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Abstract: Leishmaniasis is a neglected tropical disease that kills more than 20,000 people each
year. The chemotherapy available for the treatment of the disease is limited, and novel approaches
to discover novel drugs are urgently needed. Herein, 2D- and 4D-quantitative structure–activity
relationship (QSAR) models were developed for a series of oxazole and oxadiazole derivatives that
are active against Leishmania infantum, the causative agent of visceral leishmaniasis. A clustering
strategy based on structural similarity was applied with molecular fingerprints to divide the complete
set of compounds into two groups. Hierarchical clustering was followed by the development of 2D-
(R2 = 0.90, R2pred = 0.82) and 4D-QSAR models (R2 = 0.80, R2pred = 0.64), which showed improved
statistical robustness and predictive ability.
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1. Introduction

Visceral leishmaniasis (VL) is a neglected tropical disease (NTD) caused by the proto-
zoan parasites Leishmania infantum and L. donovani and is the most severe form of leishma-
niasis. Transmission occurs through the bite of infected female Phlebotominae sandflies.
VL is a fatal disease if not treated and is the second leading cause of death among parasitic
conditions after malaria. The disease has become a severe global health problem, with
more than 200 million people currently at risk of infection worldwide [1]. The current
treatments include drugs such as amphotericin B, sodium stibogluconate, miltefosine,
and paromomycin, which present several drawbacks, including distribution and availabil-
ity issues, long-term and complex treatment regimens, teratogenicity, toxicity, and drug
resistance [2,3]. These shortcomings, combined with the high burden caused by the disease,
highlight an urgent need for new treatment options for VL.

Despite the widespread use of the available drugs, little is known about their mecha-
nisms of action, which reflects the main strategy that has been used for NTD drug discovery:
phenotypic screening [4]. Despite the lack of information on the molecular targets, the
phenotypic strategy is useful to account for activity against whole cells along with as-
pects of cell uptake, cytocidal or cytostatic mechanisms, and time-to-kill, among other
relevant issues.

Therefore, the phenotypic approach has been widely used in drug discovery for NTDs
given the very few validated molecular targets explored in the field [5,6].

Aligned with the strategy of phenotypic screening, the combination of different bioac-
tive chemical scaffolds can be used to enrich the chemical diversity explored in NTD drug
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discovery. Recently, our group reported a hybridization approach combining two hete-
rocyclic cores presenting antiparasitic activity, which guided the design of novel hybrid
compounds with promising antileishmanial and anti-Trypanosoma cruzi activities [4]. One
core is represented by oxadiazoles, and the other is 3-substituted 2-oxindoles, both of which
are useful scaffolds, especially as antileishmanial agents [7–11].

The main goal of this work was the development of QSAR models using our in-house
set of oxazoles and oxadiazoles that displayed in vitro antileishmanial activity against
intracellular amastigotes. To this end, a computational approach using 2D- and 4D-QSAR
strategies was conducted. Hierarchical clustering based on ligand structure was applied to
split the dataset into two structurally similar groups. The integration of the experimental
results with the applied ligand-based drug design studies (LBDD) yielded statistically
significant QSAR models with the ability to predict the activity of new antileishmanial
agents within a defined applicability domain.

2. Results and Discussion
2.1. AutoQSAR

The initial model was obtained considering the complete set of molecules using the
AutoQSAR method. A set of seven binary fingerprints (dendritic, linear, atom pair, atom
triplet, topological, MOLPRINT 2D, and radial) was generated to characterize the structures
and create the 2D molecular descriptors. Different regression techniques, such as multi-
ple linear regression (MLR), partial least squares regression (PLS), principal components
regression (PCR), and kernel-based PLS (KPLS), were adopted to build the set of models.
Random selection of the molecules for the test and training sets was applied using the
AutoQSAR machine learning routine specifically designed for this end. All seven binary
fingerprints available were used as molecular descriptors to build the 2D-QSAR models.
The fingerprints and regression approaches were systematically combined to generate the
best models, which are described in Table 1.

Table 1. The most statistically significant models generated by AutoQSAR using the complete dataset.

Training Set (%) R2 SD Q2 (R2
pred) RMSE N Fingerprint

70 0.5378 0.2180 0.4937 0.2123 1 Radial
75 0.5997 0.2065 0.5284 0.1994 2 Dendritic

80 0.6304 0.2022 0.6107 0.1817 5 MOLPRINT
2D

R2: coefficient of determination for the training set; SD: standard deviation; Q2: predictive correlation coeffi-
cient for the test set (R2

pred); RMSE: root-mean-square error for the test set predictions; N: optimum number
of components.

For the complete dataset, the model that produced the best statistical parameters and
score was obtained by the MOLPRINT2D binary fingerprint. The best regression method
selected by the AutoQSAR routine was the KPLS technique with an 80:20 training/test set
ratio, that is, 52 molecules in the training set and 13 compounds in the test set. This model
yielded an R2 value of 0.6304 and a Q2 value of 0.6107.

Aiming to improve the predictive ability of the model, a structural analysis of the
molecules in the dataset suggested that they have a diverse scaffold pattern. Therefore, to
improve the QSAR results, hierarchical clustering was applied to the entire dataset.

To start the hierarchical clustering analysis, the binary fingerprints (dendritic, linear,
atom pair, atom triplet, topological, MOLPRINT 2D, and radial) were calculated for the
entire set of molecules and used as molecular descriptors for this analysis. First, the Kelley
level [12] was used to select the optimal number of clusters. In this step, a considerable
number of singletons (clusters with one molecule) were obtained, which indicates the
structural diversity in the dataset. The next step was the separation of the entire dataset
into two groups. To separate these two groups according to the similarity between the
molecules, the total number of clusters was divided to generate only two clusters which
were as populous as possible; i.e., starting with the Kelley level, the number of clusters
was reduced until the formation of two groups. These two groups of compounds were
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defined so that both groups included a considerable number of molecules to build the
two QSAR models. This strategy resulted in the exclusion of two molecules that were
identified as structural outliers [13,14]. As a result of this cluster analysis, the initial dataset
originated two groups of compounds: the G1 group with 27 compounds and the G2 group
with 35 compounds. The scaffolds of each group are presented in Figure 1. The structural
diversity present in the dataset can be observed through the scatter plot obtained with the
multidimensional scaling (MDS) plot illustrated in Figure 2. From each of these groups,
two new and independent QSAR models were built.
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It is worth noting that group G1 in Figures 1 and 2 is less structurally diverse than
group G2. In Figure 2, the molecules of the G1 group are more concentrated, while in the
G2 group, the molecules are more dispersed over the MDS plot. This structural diversity
may have influenced the QSAR statistical parameters for each group, as the less diverse
group (G1) resulted in better statistical indicators.

For the G1 group, the model that produced the best statistical parameters and score
was represented by radial fingerprints and included 22 molecules in the training set and 5
in the test set (proportion 80:20). This is indicated by R2 = 0.9069, SD = 0.1039, Q2 = 0.8201,
RMSE = 0.0945 and KPLS factor = 2. The best models for each training/test set split are
shown in Table 2.

Table 2. Statistically significant models generated by AutoQSAR for the G1 group.

Training Set (%) R2 SD Q2 (R2
pred) RMSE N Fingerprint

70 0.8982 0.1178 0.7132 0.1018 2 Radial
75 0.8012 0.1413 0.7022 0.1668 1 Radial
80 0.9069 0.1039 0.8201 0.0945 2 Radial
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For the G2 group, the model that produced the best statistical parameters was repre-
sented by dendritic fingerprints and included 28 molecules in the training set and 7 in the
test set (proportion 80:20). This finding is indicated by R2 = 0.8206, SD = 0.1377, Q2 = 0.8001,
RMSE = 0.1081 and KPLS factor = 3. The best models for each split are shown in Table 3.

Table 3. Statistically significant models generated by AutoQSAR for the G2 group.

Training Set (%) R2 SD Q2 (R2
pred) RMSE N Fingerprint

70 0.6109 0.205 0.4206 0.1829 2 MOLPRINT
2D

75 0.5693 0.2040 0.5351 0.1041 2 MOLPRINT
2D

80 0.8206 0.1377 0.8001 0.1081 3 Dendritic

The predicted pIC50 values obtained for both groups, G1 and G2, are represented
graphically in Figure 3 along with the experimental pIC50 values. Both plots show good
agreement between the experimental and predicted activity for the AutoQSAR models. In
addition, Table 4 shows the predicted and experimental pIC50 values for the entire dataset
(complete set model) and for the two groups of molecules obtained after the hierarchical
cluster analysis (cluster model).
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Table 4. Experimental, predicted, and residual values of pIC50 for the G1 and G2 groups.

2D-QSAR 4D-QSAR

Complete Set Model Cluster Model Complete Set Model Cluster Model

No. pIC50 exp pIC50 pred Residue Group pIC50 pred Residue pIC50 pred Residue pIC50 pred Residue

1 5.138 5.184 0.046 G1 5.187 0.049 5.066 −0.071 5.21 0.072
2 4.913 4.911 −0.002 - 1 - 1 - 1 4.9239 0.011 - 1 - 1

3 5.133 4.962 −0.171 G1 5.061 −0.072 5.178 0.045 5.171 0.039
4 5.478 5.312 −0.165 G1 5.433 −0.044 5.099 −0.379 5.229 −0.249
5 4.922 4.955 0.033 G1 4.995 0.073 4.848 −0.073 4.893 −0.028
6 5.29 5.017 −0.273 G1 5.173 −0.116 5.257 −0.033 5.155 −0.135
7 5.428 5.231 −0.197 G1 5.385 −0.043 5.118 −0.309 5.462 0.035
8 4.984 5.103 0.119 G1 4.993 0.009 5.194 0.211 5.064 0.081
9 5.387 5.47 0.082 G1 5.388 −0.001 5.111 −0.276 5.293 −0.094

10 4.955 4.904 −0.051 G1 5.098 0.143 4.990 0.035 4.882 −0.073
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Table 4. Cont.

2D-QSAR 4D-QSAR

Complete Set Model Cluster Model Complete Set Model Cluster Model

No. pIC50 exp pIC50 pred Residue Group pIC50 pred Residue pIC50 pred Residue pIC50 pred Residue

11 5.397 5.467 0.07 G1 5.554 0.157 5.214 −0.183 5.349 −0.047
12 5.188 5.232 0.043 G1 5.282 0.093 5.056 −0.132 5.084 −0.104
13 4.289 4.848 0.559 G1 4.369 0.080 4.747 0.459 4.359 0.071
14 5.293 5.158 −0.135 G1 5.345 0.052 4.959 −0.334 5.205 −0.088
15 5.088 4.848 −0.24 G1 4.807 −0.281 5.271 0.184 5.013 −0.075
16 5.248 4.848 −0.4 G1 5.104 0.144 5.081 −0.167 5.442 0.195
17 4.97 5.007 0.037 G1 4.97 0.000 5.095 0.125 4.919 −0.051
18 4.931 5.141 0.209 G1 4.994 0.062 5.196 0.266 5.238 0.308
19 5.313 5.333 0.019 G1 5.235 −0.079 5.055 −0.258 5.515 0.202
20 5.193 5.062 −0.132 G1 5.126 −0.067 5.245 0.052 5.168 −0.024
21 5.221 5.333 0.112 G1 5.245 0.024 5.138 −0.083 5.309 0.089
22 5.455 5.543 0.088 G1 5.493 0.038 4.993 −0.462 5.306 −0.148
23 5.602 5.53 −0.072 G1 5.493 −0.109 5.358 −0.244 5.382 −0.219
24 5.314 5.185 −0.13 G1 5.264 −0.050 4.918 −0.396 5.294 −0.019
25 5.137 4.902 −0.235 G1 5.182 0.044 5.123 −0.013 5.133 −0.004
26 4.658 4.86 0.202 G1 4.716 0.058 4.921 0.264 4.924 0.266
27 5.545 5.152 −0.393 G1 5.47 −0.075 5.565 0.02 5.551 0.007
28 4.587 4.882 0.295 G1 4.651 0.064 4.468 −0.119 4.583 −0.004
29 5.033 4.812 −0.221 G2 4.856 −0.177 4.631 −0.402 4.92 −0.113
30 5.115 4.982 −0.133 G2 5.146 0.031 4.831 −0.284 4.786 −0.329
31 5.084 5.094 0.01 G2 5.12 0.036 5.135 0.051 5.040 −0.044
32 4.592 4.785 0.193 G2 4.841 0.249 4.699 0.108 4.695 0.104
33 5.081 4.982 −0.099 G2 5.112 0.031 5.193 0.113 5.020 −0.06
34 4.976 4.785 −0.192 G2 4.907 −0.069 5.18 0.204 4.965 −0.011
35 5.096 5.074 −0.022 G2 5.269 0.173 5.076 −0.02 5.042 −0.053
36 4.932 4.883 −0.049 G2 4.891 −0.041 5.188 0.257 5.105 0.173
37 5.135 4.857 −0.278 G2 4.87 −0.265 5.116 −0.019 5.090 −0.045
38 4.981 4.992 0.011 G2 4.926 −0.055 5.329 0.348 5.133 0.153
39 4.598 4.758 0.16 - 1 - 1 - 1 4.5562 −0.042 - 1 - 1

40 4.279 4.373 0.094 G2 4.283 0.004 4.802 0.523 4.289 0.011
41 4.426 4.35 −0.076 G2 4.34 −0.086 4.523 0.097 4.912 0.487
42 5.11 5.137 0.027 G2 5.163 0.053 4.873 −0.237 5.013 −0.097
43 4.755 4.909 0.155 G2 4.644 −0.110 5.055 0.3 4.781 0.027
44 4.723 4.83 0.107 G2 4.595 −0.128 4.831 0.109 5.009 0.287
45 4.358 4.736 0.378 G2 4.602 0.244 5.010 0.653 4.589 0.232
46 4.985 5.014 0.03 G2 4.974 −0.011 4.949 −0.035 4.886 −0.099
47 4.988 5.373 0.385 G2 5.186 0.198 4.937 −0.05 4.944 −0.043
48 4.663 4.874 0.212 G2 4.868 0.205 4.912 0.25 4.882 0.22
49 4.744 4.925 0.181 G2 4.728 −0.016 4.826 0.082 4.795 0.051
50 4.92 5.028 0.108 G2 4.893 −0.027 5.075 0.155 4.838 −0.082
51 5.049 5.05 0.001 G2 5.092 0.043 5.108 0.059 5.063 0.015
52 4.687 4.753 0.067 G2 4.828 0.141 4.895 0.209 4.854 0.168
53 4.445 4.608 0.164 G2 4.456 0.011 4.948 0.504 4.764 0.319
54 5.41 4.933 −0.477 G2 5.297 −0.113 5.412 0.002 5.518 0.109
55 5.068 4.916 −0.152 G2 5.07 0.002 4.870 −0.197 5.149 0.082
56 4.94 4.925 −0.015 G2 4.978 0.038 4.860 −0.079 4.846 −0.093
57 5.623 5.444 −0.18 G2 5.455 −0.168 5.477 −0.145 5.596 −0.027
58 5.008 4.874 −0.134 G2 4.908 −0.100 4.992 −0.016 4.96 −0.044
59 5.072 5.094 0.022 G2 4.871 −0.201 4.875 −0.196 4.856 −0.215
60 5.137 5.193 0.055 G2 5.219 0.081 4.900 −0.237 4.911 −0.226
61 5.291 5.269 −0.022 G2 5.299 0.008 5.069 −0.222 4.945 −0.345
62 5.07 4.875 −0.196 G2 5.115 0.045 5.027 −0.043 4.978 −0.092
63 4.747 4.886 0.139 G2 4.741 −0.007 4.917 0.17 4.953 0.207
64 5.16 5.12 −0.04 G2 5.077 −0.083 5.048 −0.112 5.043 −0.116

- 1 Structural outlier.

By examining the scaffolds of the two groups, it is noticeable that although the struc-
tures of the molecules of both clusters have similarities, the merging of the two groups,
which would represent greater structural diversity, does not result in improved models. In
line with this finding, the G2 group, which has a greater structural diversity, represented by
a smaller scaffold and larger R substituents, demonstrated a slightly smaller improvement
than G1 in the statistical parameters (a difference of 0.0863 in R2 and 0.02 in Q2).
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In addition to the predictive capacity, KPLS 2D-QSAR allows the visualization of
regions in the molecules responsible for increasing or decreasing the biological response
through the generation of contribution maps, as depicted in Figure 4. Green and red colors
represent positive and negative contributions to response, respectively. For the G1 group,
halogen substituents showed positive contributions to substituents R1, R3, R4 and R5. The
only difference among molecules 7, 22, and 23 is the substitution of bromine, fluorine,
and chlorine in substituent R3, and all substitutions in this position showed positive
contributions. However, the chlorine in molecule 23 contributed to a greater increase in
activity, which can be validated directly by the pIC50 in Table 4. In general, the nitro group
substitution was unfavorable for molecules in G1. For the G2 group, the hydrogen atom
in position R1 showed an unfavorable contribution. In this case, the phenyl group, and
especially the methoxy group substitution, showed a favorable contribution in R1. An
exception for the positive contribution of the nitro group was observed with the oxazole
core. In substituent R3, halogen (except bromide) and nitro substituents showed a positive
contribution, but asymmetrical electron density was slightly unfavorable, which favors
double halogen substitutions in both meta positions or one halogen in the para position.
For substituent R2, the hydroxyl group showed a positive contribution, while the benzene
sulfonamide showed a negative contribution.
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The MDS scatter plot of the dataset, obtained by the geometric convex-hull method,
allows the definition of the chemical space over which the model, represented by the
training set, is applicable. The applicability domain for the 2D-QSAR models for the G1
and G2 groups is shown in Figure 5.

2.2. 4D-QSAR

Three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling
is a broadly used method in computer-assisted molecular design. The method assumes
that changes in the binding affinities of ligands are related to changes in molecular prop-
erties represented by molecular fields. A common and popular method is comparative
molecular field analysis (CoMFA). Some issues are inherent in 3D-QSAR [15,16], mainly
in receptor-independent 3D-QSAR (RI-3D-QSAR). For example, the QSAR model in the
CoMFA method is strongly dependent and sensitive to conformations and alignments of
the molecules. Another limitation is that the bioactive conformation of a molecule should be
used, which may not coincide with the lowest energy conformations, which are commonly
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used whenever the molecular target is unknown. In this work, several structural alignment
methods were used as attempts to achieve a suitable alignment of the compounds to be
used in subsequent CoMFA analyses. However, due to the limitations described above,
no suitable CoMFA models were obtained (see Supplementary File for CoMFA models).
Following these concepts, a 4D-QSAR approach was used in this work to address the
limitations associated with 3D-QSAR models. The LQTA-QSAR approach explores the
main advantages of both CoMFA and 4D-QSAR modeling [16,17]. This method is based
on the generation of a CEP for each compound instead of only one conformation, which
is followed by the calculation of 3D descriptors using the Coulomb and Lennard–Jones
potentials. To generate the 4D-QSAR models, the strategy used in the 2D-QSAR analyses
was repeated, i.e., we built a model with the entire dataset, which was followed by the
generation of groups by using hierarchical clustering. Two-hundred training and test sets
were randomly divided and subjected to QSAR model construction. For the 2D-QSAR
studies, the best results were obtained by using an 80:20 ratio between the training and test
sets; thus, the same ratio was applied to the 4D-QSAR analyses.
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The model generated using the complete dataset was used for comparison pur-
poses. LQTAgridPy software was used to generate a matrix with 21,252 descriptors. Af-
ter applying a variance cutoff and the Pearson cutoff, 554 descriptors were subjected
to PyQSAR. This software uses a clustering method to reduce the search space. In
this step, PyQSAR also eliminates descriptors with low variance. A selection based
on a genetic algorithm (GA) was used to maintain the best descriptors from the dif-
ferent clusters. The GA-based selections were repeated until the optimal variable se-
lection was achieved. PyQSAR selected a set of descriptors that resulted in the follow-
ing parameters: R2 = 0.4599, R2

pred = 0.4353. The set of selected descriptors included
[15_19_20_NH3+_C], [15_20_15_NH3+_LJ], [16_21_20_NH3+_C], [16_23_10_NH3+_LJ],
and [18_19_11_NH3+_C].

Group G1: The dataset used in the 4D-QSAR for G1 was the same as that previously
used in the 2D-QSAR, with 27 compounds divided into 22 molecules for the training set and
5 compounds for the test set. The LQTAgridPy software resulted in a matrix with 19,404
descriptors. After truncation of the Lennard–Jones potential, the variance cutoff, and the
Pearson cutoff, the filters led to a significant variable reduction to 903 descriptors. Each of
these descriptors represents a grid point with the fields acting upon it. This reduced matrix
was used as the input for the selection of variables and generation of the model by PyQSAR.
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The model chosen is represented by 5 descriptors (Equation (1)) and generated the following
results: R2 = 0.8033, RMSE = 0.1313, Q2

5-fold = 0.6600, RMSEcv = 0.1716, R2
pred = 0.6480.

pIC50 = 5.1535 + 0.8409[15_13_6_NH3+_LJ]
−0.7075[16_12_5_NH3+_LJ]
+0.1484[16_20_10_NH3+_LJ]
−0.1210[21_17_13_NH3+_LJ]
+0.1913[22_12_12_NH3+_LJ]

(1)

Group G2: For G2, the same 35 compounds used in 2D-QSAR, divided into 28 com-
pounds in the training set and 7 in the test set, were employed in the 4D-QSAR. The
LQTAgridPy software resulted in a matrix with 21,252 descriptors. After truncation of the
Lennard–Jones potential, the variance cutoff, and the Pearson cutoff, the filters led to a
significant variable reduction to 3353 descriptors. Each of these descriptors represents a
grid point with the fields acting on it. This reduced matrix was used as the input for the
selection of variables and generation of the model by PyQSAR. The selected model is repre-
sented by five descriptors (Equation (2)) and generated the following results: R2 = 0.7005,
RMSE = 0.156, Q2

5-fold = 0.6095, RMSEcv = 0.1701, R2
pred = 0.6581.

pIC50 = 4.9338 + 0.2170[16_20_11_NH3+_LJ]
+0.1303[17_19_15_NH3+_LJ]
−0.7328[17_26_15_NH3+_C]
+0.2770[18_23_14_NH3+_LJ]
+0.7227[19_26_20_NH3+_C]

(2)

The 4D-QSAR statistical parameters are summarized in Table 5.

Table 5. Statistically significant 4D-QSAR models.

Dataset R2 RMSE Q2
5-fold RMSEcv R2

pred

Complete dataset 0.4599 0.2277 0.4137 0.2412 0.4353
G1 0.8033 0.1313 0.6600 0.1716 0.6480
G2 0.7005 0.1560 0.6095 0.1701 0.6581

The contribution maps were generated to allow the visualization of the positive and
negative contributions of groups in the 4D-QSAR model (Figure 6). Green spheres represent
steric interactions with positive regression coefficients, and red represents steric interac-
tions with negative regression coefficients. Similarly, blue spheres indicate electrostatic
descriptors with negative regression coefficients, and yellow represents positive regression
coefficients. Positive coefficients contribute positively to the pIC50 values, while negative
coefficients contribute negatively. The analysis for both groups G1 and G2 indicates that the
major correlation between structure and activity is not related to the oxadiazole or oxazole
core, but primarily to the substituents attached to these rings.

Group G1: For G1, the positive steric contributions [16_20_10_NH3+_LJ] and [22_12_12_NH3+_LJ]
are mainly related to the halogen substituents at R4 and R5, which, due to energy minimiza-
tion, are facing towards [16_20_10_NH3+_LJ] or [22_12_12_NH3+_LJ] in some of these
molecules. The negative steric contribution [21_17_13_NH3+_LJ] is related to the hydroxyl
group, and mainly to bulky substituents at R2. The results of the 4D-QSAR models for
G1 are related to the degree of flexibility and pIC50. Molecules with a higher degree of
freedom showed poor biological activity, which may pose an obstacle to the formation of
stable intermolecular interactions with the molecular target [18].
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Group G2: For G1, a higher conformational degree of freedom of the molecules is
also associated with low pIC50 values, which can be noticed in Figure 6 when com-
paring the least and most active compounds. The descriptor [18_23_14_NH3+_LJ] in-
dicates that bulky substituents at group R3, mainly represented by compound 31 with an
ethenylbenzene (styrene) substituent, show a positive steric contribution. The positive
contribution of [19_26_20_NH3+_C] is associated with halogen-substituted compounds
in the para position of the phenyl in group R4, whereas the [17_26_15_NH3+_C] contribu-
tion indicates that these same atoms can decrease the biological response because of the
assumed conformations.

3. Materials and Methods
3.1. Dataset Characterization

The dataset used for both QSAR modeling methods includes 64 molecules, 62 having
an oxadiazole ring and 2 having an oxazole core, as shown in Table 6. The in vitro assays
against L. infantum were performed in our research group using the same experimental
conditions, as previously reported [4]. The potency of the compounds was expressed as the
concentration required to kill 50% of parasites in vitro (IC50). The antileishmanial activity
was determined as the number of intracellular amastigotes in THP-1 macrophages, which
is the relevant form of the parasite for drug discovery purposes. The IC50 values (ranging
from 2.38 to 52.59 µM) were converted into pIC50 values for appropriately scaling the
data, which ranged from 4.28 to 5.62. The distribution of pIC50 values over the dataset
compounds is illustrated in the histogram in Figure 7.
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Table 6. Structures and pIC50 values of the dataset compounds used in the QSAR studies.

No. Structure pIC50 exp No. Structure pIC50 exp No. Structure pIC50 exp

1
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and training sets was defined as follows: 70:30 (70% of the compounds for training the 
models and 30% for the test set), 75:25, and 80:20. The best model was selected based on 
internal validation parameters, such as the regression coefficient (R²) and the 8 standard 
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regression coefficient (Q²) and the root-mean-square error (RMSE) for the test set 
compounds. The best models were recreated within Canvas using the same test set, 
training set, and binary fingerprint generated in the AutoQSAR modeling. 
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In addition to the characterization of the activity profile of the dataset, a scaffold analy-
sis was performed for the R-groups using Canvas (Maestro, Schrödinger) [19]. The general
scaffolds for the series were generated through an automated search for the maximum
common substructure (MCS).

3.2. 2D-QSAR

The 2D-QSAR was performed with the machine learning tools of AutoQSAR [19]
embedded in Maestro [20] (release 2016-3, Schrödinger LLC, New York, NY, USA) as
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previously reported [21,22]. In all AutoQSAR calculations, the proportion between the
test and training sets was defined as follows: 70:30 (70% of the compounds for training
the models and 30% for the test set), 75:25, and 80:20. The best model was selected
based on internal validation parameters, such as the regression coefficient (R2) and the
8 standard deviation (SD) for the training set, and external validation parameters, i.e., the
predicted regression coefficient (Q2) and the root-mean-square error (RMSE) for the test
set compounds. The best models were recreated within Canvas using the same test set,
training set, and binary fingerprint generated in the AutoQSAR modeling.

3.3. Hierarchical Clustering

Hierarchical clustering based on 2D similarity analyses of the dataset was performed
using Canvas 1.1 software. Linear fingerprints were calculated, and the similarity matrix
was evaluated using the Tanimoto coefficient as the similarity metric [23]. This is a popular
similarity metric for comparing chemical structures represented by means of fingerprints,
and structures are usually considered similar if the index is higher than 0.85. A higher
number of shared features results in an index closer to 1. Conversely, a higher number of
unique features results in an index closer to zero. The agglomerative method chosen was
the average linkage. Based on the similarity results, the dataset compounds were split into
two groups, and the Kelley index was used to select the optimal number of clusters [12].
Following this procedure, the number of clusters was decreased to generate two different
groups so that if the number of clusters was reduced again, it would result in the merging
of groups G1 and G2. To visualize the diversity of the identified groups in a plane, a
multidimensional scaling (MDS) approach was employed with the similarity matrix as
input in a Knime node [24].

The applicability domain (AD) defines a region or limits where the model is able to
reliably perform according to predictions [25]. The AD generated in this work was built
using the geometric convex-hull method [26]. After the MDS, the coordinates of the training
set were submitted to SciPy to generate the convex-hull output.

3.4. 4D-QSAR

The 4D-QSAR was performed with the LQTA-QSAR method [27]. The molecular
dynamics simulation was performed using GROMACS version 4.6.5 [28,29]. A dodeca-
hedron box was filled with explicit transferable intermolecular potential 3-point (TIP3P)
water molecules, and the ffG43a1 [30,31] force field was used for the all-atom molecular
simulations. The minimum distance between the molecule and walls was set to 10 Å. The
energy minimization step was performed using the steepest descent gradient and conjugate
gradient methods for a maximum of 4000 calculation steps. The pressure of the system was
controlled by Parrinello–Rahman [32] coupling, and the temperature was kept constant
by the Berendsen thermostat [33]. The volume of the system was balanced by heating in
steps of 50 K, 100 K, 200 K, and 350 K for 10 ps each, and the system was ultimately cooled
to 300 K for a 500 ps simulation. All the conformations for each ligand obtained through
molecular dynamics simulations were placed in a “.gro” file extension. The conformational
ensemble profile (CEP) to be used for the 4D-QSAR models was assembled considering the
ligand conformations obtained from 50 to 500 ps. The alignment was generated considering
the matching of the atom positions of the oxazole and oxadiazole rings. The alignment was
submitted to LQTAgridPy, a Python version of LQTAgrid. The probe NH+3 was selected
and used to represent the N-terminal unit. The probe swept all grid points from the box
to compute all Coulomb and Lennard–Jones descriptors. The data were preprocessed
with the energy cutoff of the Lennard–Jones descriptors from the CoMFA method. If the
descriptor computed at an x, y, z position had a value of Lennard–Jones energy equal
to or lower than 30 kcal/mol, no cutoff was applied. Otherwise, if the energy value ex-
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ceeded 30 kcal/mol, then the logarithmic value of the residual was added to 30 kcal/mol,
according to the following:

LJx,y,z < 30 kcal/mol→ LJx,y,z = LJx,y,z
LJx,y,z ≥ 30 kcal/mol→ L Jx,y,z = 30 + logLJx,y,z − 30

The filtering method for the descriptor selection excluded those variables with abso-
lute values of the Pearson correlation coefficient (|r|) of less than 0.2 with respect to the
pIC50 [18,27] and the low-variance descriptors that only slightly changed between com-
pounds (those with variance below the cutoff value of 0.01). The remaining descriptors were
selected by PyQSAR [34], an open-source QSAR model generator. The variable selection
used in PyQSAR uses the strategies of hierarchical clustering and a genetic algorithm (GA).
Finally, multiple linear regression (MLR) was performed with the generated descriptors,
and the pIC50 values were used as the independent variables to build the model. The
process of internal validation was carried out through conventional noncross-validated cor-
relation (R2). The robustness was examined by 5-fold cross-validated correlation (Q2

5-fold)
coefficients. For external validation, the test set was evaluated according to the coefficient
of determination of external validation (R2

pred). The images of the contribution maps were
created by using PyMOL version 1.8.4.0 [35].

4. Conclusions

Receptor-independent QSAR methods were employed in the development of 2D-
and 4D-QSAR models for a series of oxadiazole and oxazole antileishmanial derivatives.
The clustering of the dataset proved to be advantageous for optimizing the statistical
parameters in both the 2D-QSAR and 4D-QSAR models presented in this work. The final
models exhibited good internal consistency and external predictive power and were able to
accurately predict the pIC50 values when compared to the experimental values for both
2D and 4D models within the applicability domain. Once new compounds are designed,
the hierarchical clustering, MDS plot, and applicability domain are useful tools to evaluate
which group they belong to, and then the corresponding model can be applied. The results
for the 2D-QSAR models compared to that of the 4D models suggest that for this dataset,
2D descriptors correlate better to the variation in the biological activity. The reasons for
poorer results in QSAR methods that require 3D conformations are unknown; however,
they may be linked to the mode of action of this series, which is yet to be discovered.
Although the molecular target of these compounds is so far unknown, we can speculate
from the structure of the compounds that the several functionalities that are able to form
hydrogen-bonds and π-stacking interactions play a significant role in the biological activity
of this series, for example, the hydroxy-oxyindole, phenyl and oxadiazole rings. However,
the exact role of each functionality in terms of ligand–target complexes could only be
disclosed after the discovery and structural resolution of the molecular target. In addition
to the activity prediction, the generated 2D and 4D contribution maps provided information
about structural and conformational features that can be used as a valuable tool to guide
future efforts in the design of antileishmanial agents.
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