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Abstract: Influenza virus and coronavirus are two important respiratory viruses, which often cause
serious respiratory diseases in humans and animals after infection. In recent years, highly pathogenic
avian influenza virus (HPAIV) and SARS-CoV-2 have become major pathogens causing respiratory
diseases in humans. Thus, an in-depth understanding of the relationship between viral infection
and host innate immunity is particularly important to the stipulation of effective control strategies.
As the first line of defense against pathogens infection, innate immunity not only acts as a natural
physiological barrier, but also eliminates pathogens through the production of interferon (IFN), the
formation of inflammasomes, and the production of pro-inflammatory cytokines. In this process, the
recognition of viral pathogen-associated molecular patterns (PAMPs) by host pattern recognition
receptors (PRRs) is the initiation and the most important part of the innate immune response. In this
review, we summarize the roles of RNA sensors in the host innate immune response to influenza virus
and coronavirus infections in different species, with a particular focus on innate immune recognition
of viral nucleic acids in host cells, which will help to develop an effective strategy for the control of
respiratory infectious diseases.
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1. Introduction

Innate immunity is the natural resistance of the host against pathogens, including
viruses, bacteria, fungi, and others. The specific components of pathogens including nucleic
acids, proteins, peptidoglycan, and so on, which are called pathogen-associated molecular
patterns (PAMPs), can be recognized by the sensors of host cells that are called pattern
recognition receptors (PRRs) to initiate the innate immune response. Up to now, at least
five groups of PRRs have been identified, including toll-like receptors (TLRs), nucleotide-
binding oligomerization domain-like receptors (NLRs), retinoic acid-inducible gene I-like
helicases receptors (RLRs), c-type lectin receptors (CLRs), and DNA sensors including
AIM2-like receptors (ALRs) and Cyclic-GMP-AMP Synthase (cGAS). These PRRs have
different structures and are located differently in host cells. Upon engagement of PAMPs
by host PRRs, the signal-transducing pathway is initiated with the recruitment of adaptors
to the activating domains of PRRs, ultimately eliciting the innate immune response.

As the transmembrane proteins, TLRs recognize the nucleic acids, lipoproteins, and
lipopolysaccharides (LPS) of pathogens [1–4]. The engagement of TLRs with PAMPs leads
to the recruitment and activation of downstream adapters, such as myeloid differentiation
factor 88 (MyD88), TIR domain-containing adapter-inducing interferon-β (TRIF), and TIR
domain-containing adapter protein (TIRAP). These adapters are involved in NF-κB, IRF, or
AP-1 signaling pathways to trigger innate immune responses [5–7]. RLRs, mainly existing
in the cytoplasm, consisting of several members, such as retinoic acid-inducible gene I
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(RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics
and physiology 2 (LGP2), sensing the pathogenic double-stranded RNA (dsRNA)to activate
the mitochondrial antiviral signaling protein (MVAS) through the unique CARD domain,
and initiating NF-κB and IRFs signaling pathways [8–13]. NLRs, a member of PRRs in
the cytoplasm, primarily sense certain components of bacteria. Among them, the most
important representatives are NOD1 and NOD2. Once the bacterial peptidoglycan (PGN)
is recognized by NOD1/NOD2, the NF-κB and IRFs signaling pathways are subsequently
activated by recruiting and activating the receptor interacting protein 2 (RIP2), triggering
an innate immune response [14–16]. The engagement of NLRs by PAMPs of bacteria or
damage-associated molecular patterns (DAMPs) also induces the formation of inflamma-
somes, which activate pro-caspase-1 to cleave the gasdermin family proteins, resulting in
pyroptosis and inflammatory response [17–19]. CLRs are cell membrane receptors that
recognize fungi [20]. Once sensing appropriate ligands, CLRs will act on MALT1/Bcl-10
by activating spleen tyrosine kinase (Syk) through its ITAM domain, and finally activate
NF-κB and AP-1 signaling pathways [21]. In addition, the activated Syk can slao induce
the innate immune response by activating the NF-AT signaling pathway [22]. Some cy-
toplasmic or nuclear DNA receptors (cGAS, IFI16, AIM2, DAI, etc.) discovered in recent
years are capable of specifically recognizing exogenous DNA. On the one hand, these DNA
receptors induce the oligomerization of STING to induce the innate immune response
through a series of signal transduction pathways [23–25]. On the other hand, similar to
NLRs, they also induce the formation of inflammasomes and cause a strong inflammatory
response [26,27]. Furthermore, it was reported that type III interferon (IFN-III) can also
be produced in mucosal tissue cells through a similar pathway to IFN-I and demonstrate
an intense antiviral activity [28–31]. A cytoplasmic DNA sensor ku70, which specifically
induces IFN-III response, has been discovered recently [32]. After recognizing exogenous
DNA, Ku70 translocates from the nucleus into the cytoplasm and induces the production
of IFN-III through the STING-IRF1/7 signaling pathway, indicating a novel mechanism to
initiate innate immune response [33–35].

Viral respiratory diseases have always been serious threats to human health. After
infection, the patients usually display fever, sore throat, cough, and wheezing. In severe
cases, such as HPAIV, SARS-CoV, and SARS-CoV-2 infections, patients usually display
more severe systemic inflammatory responses or even succumb to death. With the outbreak
of SARS-CoV-2 in late 2019, a growing number of studies have focused on viral respiratory
diseases. This review is mainly focused on the influenza virus and coronavirus, two
commonly observed respiratory viruses in terms of their intracellular RNA sensor-mediated
innate immune responses following infection.

2. Influenza Virus

Influenza virus is a segmented single-stranded negative RNA virus of Orthomyxoviridae
with high variability and transmissibility [36]. Segments of the viral genome encode
10 major proteins, among which two viral surface glycoproteins, hemagglutinin (HA) and
neuraminidase (NA), are mainly used as the basis for viral typing [37–40]. Influenza virus
is one of the most causative pathogens of human respiratory diseases, causing seasonal
influenza and occasional influenza pandemics every year. Influenza viruses can be divided
into four types: influenza A virus (IAV), influenza B virus (IBV), influenza C virus (ICV),
and influenza D virus (IDV). Among them, IAV infects humans and a variety of animals,
such as chickens, pigs, horses, marine mammals, etc, causing zoonotic diseases. H5N1,
H7N9, and H1N1, the members of IAV that mainly infect poultry or mammals, pose a
serious threat to public health. Considering that IAV is a segmented RNA virus, antigenic
drift and antigenic shift may occur all the time during its replication due to the poor fidelity
of RNA polymerase so that new subtypes of IAV could randomly and unexpectedly emerge.
The new subtypes of IAV that better escape the host response would become dominant, and
even break the interspecific barrier, resulting in cross-species transmission in humans [41].
Specifically, on the one hand, the IAV protein with accumulated amino acid mutations,
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especially NS1 [42] and PA-X [43], plays a major role in contributing to the evolution of
IAV by inhibiting the host’s innate immune response through a variety of mechanisms:
(i) Viral proteins directly interact with PRRs or innate immune molecules to inhibit the
activation of the downstream signaling pathway (shown in Table 1) [44,45]; (ii) viral proteins
bind to the host proteins [46,47] or dsDNA [48] to suppress the expression of antiviral
genes; (iii) viral proteins bind to viral dsRNA to evade the innate immune recognition
by RNA sensors [49]. On the other hand, the random reassortment of genome segments
between different strains directly contributes to viral constant evolution and the generation
of new subtypes [50,51]. It was reported that PB2 and PA gene segments containing
mammalian adaptive mutations of H9N2 could be reassorted into the cocirculating H7N9
virus, resulting in the emergence of a new H7N9 virus genotype [52]. Thus, an in-depth
understanding of the innate immune response caused by IAV RNA in different species
would help to provide theoretical guidance for the control of IAV.

2.1. The Innate Immune Response to IAV Infection in Humans

In humans, viral RNA is primarily sensed by three types of PRRs, namely TLRs,
RLRs, and NLRs [53–55]. Among them, TLRs are mainly responsible for the recognition
of viral RNA in the endosome. Specifically, TLR3 senses dsRNA, while TLR7 and TLR8
sense single-stranded RNA (ssRNA) [56–58]. TLR9 recognizes CpG DNA or viral nucleic
acids [59]. RLRs recognize dsDNA in the cytoplasm [60]. In addition, NLRs may also sense
viral RNA, and then lead to the formation of inflammasomes [61,62].

It was reported that IAV replication intermediates could be recognized by TLR3 in hu-
man respiratory epithelial cells, which recruits TRIF and PI3K adapters and further activates
IRFs and NF-κB signaling pathways [63,64]. In vivo, TLR3−/− mice displayed a higher
viral titer and fewer inflammatory mediators upon H3N2 infection than wild-type (WT)
mice, indicating the crucial role of TLR3 in resisting IAV infection [53,65]. However, despite
the presence of TLR3, WT mice still show higher mortality, which may be attributable to
their excessive inflammatory response [53]. Notably, the innate immune response mediated
by TLR3 appears to be more inclined to induce the production of inflammatory cytokines
rather than IFNs [66]. For IAV ssRNA, it can be sensed by TLR7 to activate NF-κB in a
MyD88-dependent signaling pathway in pDCs, which contributes to the production of
IFN-I [67,68]. Furthermore, the essential role of TLR7 in inflammatory cytokine activation
was determined in TLR7−/− mice [69]. Although a few reports demonstrated that TLR8
was activated upon IAV infection [70,71], the mechanism by which TLR8 drives the innate
immune response is slightly distinct from TLR7. TLR7 mainly induces the expression of
Th17-polarizing cytokines, while TLR8 is closely related to the expression of Th1-type
cytokines and IFN-I in CD14+ monocytes upon IAV infection [70], which suggests that
TLR7 and TLR8 activate distinct pathways in monocytes. Moreover, TLR7 seems to play a
role in the recognition of ssRNA to induce the IFN-I expression in dendritic cells, while
TLR8 prefers to sense IAV ssRNA to induce the IL-12 expression in monocytes [71]. Thus, it
is necessary to explore whether TLR7 or TLR8 has a cell-type preference upon IAV infection.
It was found that the expression of TLR9 significantly increased upon H1N1 infection,
suggesting that TLR9 may also be involved in the innate immune response against H1N1
infection [72].

In addition to TLRs, RLRs, as classical cytoplasmic RNA sensors, also play an impor-
tant role in sensing viral RNA and combating viral infection [73,74]. It was reported that
RIG-I was activated and engaged to MVAS on mitochondria upon IAV infection, initiat-
ing the expression of inflammatory cytokines and IFN-α/β in human alveolar epithelial
cells [64,75]. It was also found that RIG-I could further enhance the expression of IFN-I
through the MAVS-PI3K signaling pathway after recognizing the accumulated vRNA of
IAV [76]. Furthermore, a recent study showed that RIG-I was present not only in the
cytoplasm, but also in the nucleus [77]. The presence of RIG-I in the nucleus mainly senses
vRNP in the process of IAV replication and induces the innate immune response, but the
specific mechanism needs to be further investigated. However, it is still controversial



Int. J. Mol. Sci. 2022, 23, 8285 4 of 26

whether MDA5, another representative member of RLR, contributes to the engagement
of IAV dsRNA. Previous studies indicated that MDA5 was mainly involved in the innate
immune response caused by some picornaviruses rather than IAV [78,79]. It was found
that RIG-I acted as a primary PRR for IAV dsRNA in primary murine embryonic fibroblasts
(MEFs), while MDA5 mainly functions as a transcriptional inducer, which benefits the
amplification of ISG production [80]. In brief, MDA5 does not directly contribute to the
engagement of IAV RNA, but it may participate in the amplification of host antiviral re-
sponse by degrading viral nucleic acids through the OAS/RNase L system [80]. In addition,
the length and structure of foreign RNA may also contribute to the differences in RNA
recognition between RIG-I and MDA5. MDA5 mainly recognizes long dsRNA (>1 kb) and
prefers to sense mRNA lacking ribose 2′-O methylation in the 5′cap structure, while RIG-I
prefers to recognize short dsRNA sequences (<1 kb) [60,81,82]. Thus, more efforts will be
required to investigate whether MDA5 is involved in IAV RNA recognition. Recently, it
was found that IFI16, a well-known DNA receptor, also recognizes IAV RNA through the
H1Na domain, eliciting an innate immune response by binding to RIG-I through another
PYRIN domain to promote the activation of RIG-I [83]. It seems that our current under-
standing of nucleic acid receptors is quite limited, and there may be more nucleic acid
sensors that can recognize DNA as well as RNA. In addition to IFN-I, there is no doubt
that IFN-λ, a core molecule of innate mucosal immunity, is also abundantly expressed
upon IAV infection [84–87]. However, the upstream signal transduction mechanisms of
IFN-I and IFN-III are slightly different. IRFs play a dominant role in IFN-α/β expression,
while NF-κB seems to be a key regulator of IFN-λ expression [88]. Furthermore, the IFN-β
expression depends on the coordinated functions of a multifactor enhanceosome and the
IFN-α expression on the IRF-binding cis-promoter elements, while the expression of IFN-III
relies on the activation of NF-κB or IRFs alone, which suggests that there is a wider range of
stimuli in inducing IFN-III expression [87,89,90]. These findings were further confirmed at
the level of single-cell [91]. Although the sequence and structure between IFN-I receptors
(IFNAR1/IFNAR2) and IFN-III receptors (IFNLR1/IL10R2) may vary, the downstream sig-
nal transduction process is highly similar, in which both trigger the expression of interferon
stimulated gene (ISG) through the JAK-STAT signaling pathway [92,93].

In recent years, the research on inflammasomes has become a hot area. It is now be-
lieved that two pathways concern the formation of inflammasomes, including the classical
pathway mediated by caspase-1 and the non-classical pathway by caspase-11 [94–97]. It
was reported that the expressions of NLRP3, caspase-1, pro-IL-1β, and pro-IL-18 were
up-regulated via the NF-κB signaling pathway upon IAV infection, inducing the formation
of inflammasomes in a caspase-1-dependent pathway [68]. IAV RNA or poly (I:C) can
also be directly sensed by NLRP3 in human macrophages, resulting in pyroptosis and
secreting a number of mature IL-1β and IL-18 [55,98,99]. Thus, it is very likely that NLRP3
acts as an intracellular RNA sensor for IAV to induce the formation of inflammasomes as
well as inflammatory responses. Furthermore, a recent study indicates that DEAD-Box
Helicase 3X (DDX3X), a member of the RNA helicase family protein, was also involved in
the formation of NLRP3 inflammasome during WT IAV infection, but the specific ligands of
DDX3X and related regulatory mechanisms remain unknown [100]. In addition to several
known members in the caspase family (caspases-1, 4 and 11), more and more caspases have
been shown to contribute to inflammasome formation. For instance, activated caspase-8
cleaves gasdermin D (GSDMD) during Yersinia infection, causing the formation of inflam-
masome [101,102], and activated caspase-3 can cleave GSDME, inducing pyroptosis and
lung necrosis [103], and activated caspase-6 promotes inflammasome formation though
activating the ZBP1-RIPK3 complex and induces a strong inflammatory response upon IAV
infection [104]. ZBP-1, known as an intracellular dsDNA sensor, was reported to regulate
NLRP3 inflammasome activation upon IAV infection [105]. Recently, it was found that
ZBP-1 could sense IAV Z-RNA, which promotes the activation of mixed lineage kinase
domain-like pseudokinase (MLKL) mediated by RIPK-3, resulting in necroptosis [106].
It seems that ZBP-1 may serve as a new PRR for IAV RNA inhost, which furthered our
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understanding of the mechanism of cell death and innate immune response caused by IAV
RNA. As shown in Figure 1, the RNA sensors-mediated innate immune signal transduction
pathways to IAV infection in human cells are summarized (Figure 1).
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Figure 1. Schematic diagram of innate immune response caused by IAV RNA. Upon IAV infection,
viral ssRNA in the endosome is sensed by TLR7/8 and recruits the MyD88 adapter. Activated MyD88
induces the production of inflammatory cytokines through the TAK1-IKK-NF-κB signaling pathway.
Viral double-stranded RNA in the endosome is sensed by TLR3, which further recruits TRIF and PI3K
adapters, inducing the production of IFN through the TAK1-IRFs signaling pathway. Viral dsRNA in
the cytoplasm is sensed by RIG-I and IFI16, leading to activation of NF-κB and phosphorylation of
IRFs by binding to MAVS on mitochondria. Furthermore, IAV RNA can be sensed by NLRP3, which
promotes the formation of inflammasomes, causing pyroptosis and secreting the IL-1β and IL-18. Of
note, there is no direct evidence to demonstrate that IAV RNA can be recognized by DDX3X and
MDA5 in mammals, which is indicated by dotted lines. Abbreviation: ROS, reactive oxygen species;
MLKL, mixed lineage kinase domain-like pseudokinase. Other abbreviations are shown in the legend
to Figure 2.

2.2. The Innate Immune Response to IAV Infection in Chickens

Since the avian is one of the main hosts of IAV infection, the IAV from the avian
is usually described as the avian influenza virus (avian IAV). Avian IAV is divided into
HPAIV and low pathogenic avian influenza virus (LPAIV) according to its pathogenicity.
HPAIVs mainly consist of H5 or H7 subtypes [107], not only causing mortality in chickens,
but also posing a serious threat to public health [108]. Similar to humans, avian IAV RNA
is primarily sensed by TLR3 and TLR7 [109–111]. It was reported that the TLR3 and IFN-β
mRNA levels were significantly upregulated in the brain, spleen, and lungs in H5N1-
infected chickens [112]. Meanwhile, the same change was observed under the treatment
by poly (I:C) in chickens [112–114]. Furthermore, homologs of several key proteins in
mammalian TLR3 signal transduction pathway were also been identified in chickens, such
as JNK, TRIF, TBK1, IκκE, etc. [111,115]. Thus, chicken TLR3 (chTLR3) may act as the avian
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IAV RNA sensor in chickens, performing similar functions as mammalian TLR3. However,
the TLR3 signaling cascade in chickens has not been systematically characterized. Due to
the gene sequence of chTLR8 was highly disrupted in chickens [116], instead, chTLR7 may
play a major role in the recognition of avian IAV ssRNA in endosomes [116,117]. It was
found that the expression of IL-Iβ is highly upregulated upon the stimulation of synthetic
ssRNA, a chTLR7 ligand, leading to the antiviral response in vitro [118]. It was also found
that the mRNA level of IL-Iβ was significantly upregulated by the treatment of chTLR7
agonist, while the IFN-I mRNA level had no change [116], which suggests that chTLR7
prefers to induce the production of proinflammatory cytokines rather than IFN-I. Since
RIG-I is congenitally deficient in chickens [119], thus dsRNA in the cytoplasm is mainly
recognized by chMDA5, which may account for the high susceptibility of chickens to
avian IAV infection [120–122]. It was reported that avian IAV RNA was mainly sensed by
chMDA5, which further activates IRF7 and NF-κB signaling pathways through interacting
with chSTING, initiating IFN response [123,124]. Of note, due to the natural absence
of IRF3 [111], the innate immune response is mainly mediated by IRF1 and/or IRF7 in
chickens [125–127]. In addition, chicken DDX3X (chDDX3X) could also induce IFN-β
production through the chDDX3X-chSTING-chIRF7 signaling pathway [128]. Thus, it
seems that the RLRs signal transduction in chickens is highly dependent on chMDA5 and
chSTING. Unfortunately, few reports are currently available regarding the formation of
inflammasome induced by avian IAV RNA in chickens. More efforts will be required to
investigate avian IAV-induced pyroptosis in the future.
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nition of PAMPs by PRRs. Sensing PAMPs, the PRRs recruit and activate MyD88, TRIF, TIRAP,
and other adapters. These adapters transduce activating signals, which finally induce activation
of transcriptional regulators NF-κB and IRFs, leading to the expression of IFNs and proinflam-
matory cytokines or mediators, such as IL-1, IL-6, IL-12, TNF-α, NO, etc. Abbreviation: MyD88,
myeloid differentiation factor 88; TRIF, TIR domain-containing adapter-inducing IFN-β; TIRAP, TIR
domain-containing adapter protein; IRAK, IL-1 receptor kinase; TRAF, tumor necrosis factor receptor-
associated factor; MALT1, mucosa-associated lymphoid tissue lymphoma translocation gene 1; Syk,
spleen tyrosine kinase; TAK, TGF-β activated kinase; NEMO, NF-κB essential modulator; IKK, in-
hibitor of NF-κB kinase; IκB, inhibitor of NF-κB; MAVS, mitochondrial antiviral signaling protein;
PI3K, phosphoinositol-3 kinase; NF-κB, nuclear factor kappa enhancer binding protein; IRF, interferon
regulatory factor; RIG-I, retinoic acid-inducible gene I; MDA5, melanoma differentiation-associated
gene 5; STING, stimulator of interferon genes; LPS, Lipopolysaccharide; GSDMD, gasdermin D.
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2.3. The Innate Immune Response to IAV Infection in Other Species

In addition to humans and chickens, IAV also replicates in other species. In comparison
with chickens, the homolog of RIG-I was present in ducks, which mediates innate antiviral
responses through its CARD domain [129,130]. It was reported that RIG-I and MDA5 were
all involved in the recognition of avian IAV RNA in ducks and then elicited the innate
immune response through NF-κB or IRF7 signaling pathways [131–133]. In addition, TLR7
and TLR3 were also significantly activated upon avian IAV infection [134]. It seems that
the RNA sensors in ducks are more complete than that of chickens, which may explain the
higher resistance of ducks to avian IAV infection than chickens. Swine, another host for
IAV, play an important role in IAV transmission and mutation, which results in a risk of
bidirectional infection between humans and swine [135]. In particular, the outbreaks of the
H1N1, a mutant strain in swine, have posed a severe threat to human health [136]. Thus,
it is necessary to evaluate the innate immune response caused by IAV in swine. It was
found that the expressions of TLR3, TLR7 and RIG-I in porcine alveolar macrophages were
up-regulated during IAV infection, and the JAK-STAT and MAPK signaling pathways were
highly activated [137,138]. However, MDA5 seems to contribute little to the recognition of
IAV RNA in swine [139].

2.4. Regulation of the Innate Immune Response by MiRNAs and Viral Proteins upon IAV Infection

It was found that varied miRNAs were involved in the innate immune response
upon IAV infection in humans [140]. On the one hand, some miRNAs play a positive role,
inducing an antiviral immune response and inhibiting IAV replication. For example, the
expression of miR-93 in alveolar epithelial cells infected with IAV could be significantly
down-regulated, resulting in the release of the target protein JAK, which mediated innate
immune response through the JAK-STAT signaling pathway [141]. The expression of
miR-340 was down-regulated in IAV-infected A549 cells, relieving the inhibition of RIG-I
and OAS2 and enhancing the innate immune response [142]. On the other hand, the other
miRNAs play a negative role in innate immune response upon IAV infection. For instance,
miR-146a-5p is up-regulated in human nasal epithelial cells (HNECs) infected with H3N2,
and negatively regulates TRAF6 expression [143]. miR-29c enhances the expression of
A20 protein induced by IAV, inhibiting the activity of NF-κB and the expression of pro-
inflammatory cytokines [144]. Previous reviews have well documented the multiple roles
of miRNAs in the regulation of innate immunity upon IAV infection [140,145]. In addition
to miRNAs, other noncoding RNAs such as long non-coding RNAs (lncRNAs), and circular
RNAs (circRNAs) may also involve regulation of mRNAs in control of gene transcription.
Furthermore, some IAV viral proteins, as listed in Table 1, were also found directly suppress
the innate immune response in different species.

Table 1. The roles of IAV proteins in innate immune response across the species.

Host Proteins Protein Function References

Human

NS1

Inhibit the activation of RIG-I [146]

Inhibit the ubiquitination of RIG [147–149]

Inhibit the formation of NLRP3 inflammasome [150]

Bind with IKK and Inhibit the activation of NF-κB [151,152]

Inhibit the ubiquitination of TRAF3 [153]

Degradation of sphingosine 1-phosphate lyase (SPL)
and suppress IKKε-mediated type I IFN response [154]

PB1-F2

Destroy the mitochondrial membrane [155,156]

Impair innate immunity by inducing mitophagy [157]

Interact with IKKβ and Inhibit the activation of NF-κB [158]

Interact with IRF3 and reduced the expression of IFN-β [159]

PB1 Degrade the MAVS by autophagy [160]
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Table 1. Cont.

Host Proteins Protein Function References

Human PA-X

Degrade viral dsRNA [161]

Inhibit the RIG-I-MAVS signaling pathway [162]

Inhibit Ankrd17-mediated immune response [163]

inhibit NF-κB transcription [164]

Chicken
NS1 Act in concert with polymerase complexes [165]

PB1-F2 Interact with MAVS and inhibit the IFN response [166]

Duck
NS1 Inhibit the MDA5-mediated signaling pathway [133]

PB1-F2 Inhibit RIG-I ubiquitination [167]

Swine NS1 Impair ASC speck formation and inhibit
IL-1β production [168]

3. Coronavirus

Coronavirus is a linear single-stranded RNA virus, belonging to the genus of Corona-virus
in the family Coronaviridae [169]. According to the phylogeny, it can be classified into four
genera: α, β, γ, and δ [170]. Coronavirus can infect a variety of mammals and poultry,
including humans. At present, severe respiratory symptoms are consistent in humans and
poultry, while distinct gastrointestinal symptoms are present in swine [171]. Therefore, it
remains a high demand to explore the innate immune response upon coronavirus infection.
The innate immune response to coronavirus infection in different species is reviewed
as follows.

3.1. The Innate Immune Response to Coronavirus Infection in Humans

Up to now, three types coronavirus pose a severe threat to public health, namely SARS-
CoV, SARS-CoV-2 and MERS-CoV, all of which belong to β-Coronavirus [170,172,173].
Both SARS-CoV and SARS-CoV-2 have caused global pandemics, especially SARS-CoV-2,
which has caused millions of people deaths and uncountable economic losses worldwide
since its outbreak in late 2019 [169,174]. With the constant evolution of SARS-CoV-2, a
variety of evolved strains such as the Delta mutant strain [175] and Omicron mutant
strain [176] have emerged, which results in enormous challenges for its prevention and
control. Previous studies reported that SARS-CoV inhibited the activation of IFN-I promoter
in the early stage after infection [177,178], and SARS-CoV-2 showed a similar effect [179].
The early immunosuppression in host could benefit the proliferation of the coronavirus,
leading to delayed production of inflammatory cytokines and causing serious clinical
symptoms [177,180].

Similar to IAV, the RNA sensors for coronavirus are TLRs and RLRs [181,182]. In vivo,
TLR3−/− or TRIF−/− mice showed an increased susceptibility to SARS-CoV infection
compared to that of wild-type (WT) mice, displaying a more severe lesion in the lung
and a higher viral titer in the serum than the WT mice [183]. It was, not until recently,
found that TLR3 and TLR7, as direct intracellular RNA sensors, were highly activated in
SARS-CoV-2-infected CalU-3/MRC-5 multicellular spheroids in the early stage of infection.
Particularly, TLR3 activates the expression of IL-1β, IL-4, IL-6 and IFN-I largely through
the IRF3 signaling pathway within 48 h after SARS-CoV-2 infection, while IRF7 seems to
induce the expression of IFN-I and IFN-III through the activation of NF-κB after 48 h of
viral infection [184]. These findings provide direct evidence that TLR3 acts as an RNA
sensor of coronavirus. In addition, it was reported that severe cases with SARS-CoV-2
infection have more multiple mutations in TLR3 than those with mild clinical symptoms,
and these mutations are closely related to the severity of clinical symptoms, suggesting
that the mutations of TLR3 may be the potential reason for severe clinical symptoms [185].
Furthermore, it was found that the polymorphism of L412F in TLR3 was more closely
related to the severity of SARS-CoV-2 infection [186]. These findings indicate a critical role
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of TLR3 in recognizing the coronavirus RNA, triggering an innate immune response to
SARS-CoV-2 infection.

It was found that TLR7/8 played an indispensable role in the recognition of corona-
virus ssRNA, triggering host response [187,188]. SARS-CoV ssRNA could be engaged by
TLR7 in plasmacytoid dendritic cells (pDCs), eliciting a rapid innate immune response
to suppress viral replication [189]. Furthermore, it was also found that TLR7 functioned
as a primary sensor for viral ssRNA upon MERS-CoV infection, modulating the IFN-I
response [190]. In early 2020, SARS-CoV-2 broke out worldwide [174]. In order to better
understand the innate immune response caused by SARS-CoV-2, bioinformatics analysis
was used to identify the ssRNA sequences sensed by TLR7/8 in the whole genomes of
SARS-CoV-2, SARS-CoV and MERS-CoV. It was found that a number of viral ssRNA
fragments could be sensed by TLR7/8, which provides coronavirus with a shortcut to
trigger an innate immune response [191]. It should be noted that more UU (U/C) and UU
(G/A) motifs existed in SARS-CoV-2 genomes compared with that of SARS-CoV, which may
lead to increased inflammatory response and aggravated severe clinical symptoms [187].
Clinically, the patients, especially males, with TLR7 loss of function variants showed
higher susceptibility to SARS-CoV-2 and lower expression level of IFN-I and IFN-II [192],
while mutations in TLR8 seems to have no effect on its receptor function [193]. Taken
together, lines of evidence show that both TLR7 and TLR8 play an essential role in sensing
coronavirus ssRNA to initiate the innate immune response, and the mutations of TLR7
may be used as an indicator to evaluate the human susceptibility to SARS-CoV-2. Of note,
since the genes encoding TLR7 and TLR8 are present on the X chromosome, sex preference
occurred upon coronavirus infection, especially SARS-CoV-2, which is manifested by the
low expression level of IL-6 and relatively mild clinical symptoms in women [194,195].

Different from IAV, coronavirus genome in the cytoplasm of host cells is primarily
sensed by MDA5 and LGP2, consequently activating innate immune response [196–198]. It
was found that SARS-CoV-2 replication intermediates specifically activated a delayed IFN-I
response through MDA5, LGP2 and NOD1 in CalU 3 cells, while RIG-I did not affect IFN-I
response [196]. Surprisingly, NOD1, a well-known sensor for bacterial peptidoglycans,
was identified as a PRR sensing SARS-CoV-2 [196]. It would be interesting to explore the
mechanism by which NOD1 triggers innate immune response upon SARS-CoV-2 infection.
As for RIG-I, another important dsRNA sensor in the cytoplasm, its role in the innate
immune response during SARS-CoV-2 infection remains controversial. It was early found
that RIG-I had no contribution to IFN-β production upon SARS-CoV-2 infection [196,199],
while a recent study indicated that the IFN-β expression significantly decreased in RIG-I−/−

CalU 3 cells [200]. Furthermore, it was reported that the RIG-I helicase domain (HD) was
able to directly interact with the 3′UTR of SARS-CoV-2 RNA in human alveolar epithelial
cells, and inhibited viral replication by blocking the binding of RNA-dependent RNA
polymerase (RdRp) to viral RNA [201], suggesting that RIG-I plays a role in the host
response to SARS-CoV-2 infection. Thus, it seems that RIG-I inhibits viral replication in an
IFN-independent manner upon SARS-CoV-2 infection.

Evidence has shown that severe forms of SARS-CoV or SARS-CoV-2 infections were
closely related to acute severe inflammatory reactions [202,203]. Multiple proinflammatory
cytokines and inflammasome derivatives, such as IL-1β, IL-18, NLRP3 and LDH, were
detected in the serum of patients infected with SARS-CoV-2, which suggests that a strong
inflammatory response caused by SARS-CoV-2 may be closely related to inflammasome
formation [203–205]. Persistent activation of NLRP3 inflammasomes can lead to severe
clinical symptoms, including fever, necrosis, and severe inflammatory responses [206].
A recent study analyzed the inflammasome activation in the serum of 129 SARS-CoV-2
patients, and found that the expression of caspase-1 p20 and IL-18 in the serum was signifi-
cantly elevated [207]. Furthermore, the NLRP3-ASC complex was observed in peripheral
blood mononuclear cells (PBMCs), which indicates that NLRP3 is highly activated upon
SARS-CoV-2 infection [207]. Moreover, a considerable amount of cleaved GSDMD, an indi-
cator of pyroptosis, was also observed using multiplex immunohistochemistry [208]. These



Int. J. Mol. Sci. 2022, 23, 8285 10 of 26

results indicate that SARS-CoV-2 is capable of initiating NLRP3 activation. Nevertheless,
the effect of coronavirus RNA on the formation of inflammasomes is still not clear. It was,
not until recently, found that GU-rich single-stranded RNA (GU-rich RNA) derived from
SARS-CoV or SARS-CoV-2 could initiate a TLR8-dependent pro-inflammatory response
in human macrophages without pyroptosis. GU-rich RNA can be engaged by TLR8 and
activates inflammasomes through the TLR8-Caspase 8-RIPK3-NLRP3 signaling pathway,
and releases mature IL-1β, IL-6 and TNF, which provides preliminary data favoring the
involvement of coronavirus RNA in inflammasome formation [209,210] Further studies are
required to determine whether coronavirus RNA triggers inflammatory responses through
the classical pyroptotic pathway. Given the current pandemic of SARS-CoV-2, to better
understand the innate immune recognition of coronaviruses with cross-species transmis-
sion capability, we comprehensively compared the innate sensing of three coronaviruses,
MERS-CoV, SARS-CoV, and SARS-CoV-2 (Table 2).

Table 2. The comparison of innate immune sensors involved in recognition of MERS-CoV, SARS-CoV,
and SARS-CoV-2 infections.

Virus TLRs RLRs NLRs CLR Others

MERS-CoV TLR7 [190]
TLR8 [191]

RIG-I [211]
MDA5 [211]

NLRP3 [212] Mincle [211] PKR [213]

SARS-CoV TLR7 [189]
TLR8 [191]
TLR4 [183]
TLR2 [214]

N/A 1 NLRP3 [215] N/A N/A

SARS-CoV-2 TLR3 [184]
TLR7 [184]
TLR8 [191]
TLR4 [216]
TLR2 [201]

MDA5 [196]
LGP2 [196]
RIG-I [201]

NOD1 [196]
NLRP3 [207]

N/A PKR [217]
OAS [217]

1 N/A: not applicable (data for the corresponding sensor has not been reported).

Interestingly, it was found that the cGAS-STING signaling pathway, a signaling path-
way activated by recognition of DNA by cellular cGAS, was also activated to drive a robust
IFN-I response after SARS-CoV-2 infection [218,219]. Different from the direct sense for
viral RNA by TLRs and RLRs, cGAS-STING activation mainly relies on the recognition of
DNA from either pathogens or host tissue damages [220]. RNA sensors-mediated signal
transduction pathways in the innate immune response to coronavirus infection in humans
are summarized and shown in Figure 3.

3.2. The Innate Immune Response to Coronavirus Infection in Chickens

Avian infectious bronchitis virus (IBV), a representative avian coronavirus, mainly
causes respiratory symptoms, but the lack of available cell lines for viral infection has
limited its further investigation [221]. Thus, the current research on IBV is mainly focused
on vivo experiments. At present, due to the emergence of mutant strains, the control of
IBV is becoming more and more difficult [222]. An in-depth understanding of the innate
immune response to IBV infection is very important. Existing evidence suggests that
chTLR3, chTLR7, and chMDA5 are involved in the recognition of IBV RNA to trigger the
innate immune response [223]. Upon IBV M41 strain infection, the TLR3-TRIF signaling
pathway was highly activated, which further triggered the innate immune response and
inhibited IBV replication [224,225]. In contrast, it was found that the mRNA level of
chTLR3 was down-regulated in respiratory epithelial cells early during IBV Connecticut
strain infection [226]. Furthermore, the effect of IBV infection on the chTLR7 signaling
pathway is still not very clear [227]. It was reported that the expression of chMDA5
and chSTING were up-regulated in IBV-infected birds, which further initiated the innate
immune response [225,228]. chLGP2, a member of RLRs with less investigated in chicken,
was reported to interact with chTRBP to dampen IBV infection [229]. The research on the
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innate immune response to coronavirus infection in chickens is quite limited and should be
highly encouraged.
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Figure 3. Schematic diagram of innate immune response induced by coronavirus RNA. Viral dsRNA
is sensed by TLR3 in endosomes, triggering the innate immune response, while ssRNA in endosomes
is sensed by TLR7/8 and induces the production of inflammatory cytokines through the MyD88-
TAK1-IKK-NF-κB signaling pathway. Viral dsRNA is recognized by MDA5 and NOD1, and then
interacts with MAVS on mitochondria, which further activates the NF-κB and IRFs signaling pathways.
Viral GU-rich ssRNA is sensed by TLR8, causing the activation of NLRP3 inflammasomes through the
Caspase-8-RIPK1 signaling pathway, leading to the secretion of mature IL-1β and IL-18. Importantly,
it is not clear whether viral dsRNA is recognized by RIG-I to initiate IFN response or whether viral
RNA induces inflammasome formation; thus, the associated pathway is indicated by dotted lines.
Abbreviation: RIPK, Receptor interacting protein kinase; other abbreviations are shown in the legend
to Figure 2.

3.3. The Innate Immune Response to Coronavirus Infection in Other Species

Porcine coronavirus consists of porcine respiratory coronavirus (PRCV), porcine delta
coronavirus (PDCoV), porcine epidemic diarrhea virus (PEDV), transmissible gastroenteri-
tis virus (TGEV), etc. It was reported that viral RNA could be sensed by TLR3 and TLR9
to activate the NF-κB signaling pathway in PEDV-infected IECs, which is independent
of RIG-I [230]. Meanwhile, the mRNA levels of MDA5 were significantly up-regulated
in TGEV-infected porcine kidney cells, promoting the expression of inflammatory cy-
tokines [231]. Of note, a recent study found that PDCoV infection robustly activated the
expression of RIG-I, thus enhancing the IFN-β production [232]. It was also demonstrated
that TLR7 expression was significantly upregulated and elicited IFN response after PEDV
infection in IPEC-J2 cells [233]. Furthermore, it was recently found that NLRP3 was highly
activated in porcine coronavirus infected cells, leading to pyroptosis as demonstrated by
cleaved GSDMD and IL-1β release [234], suggesting that NLRs may play an important role
in the innate immune response to porcine coronavirus infection.

3.4. The Innate Immune Regulation by MiRNAs and Viral Proteins during Coronavirus Infection

Up to now, there are few reports regarding the regulation of innate immune response
by miRNAs during coronavirus infection in humans. It was found that miRNAs were
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involved in innate immune response, viral binding, viral invasion, and intracellular stress
after coronavirus infection [235–238]. Angiotensin-converting enzyme 2 (ACE2), which
serves as a receptor for coronavirus, can interact with transmembrane serine protease 2 (TM-
PRSS2) to facilitate viral entry [239]. It was reported that miR-200c could target the 3′-UTR
of ACE2 mRNA, reducing the ACE expression and suppressing viral entry [240]. Similar to
miR-200c, miR-98-5p suppressed the expression of TMPRSS2 [241]. Interestingly, a recent
study identified four unique microRNA-like small RNAs encoded by SARS-CoV-2, namely
SCV2-miR-1ab-1-3p, SCV2-miR-1ab-2-5p, SCV2-miR-1ab-3-5p, and SCV2-miR-3a-5p, which
targets the gene of IFN-I signaling pathway, regulating innate immunity [242]. Furthermore,
two virus-derived miRNA isoforms were identified in SARS-CoV-2-infected human cells,
namely CoV-2-miR-O7a.1 and CoV-2-miR-O7a.2. CoV-2-miR-O7a.2 suppresses ISGs expres-
sion by targeting its 3′UTR and evades the IFN-mediated immune response [243]. Except
for the limited research, current research performed a functional enrichment analysis regard-
ing the roles of miRNAs in the inflammatory response in SARS-CoV-2-infected patients.
Specifically, three miRNAs were significantly down-regulated in SARS-CoV-2-infected
patients, namely miR-26a-5p, miR-29b-3p, and miR-34a-5p. Among them, miR-26a-5p may
regulate inflammatory response by targeting IL-6, and miR-34a-5p is predicted to regulate
inflammation by targeting Caspase-1 [244].

In contrast to miRNAs, the roles of coronavirus proteins in the innate immune response
have been widely investigated across the species (Table 3).

Table 3. The roles of coronavirus proteins in innate immune response across the species.

Host Virus Viral Protein Protein Function References

Human

SARS-CoV

M Delay the formation of TRAF3-containing complex [245]
N Inhibit the ubiquitination of RIG-I mediated by TRIM25 [246]

N, ORF3b, ORF6 Inhibit the activation of IRF3 and the translocation of NF-κB [247]
NSP1 Decrease the phosphorylation of STAT1 [178]

PLpro(Nsp3) Inhibit the ubiquitination of STING, TBK1 and IRF3 [248,249]
Nsp14, Nsp16, Nsp10 Induce viral mRNA cap methylation and escape the detection

of MDA5
[250,251]

ORF3a Degrade the expression of IFNAR1 [252]
ORF6 Inhibit the translocation of STAT1 [253]

SARS-CoV-2

M Degrade the ubiquitinated TBK1 and inhibit IFN-I response [254]
N Interact with RIG-I and suppress the RIG-I signaling pathway [255]

Nsp1 Bind to mRNA entry channel of the ribosome and inhibit ISGs
mRNA translation

[256]

Nsp5 Cleave RIG-I and promote the proteosome-mediated degradation
of MAVS

[257]

Nsp6 Inhibit the activation of IRF3 and suppress the phosphorylation of
STAT1 and STAT2

[258]

Nsp8, Nsp9 Disrupt the function of signal recognition particle (SRP) complex and
suppress IFN trafficking

[256]

Nsp16 Inhibit ISGs mRNA splicing and suppress innate immune response [256]
Nsp12 Inhibit the IRF3 nuclear translocation and attenuate IFN-I production [259]
Nsp13 Interact with TBK1 and inhibit its activation [260]
Nsp14 Shut down the protein synthesis and abolish the production of ISGs [261]
Nsp15 Interact with RNF41 and inhibit the activation of TBK1 [260]
ORF3a Interact with STING and inhibit the nuclear import of NF-κB [262]
ORF6 Interact with NUP98-RAE1

Inhibit STAT1 nuclear translocation
[260]
[263]

ORF7a Destabilize the TBK1 and lead to attenuated IRF-3 phosphorylation [264]
ORF8 Induce ER stress and inhibit the nuclear translocation of IRF3 [265]

ORF9b

Interact with RIG-I, MDA-5, and STING and inhibit the
phosphorylation of IRF3

[266]

Interact with TOM70 and suppress the innate immune response [267]
Interrupt the K63-linked polyubiquitination of NEMO and inhibit

IKKα/β/γ-NF-κB signaling pathway
[268]

ORF10 Degrade MAVS through mitophagy [269]
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Table 3. Cont.

Host Virus Viral Protein Protein Function References

Human MERS-CoV

NS4a Impede the activation of PKR [213,270]

NS4b
Inhibit the activation of RNaseL [271]

Bind to karyopherin-α4 (KPNA4) and inhibit the translocate of NF-κB [272]

ORF4a Inhibit the activation of MDA5 [273,274]
ORF4b Inhibit the formation of TBK1 signaling complex [275]
ORF5 Inhibit the activation of NF-κB [276]

Chicken IBV
Nsp2 Inhibit the activation of PKR [277]
Nsp3 Interrupt the activation of RIG-I and NF-κB [278]

Accessory protein 5b Induce a host shutoff and suppress IFN production [279]

Swine
PEDV

Nsp1 Inhibit the activation of IRF1/IRF3 [280]
Degrade CREB-binding protein and inhibit IFN-I production [281]

Inhibit the translocation of NF-κB [282]
ORF3 Inhibit the phosphorylation of IκBα and NF-κB translocation [283]

PLP (Nsp3) Deubiquitinate RIG-I and STING [284]
3CLpro (Nsp5) Cleave NEMO to inhibit the innate immune response [285]

Nsp15 RNA degradation of TBK1 and IRF3. [286]
Nsp16 Inhibit the activation of RIG-I and MDA5 [287]

N Inhibit the translocation of NF-κB [288]
Interrupt the interaction between IRF3 and TBK1 [289]

E Inhibit the RIG-I mediated IFN-β production [290]

TGEV Nsp3 Inhibit the activation of NF-κB [291]

4. The Differences in Innate Immune Response between Species during
IAV/Coronavirus Infections

Innate immune response is highly different between species for both IAV and coro-
navirus infections. On the one hand, the differences in PRRs between species directly
influence the host’s innate immune recognition. For instance, the congenital deficiency
of RIG-I in chicken enhances its susceptibility to these two viruses greatly [119]. On the
other hand, the discrepancy in protein-protein interactions (PPIs) modulated by innate
immune recognition of viral RNA also contributes to the differences in innate immune
responses across the species. It was reported that the MAVS-IRF3 signaling pathway plays
an important role in innate immune response in humans [292], whereas in chickens, it
seems to be more inclined to induce innate immune response via the STING-IRF7/MAVS-
IRF7 signaling pathway [128]. Damaged dsDNA could be recognized by TLR9/cGAS
upon coronavirus infection, thereby inducing an innate immune response via the TLR9-
MyD88/cGAS-STING signaling pathway in humans [220,293], but similar mechanism has
not been identified in chickens. In addition, it was found that NOD1, an RNA sensor
for corona-virus [196], could recognize poly (I:C) dsRNA and induce an innate immune
response by binding to MDA5 in humans [294], whereas no similar report has been found in
other species. Furthermore, a recent study found that PDCoV infection induced the expres-
sion of IFN-β via the RIG-MAVS signaling pathway in swine [232], however, RIG-1 initiates
host response in an IFN-independent way by competitively binding to the coronavirus
RNA with RdRp in humans [201].

5. Conclusions

Up to now, IAV and coronavirus have posed a serious threat to animals and public
health. As the first line of host defense against virus infection, innate immune response
is particularly important. TLRs, NLRs, and RLRs play pivotal roles in innate immune
response via recognizing IAV and coronavirus RNAs to trigger innate immune signal-
ing pathways. Both IAV and coronavirus RNAs in endosomes are sensed by TLR3 and
TLR7. However, IAV appears to trigger the innate immune response mainly through RIG-I,
whereas coronavirus prefers to rely on MDA5. It is still unclear whether there are any RNA
sensors currently unknown to us and are involved in the innate immune response to IAV
and coronavirus infections. However, the innate immune recognition of IAV/coronavirus
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RNA also varies considerably across species, including the differences in PRRs and PPIs
modulated by innate immune recognition of viral RNA. This review primarily focuses on
PRRs-mediated innate immune signaling and provides an overview of the roles of RNA
sensors in host innate response to IAV and coronavirus infections in different species. A
comprehensive understanding of the mechanisms by which these two respiratory viral
pathogens initiate the innate immune response via RNA sensors will help us better un-
derstand the difference in susceptibility across the species and develop novel vaccines or
antiviral drugs for their effective control.
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