × 200 in three-dimensional space.

The 5000 frames of trajectories were extracted to average the density. To analyze
traditional H-bond occupancy, the angle and distance between the donor and acceptor
were set to 35◦and 3.5 Å, respectively.

5. Conclusions

In this study, 104 compounds from essential oil in sunflower receptacles were mapped
and grouped in our designed chemical space network (t-SNE CSN). The results indicated
that these compounds can be divided into nine groups according to their MWGS value.
PharmMapper was utilized to identify the target protein of the three families with the most
members, i.e., the d-limonene, α-pinene, and γ-maaliene groups. The binding modes of the
ligands of the three families to the target protein were indicated using structure fingerprint
analysis. The active center of the same type of compounds was determined by quantum
chemical calculation.
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