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Abstract: Two neural networks (NN) are designed to predict the particle mobility of a molecular
glassformer in a wide time window ranging from vibrational dynamics to structural relaxation. Both
NNs are trained by information concerning the local structure of the environment surrounding a
given particle. The only difference in the learning procedure is the inclusion (NN A) or not (NN B) of
the information provided by the fast, vibrational dynamics and quantified by the local Debye–Waller
factor. It is found that, for a given temperature, the prediction provided by the NN A is more accurate,
a finding which is tentatively ascribed to better account of the bond reorientation. Both NNs are found
to exhibit impressive and rather comparable performance to predict the four-point susceptibility
χ4(t) at τα, a measure of the dynamic heterogeneity of the system.

Keywords: dynamic propensity; glassy system; machine learning; neural network; vibrational
dynamics

1. Introduction

Upon cooling, if crystallization is avoided, liquids experience a progressive slow-
ing down of their dynamics and finally reach an off-equilibrium, disordered, solid-like
state, a glass [1,2]. The glass transition is a matter of intense research to understand the
underlying causes.

In particular, the existence of a connection between structure and dynamics is still a
matter of debate and up to now, only weak correlations have been reported to support this
idea [3–10]. Whether there exists such a connection is still a matter of debate.

Over the last few years, the issue has been investigated by Machine Learning (ML)
approaches. ML is a specific subset of artificial intelligence—the science of mimicking
human abilities—that instructs a machine how to learn from suitable “training data” and
improve from experience, i.e., the size of training data, to make predictions without being
explicitly programmed [11]. ML strategies in the field of the glass-forming liquid focus
on predicting the dynamical behavior based on local structural features. Starting from the
pioneering work by Cubuk et al. [12] relying on support vector machines (SVMs) to predict
rearrangement probability in glassy mixtures, more and more cutting edge techniques have
been employed to accomplish similar tasks [13–18].

When looking for a link between structure and dynamics, it is common practice
to resort to the dynamic propensity of a particle, i.e., the displacement of a particle av-
eraged over a suitable ensemble of trajectories starting from a common initial spatial
configuration [8–10,19–21]. The propensity is designed to capture the impact of the struc-
ture on the future mobility of a particle. In this context, the ultimate task of clarifying the
link between the structure and dynamics translates into predicting the correct behavior of
the propensity at long times based on the initial structural information.
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To date, the most relevant studies involving the prediction of propensity in glassy
systems with ML techniques are, essentially, the following two: The first one was carried
out by Bapst et al. [22]. It involves the employment of graph neural networks (GNNs) to
predict the propensity in a binary atomic mixture. With a complex and highly advanced ML
approach, Bapst et al. were able to outperform previous ML attempts to predict the long-
time propensity. The second study was carried out by Boattini et al. [14]. Taking inspiration
from the GNN approach, they designed a set of efficient local descriptors thanks to which a
much simpler ML architecture such as linear regression is capable of achieving a similar (or
even better) performance in predicting the long-time propensity in binary atomic mixtures
and hard spheres liquids. However, the quality of the predictions achieved by the GNNs
developed by both by Bapst et al. and Boattini et al., even if remarkable, is not perfect and
motivates further developments. Most important, the above mentioned studies investigated
only atomic liquids (single component or mixtures) [13,14,22]. Thus, the performance of the
GNNs when tackling connected systems such as molecular liquids is unclear. The presence
of the molecular strong constraints limiting the particle displacements, e.g., bond lengths
and bond-bond angles, is anticipated to be not negligible.

The present paper reports on two distinct advances:

• the test of the approach of Ref. [14] by developing Neural Network (NN) architectures
to predict the propensity in a molecular liquid, a melt of fully-flexible short chains.
Melts of fully-flexible chains are known to have structural relaxation independent of
the chain length [23] and thus are of large interest in polymer science to investigate
long-time dynamics with considerable saving of computational effort [24]. Even if
the results address conventional linear structural polymers, they are anticipated to
provide at least useful hints concerning more complex polymer systems, such as
bio-polymers and proteins.

• As further advance, in order to improve the prediction of propensity in glassy systems
with ML techniques, we consider as an additional source of information the picosecond
vibrational dynamics of the particles wiggling within the transient cage formed by
their neighbors (augmented with further information on local structure drawn by
Voronoi tessellation and potential energy per particle). Despite the huge difference
of time-scales, strong correlations between the vibrational dynamics and the long
time structural relaxation, rearranging the cage with considerable spatial distribution
of mobility—so-called dynamical heterogeneity (DH)—are well known, see a recent
short review [25]. As a matter of fact, the vibrational dynamics inside the cage was
one of the first predictors of the long time propensity [19]. We show that this novel
scheme improves the accuracy of the prediction, which is found to be significantly
temperature-independent.

2. Results and Discussion
2.1. Structural Relaxation and Propensity

To characterize the dynamics of the system we consider the self part of the intermediate
scattering (ISF) function defined as [26]:

Fs(q, t) =
1
N

〈
N

∑
i=1

e−iq·δri(t)

〉
(1)

where 〈. . . 〉 denotes the ensemble average, δri(t) is the displacement of the i-th particle
within the time interval t and the wave-vector q is chosen so that its modulus corresponds
to the first peak of the static structure factor of the system. In an isotropic liquid ISF depends
only on the modulus of the wavevector q = ||q|| and features the rearrangements of the
spatial structure of the fluid over the length scale ∼ 2π/q. We define τα, the structural
relaxation time, as the time when ISF drops to 1/e, Fs(q, t = τα) = 1/e. The left panel of
Figure 1 shows the temperature dependence of the ISF for the investigated system. ISF
exhibits the characteristic two-step decay signaling, at intermediate times, the presence
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of considerable trapping of the monomer in the cage of the surrounding particles. τα

may be read as the average time to escape from the cage by a monomer. It increases in a
non-Arrhenius way by lowering the temperature (Figure 1, right).
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Figure 1. (Left): Temperature dependence of ISF. Dots mark the position of the structural relaxation
time τα. (Right): Arrhenius plot of the structural relaxation time τα.

Within ICE it is common practice to characterize the dynamics of the particles in terms
of the propensity ∆ri(t), the displacement of the i-th particle in a time t starting from a
fixed initial configuration and averaged within a single ICE. Figure 2 plots the temperature
dependence of the average propensity 〈∆r(t)〉ic, where the average 〈. . . 〉ic is taken over all
the ICEs and all the particles (left panel), and the probability distribution of the propensity
at t = τα for all the investigated temperatures (right panel).
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Figure 2. (Left) panel: Time-behavior of the particle and ICEs-averaged propensity for all the
investigated state points. (Right) panel: Probability density function of the particle propensity
∆ri(τα).
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2.2. Local Descriptors
2.2.1. Structural Descriptors

We minutely described the local environment around a given particle i employing a
set of handcrafted descriptors based on radial densities and angular functions widely used
in ML tasks [14,17,27]. Here, we employ such descriptors in the form of the ones used in
Ref. [14].

The radial descriptors consist of weighted particle densities at a distance r from the
central particle. The radial descriptor of the particle i at distance r and tolerance δ is defined
as [14]:

G(0)
i (r, δ) = ∑

j 6=i
e−

(rij−r)2

2δ2 (2)

where rij is the distance between the particle j and the central one.
The angular functions take a cue from the bond-orientational order parameters [28]

being defined based on a spherical harmonics weighted sum. First, given the central
particle i, one defines the complex quantity

qi(r, δ, l, m) =
1
Z ∑

j 6=i
e−

(rij−r)2

2δ2 Ym
l (rij) (3)

where Ym
l (rij) are the spherical harmonics of order l with −l ≤ m ≤ l and Z is a normal-

ization factor. Finally, the local angular descriptor is obtained considering a sum over
m [14]

q(0)i (r, δ, l) =

√√√√ 4π

2l + 1

l

∑
m=−l

|qi(r, δ, l, m)|2 (4)

We augmented the local environment description refinement by also considering
progressive coarse-grained versions of the descriptors. Being x(0)i a non-coarse-grained
radial or angular local descriptors of particle i, we define the n-th generation coarse-grained
version of it as

x(n)i =
∑j:rij<rc x(n−1)

j e−rij/rc

∑j:rij<rc e−rij/rc
(5)

where rc is the radius of coarse-graining. Such coarse-graining was introduced by Boattini
et al. [14], inspired by the pioneering result obtained with Graph Neural Network [22], and
allows to probe the local structure at different length-scales.

In total, we employed 292 0-th order structural descriptors: 100 radial and 192 angular.
Radial descriptors where measured in 60 equally spaced spherical shells of width δ = 0.025
in the interval r ∈ [0.5, 2], 20 shells of width δ = 0.05 in the interval r ∈ (2, 3] and 20 shells
of width δ = 0.1 in the interval r ∈ (3, 5]. Angular descriptors were measured in 16 equally
spaced spherical shells of width δ = 0.1 in the interval r ∈ [0.5, 2.5] with l = 1, 2 . . . 12.

In this work, we employ two generations of coarse-graining, i.e., n = 1, 2 in Equation (5),
and a radius rc = 2.5, thus reaching a total of 876 structural descriptors. Changing the
value of the coarse-graining radius does not affect significantly the results [14].

In addition to the above radial and angular sets, we enrich the description of the
local environment by considering: (i) the volume, surface and asphericity of the Voronoi
polyhedron associated to each particle, (ii) the per-particle total potential energy evaluated
by summing all the pair contributions for each particle.

2.2.2. Short-Time Dynamics Descriptor

Rather than adding more and more structural descriptors, we consider the possibility
of enriching the information on a single particle with its short-time mobility. To this aim,
we employ ∆r2

i (t = 1), the squared displacement of the i-th particle in a time t = 1



Int. J. Mol. Sci. 2022, 23, 9322 5 of 12

starting from a fixed initial configuration and averaged within a single ICE. Note that t = 1
corresponds to a few picoseconds [29]. We refer to this quantity as the local Debye–Waller
(DW) factor for the i-th particle.

It has been shown that this quantity can predict the correct spatial distribution of
the long time propensity if one considers particles whose local DW exceeds a certain
threshold, reminiscent of a Lindemann-like criterion [19,30,31] However, in general, the
local DW alone does not provide fully satisfactory predictions of the long time behavior of
the propensity of a particle, as recently demonstrated [22].

2.3. Neural Network

NNs are a computing architecture, designed to mimic the behavior of the human
brain [11,32]. Their fundamental units, namely the nodes, work as biological neurons. They
are arranged in hierarchical structures named “layers”. Layers are stacked together to form
a network. The first and the last layers are respectively called input and output layer while
all the layers standing between them are called hidden layers. Each node linearly combines
all the information coming from the nodes belonging to the previous layer and passes it
to the next layer via a non-linear “activation” function. In our case, we chose a Rectified
Linear (ReLu) [11,32] activation function for all the nodes in the nets.

In this work, we employed two NNs to carry out the propensity prediction, namely A
and B. A and B differ only for their input: NN A takes in input all the structural information
given by all the descriptors discussed in Section 2.2.1 plus the information on the short time
dynamics provided by the local DW factor while NN B keeps track only of the structural
information, i.e., without the local DW.

For each temperature, depending on the system relaxation time, a set of 10 time
intervals has been chosen ranging from the ballistic regime t ≈ 0.01 up to the early diffusive
regime t � τα (see left panel of Figure 2). To this stage, a remark concerning the role of
time flow in NNs is in order. Indeed, NN manages the information related to two distinct
times, say t1 and t2, on an equal footing with no consideration of whether t1 < t2 or vice
versa. Past and future are meaningless concepts in the NN. On the other hand, we refrain
from comparing the performances of NN A and NN B for times shorter than t = 1, where
the local DW is evaluated. The latter is built up by the series of particle displacements
occurring in the time window between the initial time and t = 1 and then an increasingly
better performance of NN A on approaching t = 1 from shorter times is anticipated.

For every particle i, the propensity is computed for this set of time interval and the
resulting vector is the target for both the neural networks. This means that the prediction
of the propensity at all the investigated times happens simultaneously. This approach is
different from the one adopted in previous works where the prediction is made one time
interval at a time [13,14,22]. Such a choice has been made to force the network to produce a
model that works at all the time-scales.

Both networks A and B consist of three hidden layers, in addition to the input and
output layers. Each hidden layer is composed of 16 nodes. To control the overfitting, we
employed in both networks a drop-out layer between the second and third hidden layer,
and make use of a L2 regularization of the layers weights [11,32].

Before going through the NN, each parameter xi is standardized by computing

xst.
i =

xi − x
σx

(6)

where x and σx are respectively the average and the standard deviation of the considered
parameter. This transformation ensures an a priori equal weight to all the parameters in the
training procedure [11,32]. After the standardization, for each temperature we have a data
set consisting of rows of all the local descriptors for all the particles and all the independent
runs. Thus, each data set is randomly row-wise divided in a training set and a test set with
a 80:20 ratio. The training set is devoted only to the training of the NNs while the test set is
employed to test its performance.
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We train the NNs using the Python package TensorFlow [33] and employed the Adam
optimizer [34] for the minimization of the mean squared error loss function.

2.4. Predicting the Propensity

Here we examine the performance of the NNs in the prediction of the propensity at
various timescales. First, we train the NN at a given temperature and inspect the prediction
at the same temperature. Figure 3 shows a visual comparison of the true and the predicted
values of the propensity at t = τα in a two dimensional slice of the sample at three distinct
temperatures. The two NNs can predict with significant accuracy the propensity at the
structural relaxation timescale. It is also worth noting that the two NNs reproduce nicely
the spatial correlation of propensity, in particular the soft spots of the system where the
most mobile particles reside.
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Figure 3. Comparison of the true and the predicted propensity maps of the neural networks A and B
for three different temperatures. Both NNs are trained at a given temperature and the predictions
inspected at the same temperature. Maps are obtained by interpolating the propensities of particles
belonging to a slice of height h = 1 along the z axis of the simulation cubic box. The predicted
propensity are obtained with (second row) and without (third row) the local DW in the input data
set. Colorbars refer to the entire columns (i.e., the given temperature).

Figure 3 is encouraging but it misses any statistical significance. To provide it, we
consider the Pearson correlation coefficient ρ(t) between the true and predicted propensity
at time t.

It is defined as

ρ(t) =
Cov(v(t), w(t))

σv(t)σw(t)
(7)

where v(t) is the true propensity list at a given time t and w is the predicted one at the
same time. Cov(v(t), w(t)) is the covariance between v(t) and w(t), while σv(t) and σw(t)
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are the two standard deviations. The covariance and the standard deviations are computed
considering all the true and predicted propensities corresponding to the test set.

The NN exact prediction of the propensity yields ρ = 1, whereas the random assign-
ment leads to ρ = 0.

Figure 4 plots the time behavior of the Pearson correlation coefficient of the two
investigated NNs. First, let us focus on the NN B, i.e., the one considering only the
structural descriptors discussed in Section 2.2.1 and not resorting to information about the
local DW (right panel). The correlation agrees with the reported literature and exhibits
a well-defined peak at ∼ τα [13,14,22]. In particular, at very short times (t ∼ 0.1) the
correlation is rather small and even slightly less than the one in hard-sphere systems [13].
At intermediate times, at the onset of the cage regime (t ≈ 1), corresponding to the start
of the quasi-plateau region observed in the left panel of Figure 2, we observe a minimum
of the Pearson correlation. Such a minimum is also found in the hard spheres system [13].
Only when the central particle starts to notch the surrounding cage, it is possible to observe
a more distinct connection of the propensity with the local structure. In fact, at later times,
for t > 1, the correlation grows and reaches its maximum at approximately t ∼ τα for
all the temperatures. We note that the maximum of the correlation, and therefore the
goodness of the propensity prediction, is strongly dependent on the temperature: at lower
temperatures we observe higher correlation. This was attributed to a reduction of thermal
noise [22] perturbing the target propensity or the structural descriptors. Alternatively, it
cannot be ruled out that the role of the local structure becomes more and more relevant
on decreasing the temperature, as reported in several works [3–10]. After the structural
relaxation time (t > τα), correlations from the initial structure vanish and the decay of the
prediction performance is observed.
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Figure 4. Pearson correlation coefficient of the propensity prediction for all the investigated state
point with Neural Network A (left panel) and B (right panel). Gray diamonds mark the position of
the structural relaxation time of the given state point.

The performance of the NN A is presented in Figure 4 (left). We remind that NN A
considers the local DW as an additional environmental descriptor. One notices that for
a given temperature the correlation is higher than in the case of NN B, in a wide time
window up to the structural relaxation time τα.

Going to a more detailed inspection, one sees that a peak of correlation is found at
t = 1. The latter is because the particle local DW and the squared propensity at t = 1
are perfectly correlated so it is natural for the NN to give an high relative weight to it.
Furthermore, the L2 regularization of the layers weights, see Section 2.3, forces the NN to
predict with as few parameters as possible, leading to the major role of the DW factor in the
cage regime. For t > 10, one sees that the correlation growth provided by NN B up to τα is
now replaced by a nearly temperature-independent plateau. For t & τα, the performance
by NN A decays similarly to the one by NN B.
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Since we are interested in the long-time propensity, to better illustrate the advantage of
including the local DW in the local descriptors, we focus on the accuracy of the predictions
provided by the two NNs at the structural relaxation time. To this aim, Figure 5 compares
the correlation coefficient of NN A and B at different temperatures. It is seen that NN A
provides a nearly temperature-independent correlation, higher than the one of NN B, even
at temperatures rather close to Tg (Tg ≈ 0.395 [35]). More explicitly:

• the sole consideration of the particle position at a given time provides poor ac-
count of long-time large particle displacement in connected systems, especially at
high temperatures;

• the information encoded in the local DW counteracts the drawback.

As a tentative explanation, we speculate that gathering even accurate structural infor-
mation at a given time does not lead to proper account of the long-time bond reorientation
which requires, even in the present simple molecular model, some degree of cooperativ-
ity between bonded atoms. The local DW, which is certainly affected by the molecular
connectivity, seems able to compensate the limitations of the structural information.
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0.600

0.625

0.650

0.675

0.700

0.725

0.750

(t
=

)

Neural Network
A
B

Figure 5. Comparison of the prediction accuracy at t = τα in either the presence (NN A) or the
absence (NN B) of the local DW in the input features data-set.

2.5. Dynamical Heterogeneity

In order to provide better statistical basis to the DH apparent in Figure 3, we now
assess the NN performance to predict the spatial correlation of the propensity by computing
the four-point susceptibility χ4(t) of the propensity which is defined as [36,37]:

χ4(t) =
1
N

 N

∑
i,j=1
〈qa

i qa
j 〉ic −

(
N

∑
i=1
〈qa

i 〉ic

)2
 (8)

where qa
i = 1 if ∆ri(t) > a and 0 otherwise, and a is chosen as the mean displacement

modulus at t = τα (for instance a = 0.4286 for T = 0.40). The χ4(t) gives a measure of
the correlated motion size [37] and then offers a DH measure [38]. This peculiar choice
of a temperature dependent probe-length a has been made to focus on DH at the τα

time scale. Different choices of a were considered including temperature independent
values a = 0.4, 0.5, 0.6 designed to investigate the DH at a fixed legth-scale. It has been
observed that, even if the χ4 time behavior is modified, the quality of the NNs prediction
remains unchanged.
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Figure 6 presents the comparison between the four-point susceptibility computed
with the true propensity and the predictions achieved via the NNs A and B at different
temperatures. We note that, as expected, the local DW factor slightly improves the accuracy
of the predicted χ4(t) at intermediate time scales (t & 1). More remarkably, it is seen that
both NNs are rather accurate at t = τα, corresponding approximately to the maximum
of χ4(t). This provides sound statistical basis for the conclusions which are hinted at by
comparing the true and the predicted DH shown in Figure 3.

The prediction of χ4(τα) in a binary atomic mixture provided by GNN has been
reported as less effective [22].
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Figure 6. Comparison of the true four-point correlation function χ4(t) with the predictions provided
by the NNs A and B at different temperatures.

2.6. Generalization to Other Temperatures

How effective is the NN prediction of the propensity at a temperature which is different
from the one at which training has occurred?

Figure 7 addresses this question for the propensity at t = τα for NNs A and B. For
both NNs, given a temperature range of interest, there is some indication suggesting to
train the NNs at intermediate temperatures. This agrees with other studies carried out
in a binary atomic mixture [22]. We find no clear indications that NN A provides better
predictions than NN B.

0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54
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0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54
T

Neural Network B

Figure 7. Performance of the NN prediction at t = τα for temperatures being different from the
training one. The training temperature is marked with black diamonds on the curves.

3. Methods and Materials

We performed molecular dynamics (MD) numerical simulations of a three-dimensional
polymer melt of fully-flexible, i.e., with no bond-bond bending or torsional potentials, linear
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pentamers with a total number of monomers N = 10,000. Non-bonded monomers interact
via a Lennard–Jones potential [26] while bonded monomers interact via an harmonic
potential Ub(r) = k(r− r0)

2 where r0 = 0.97σ is the rest length and the stiffness k is set to
555.5ε/σ2 with σ being the location of the 0 of the Lennard–Jones potential and ε the depth
of its minimum. The Lennard–Jones potential is truncated at r = 2.5σ for computational
convenience. It is also shifted to grant continuity at r = 2.5σ. All simulations were carried
out with the open-source software LAMMPS [39,40]. From here on, throughout the text we
employ dimensionless units based on the parameters of the Lennard–Jones potential.

We equilibrated the system at a constant number density ρ = 1.02 for 5 different
temperatures approaching the glass transition of the model (Tg ≈ 0.395 [35]). For each
state point we considered 10 independent runs to achieve statistical significance . Different
runs have the same constant number of particles N, volume V and temperature T. The
equilibration runs lasted not less than 3τee, where τee is the end to end vector autocorrelation
function decay time [41].

After equilibration, production runs were carried out at each state point with constant
number of particles N, volume V and energy E. In parallel, for each of the investigated
temperatures and for every independent run, we generated an isoconfigurational ensemble
(ICE) consisting of 40 trajectories starting from a common initial spatial configuration of the
particles. The trajectories differ one from another by the starting particles velocities which
are randomly chosen from the Maxwell–Boltzmann distribution at the considered temper-
ature. ICE allows emphasizing the role of the initial structure of a liquid in influencing
future dynamics.

4. Conclusions

The present study reports on the characterization of two NNs designed to predict
the propensity of a molecular glassforming system in a wide time window ranging from
vibrational dynamics to structural relaxation. Both NNs consider information drawn from
the local structure of the environment surrounding a given particle. The only difference is
the inclusion (NN A) or not (NN B) of the information provided by the fast, vibrational
dynamics and quantified by the local DW. The main result is that, for a given temperature,
the prediction of the propensity provided by the NN A is more accurate in a wide time
window between the nearly-ballistic regime (t ∼ 0.1) and the structural relaxation time
τα. In particular, when the predictions of the propensities at the structural relaxation time
of the two NNs are compared, it is found that the accuracy of NN A is higher and almost
temperature-independent. We speculate that gathering even accurate structural information
at a given time does not lead to proper account of the long-time bond reorientation which
requires cooperativity. It appears that the local DW is able to compensate the limitations of
the structural information taking naturally into account for the molecular connectivity.

Our study demonstrates that ML algorithms designed to predict the long-term dynam-
ics of a molecular glass-forming system based on the structural information, benefit from
the addiction of the fast dynamics information. It will be of interest to study its impact in
much more complex ML architectures such as convolutional NNs or a GNNs.
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