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Abstract: The theory of orientation polarization and dielectric relaxation was developed by P. Debye
more than 100 years ago. It is based on approximating a molecule by a sphere having one or more
dipole moments. By that the detailed intra- and intermolecular interactions are explicitly not taken
into consideration. In this article, the principal limitations of the Debye approximation are discussed.
Taking advantage of the molecular specificity of the infrared (IR) spectral range, measurements of the
specific IR absorption of the stretching vibration υ(OH) (at 3370 cm−1) and the asymmetric υas(CH2)
(at 2862.9 cm−1) are performed in dependence on the frequency and the strength of external electric
fields and at varying temperature. The observed effects are interpreted as caused by orientation
polarization of the OH and the adjacent CH2 moieties.

Keywords: orientation polarization; broadband dielectric spectroscopy; infrared (IR) spectroscopy

1. Introduction

In referring to Einstein’s theory of Brownian motion [1], Debye developed the theory
of orientation polarization [2–4] more than 100 years ago. It is based on approximating a
molecule by a sphere having one or more dipole moments. In this approach, an atomistic
understanding of the intra- and inter-molecular interactions is explicitly not considered.
However, this can be only a rough approximation. If one considers, for instance, the
widely studied glass-forming liquid glycerol as a model (Figure 1), one has to realize that it
contains multiple intramolecular dipoles caused by partial charges of its atoms; further-
more, the intramolecular force-field parameters [5] vary widely from ~0.2 kcal mol−1 for
torsional-type vibrations to ~300 kcal mol−1Å−2 for stretching potentials having additional
temperature dependences, which are not known in detail.

A recent IR-based study [6] on a homologous series of polyalcohols, including glycerol,
was conducted in a wide range of temperatures from far above to far below the calori-
metric glass transition Tg. Thus, the potentials and hence the bond lengths of specific
intramolecular and intermolecular interactions were determined. While the former has
an expansion coefficient of (~0.1 pm/100 K) with only smooth changes, the latter shows a
30–40 times stronger response with pronounced kinks at Tg. It is to be expected that such
heterogeneities on intramolecular and intermolecular scales are a general phenomenon in
liquids and glassy systems.

Nowadays, modern experimental measurement techniques [7] are enabled to deter-
mine the fluctuations of polar molecules in a broad frequency range spanning typically
more than 12 decades at widely varying temperatures. Thus, it became possible to study,
for instance, the scaling of relaxation processes [8] in great detail. In comparing dielectric
measurements performed along isobars and/or isotherms, the measured spectra is shown
to collapse into each other if displayed as a function of a single variable, that is, a product of
the inverse temperature and the density power with a material specific scaling exponent [9].
However, several examples [9–12] exist demonstrating that this scaling is only a rough
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approximation. In all these studies, only the mean relaxation rate is considered while the
temperature-dependence of the relaxation time distribution function is neglected.
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and the (CCO) and the bending of the OH moieties. Applying external frequency de-
pendent electric fields to a sample at widely varying temperatures and determining the 
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wagging vibration ω(CH2) and stretching vibrations υ(CCO), υ(CO), and υ(COH). 

Figure 1. IR-active vibrations being involved in intra- and/or intermolecular interactions. The atomic
charges (in electronic units) of the labeled atoms are according to [5]: O1: −0.581, O2: −0.585, O3:
−0.585, C1: 0.182, C2: 0.055, C3: 0.182, H1: 0.026, H2: 0.026, H3: 0.04, H4: 0.026, H5: 0.396, H6: 0.396,
and H7: 0.396. The calorimetric glass transition temperature Tg of glycerol is 185 K.

2. Theory of Operation for IR-Based Orientation Polarization Spectroscopy

The infrared spectral range is known to have a “fingerprint” character for the intra- and
intermolecular bonds of a molecule under study. Glycerol, for instance, has characteristic
vibrations (Figure 2) representing the stretching of the (CO), the (OH), the (CH), and the
(CCO) and the bending of the OH moieties. Applying external frequency dependent electric
fields to a sample at widely varying temperatures and determining the field-induced IR-
dichroism of specific absorption bands enables one to measure the orientation polarization
of the respective molecular units separately.
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An external electric field
⇀
E ext tries to orient a dipole

⇀
µ against the thermal fluctuations

of the molecular system as a whole [14]. The counterbalance between both results in an
ensemble-averaged orientation polarization

〈
⇀
µ
〉

or
given by the Langevin equation

〈
⇀
µ
〉

or
=
∣∣∣⇀µ ∣∣∣〈cos θ〉=

∣∣∣⇀µ ∣∣∣L (x) =
ex + e−x

ex − e−x = cothx− 1
x

(1)

where kB is Boltzmann´s constant, θ is the angle between
⇀
µ and

⇀
E ext, T is the absolute

temperature, and x =
⇀
µ

⇀
E ext/kB T. In this approximation, the assumption is made that

the different dipolar units fluctuate independently from each other. For the resulting

orientation polarization,
⇀
Por holds

⇀
Por = n

〈
⇀
µ
〉

or
(ε∗ − 1)εo

⇀
E ext (2)

where n is the number density of dipoles
⇀
µ , ε* is the complex dielectric function, and εo is

the permittivity of free space. If the dielectric function is determined by a single dielectric
relaxation process having a relaxation time τ, then ε* follows according to Debye theory of
orientation polarization as

ε* = ε′ − iε′′ = ε∞ + (εs − ε∞)/(1 + iωτ) (3)

where ω is the frequency of the external electric field
⇀
E ext(ω); τ is a characteristic relaxation

time, and εs and ε∞ are the values of the real part ε’ for ωτ << 1 and ωτ >> 1, respectively.
For a molecule, having a dipole-moment

⇀
µ and a transition moment

〈
ψi/

⇀
µ /ψe

〉
in

the quantum mechanical dipole approximation [15] the absorption A is proportional to

A ∼
〈
ψi/

⇀
µ /ψe

〉2
(4)

where ψi and ψe are the wave functions of the initial and exited states. Assuming that
these are not seriously changed by the application of an external frequency dependent

electric field
⇀
E ext (ω), it is expected that the orientation polarization of polar moieties is also

reflected in the square of the transition moment, which is proportional to the respective
IR absorption (Figure 3). If the change in the absorption ∆Aor(ω) is caused solely by
orientation polarization,

∆Aor(ω) ∼
〈
ψi/

〈
⇀

µ (Eext.(ω, T)
〉

or
/ψe

〉2
(5)

becomes frequency and temperature dependent. For isotropic systems, ∆Aor(ω) is the same
for positive and negative electric fields, and hence, it is evident in the second harmonic with

respect to the frequency of the external electric field
⇀
E ext(ω). It is measured as modulation

on a high absolute level of absorption in contrast to dielectric spectroscopy where one
measures against zero. This means that phase sensitive detection is essentially required.

In order to estimate roughly the expected effects in absorption of a special IR-band, a
molecule is assumed to have a dipole moment of 1 Debye; for a field strength of 105 V/cm,
one finds for the interaction energy between the external electric field, and the dipole

a value of
→
µ

⇀
E ext~ 2 × 10−22 J. At a temperature of T = 300 K, the thermal energy kBT

has a value of ~5 × 10−21 J, and hence x~
⇀
µ

⇀
E ext / kB T~0.05. According to the Langevin

Equation (1) for the induced averaged polar orientation, a value of 〈cos θ〉~0.017, and hence
∆A~0.0003 is obtained, which is small but well measurable with phase sensitive detection.
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Figure 3. (a) Scheme of the sample cell:
⇀
E (λ) is the E-vector of the IR-light and

⇀
E (ext) is the external

electric field applied to the sample; (b) orientation polarization as measured by dielectric and IR
spectroscopy in the second harmonic of the modulated absorption.

3. Experimental Section

The glycerol sample (purity 99%), having vapor pressure of <1 mm Hg (20 ◦C),
refractive index of 1.47, and boiling point of 182 ◦C, was obtained from Sigma Aldrich
and used as received. The sample was placed between CaF2 windows with evaporated
mesh electrodes (Figure 4a–c). As spacer, a poly(ethylene terephthalate) (PET) foil of ~3 µm
thickness was used.

In order to realize the suggested experiments, the following experimental requirements
have to be fulfilled: (i) the sample cell as a whole has to have an IR-transmission at
least in the percent range; (ii) it must be possible to apply high-external electric fields
(105 V/cm–106 V/cm) in a wide frequency (1–100 kHz); and (iii) it must be possible to apply
temperature (100–400 K) range. To combine these features is not trivial. Evaporated nm
thin metal electrodes as often used in Stark-effect studies [16–20] have a strong temperature
dependence of the resistivity, thus excluding measurements at widely varying temperatures.
This holds as well for semitransparent electrodes like ZnO etc.
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Figure 4. (a) Hexagonal evaporated mesh structure evaporated on an IR-transparent CaF2 substrate.
(b) Scheme of the mesh electrodes in crossed arrangement; the evaporated electrodes are face to face
with a separation of a few µm with the sample material in between. (c) Microscope image of the
mesh structure with mesh size of 25 µm. (d) Scheme of the experimental setup; the quantum cascade
laser diode emits a parallel beam (waist ~3 mm) of IR light transmitted through the sample cell and
measured with a solid-state detector. Electric fields are applied to the sample by use of a function
generator and a high-voltage amplifier. The second harmonic of the signal is analyzed by phase
sensitive detection with a lock-in amplifier. The whole setup is fully computer-controlled.

A possibility to overcome the above outlined problems turned out to be hexagonal
gold meshes (inner width of one mesh 26 µm, web width 8 µm, and thickness ~200 nm)
electrodes (Figure 4a), which are evaporated on an IR-transparent CaF2 substrate (thickness
1 mm). For electrical insulation, the area with the mesh electrodes was covered by a ~150 nm
protecting SiO2-layer deposited by chemical vapor deposition (CVD). The IR transmission
of a single CaF2 window with evaporated mesh electrodes was ~40% at a wavelength of
2966.8 nm (3370.6 cm−1). In order to apply high external electric fields, the mesh electrodes
were mounted in crossed orientation face to face (Figure 4b). A microscope image of two
hexagonal electrodes is shown in (Figure 4c).

As radiation source quantum cascade laser diodes (S/N 2187/07-05, S/N 2186/07-27,
Nanoplus, Germany) were employed emitting IR light either at a wavelength of 2966.8 nm
(3370.6 cm−1) or 3493 nm (2862.9 cm−1); it was well directed with a beam waist of ~3 mm.
The custom-made sample cell enabled temperature control in the range between 150–400K,
with an accuracy of +/−0.2 K; external electric fields were provided by a function generator
(Hewlett Packard 3312A) and a high-voltage amplifier (Pendulum A440D, maximum
voltage +/−200 V (peak-peak) at frequencies between 1 Hz and 500 kHz) and applied to
the sample by using the above-described hexagonal electrodes. As IR detector, a solid-state
sensor (PDAV J5 Thorlabs) was used with buffer preamplifier. The signal was analyzed by
a lock-in amplifier (SAR 550). The whole set up was fully computer controlled based on
custom made LabVIEW software (Figure 4d).
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4. Results and Discussion

Measuring with a Fourier transform spectrometer (Biorad FTS 6000), the IR absorption
of glycerol at temperatures between 253 K and 353 K shows characteristic changes in the
spectra, which are analyzed in detail in [6]. Comparing spectra measured with and without
an external electric field of ~0.4 MV/cm and calculating the difference spectra delivers
minute effects close to the noise level (inset in Figure 5).
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Figure 5. Characteristic IR-absorption bands of glycerol as measured with a Fourier-IR spectrometer
at varying temperatures as indicated. The wavenumber of the quantum cascade laser diodes used in
this study are marked. As spacer, a poly(ethylene terephthalate) (PET) foil of ~3 µm thickness was
used; this results is for an applied voltage of +/−120 V in an electric field strength ~+/−0.4 MV/cm.
The inset shows the difference IR spectrum between a sample measured with and without external
electric field at 333 K.

The orientation polarization of the OH and the CH2 moiety is measured with the
setup described in Figure 4. The modulation of the absorption ∆Aor(ω) is small but well
measurable with phase sensitive detection (Figure 6). The noise level of the absorption
∆A0 without external field is typically 10−6; it also has a frequency but no temperature
dependence. By averaging over seven data points, curves typically are obtained having
characteristic uncertainty bars. By calculating the ratio ∆Aor(ω)

∆A0
, the orientation polarization

spectra are obtained. Their frequency dependence for the OH and the CH2 units is shown

in Figure 7a,c for varying strengths of the external electric field
⇀
E ext. The temperature

dependence is shown in Figure 7b,d. The effect for the CH2 moiety is weaker than for the
OH unit; this is caused by the much smaller dipole moment of the latter. The reorientation
of this unit is presumably also influenced by a coupling to the adjacent OH group. With
decreasing temperature H-bonds are formed, which hinder the fluctuation of both the
OH and the adjacent CH2 moieties (Figure 8). The observed orientation polarization
of the OH and CH2 moieties is much faster than the relaxation rate of the dielectrically
measured orientation polarization. This reflects the fact that, in the latter, the relaxation of
the molecule as a whole is measured while in the former, the orientation polarization of
two molecular subunits OH and CH2 is monitored.
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Figure 6. Example of the data analysis. The modulated signal (second harmonic) measured with
the lock-in amplifier is displayed in dependence of the frequency of the external electric field. As
spacer, a PET foil of ~3 µm thickness was used. This results for an applied voltage of +/−120 V
in an electric field strength ~+/−0.4 MV/cm with a large uncertainty because the absolute sample
thickness cannot be measured with sub-µm accuracy. The data are averaged, and for the resulting
curve (solid lines), uncertainty bars are indicated. By division, the orientation polarization spectra
are obtained as shown in Figure 7.
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Figure 7. (a) Orientation polarization spectra ∆Aor(ω)/∆A0 of the OH and CH2 moieties as measured
by the lock-in amplifier (in the second harmonic) at the wavelengths of 2966.8 nm (3370.6 cm−1)
and 3493 nm (2862.9 cm−1): (a,c) show the field strength; (b,d) show the observed temperature
dependencies. As spacer, a PET foil of ~3 µm thickness was used. The result is an applied voltage of
+/−120 V in an electric field strength ~+/−0.4 MV/cm with a large uncertainty because the absolute
sample thickness cannot be measured with sub-µm precision. Within one figure, the sample thickness
is assumed to remain nearly constant as confirmed by measurements of the IR-transmission.
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to the immediate neighborhood of the polar O-H moiety, it is coupled to its orientation fluctuations.
With increasing H-bond, formation dies out as well.

5. Perspectives

A severe limitation of the present study is the restriction by only two IR-wavelengths.
However, IR-laser systems tunable in the entire “fingerprint region” are recently available,
albeit still expensive. Using the methodology presented in this study, combined with those
novel IR-sources, will enable one to unravel the orientation polarization of the different
moieties of a molecular system and their mutual interactions, including nonpolar groups.
Furthermore, by measuring in a wide temperature range the atomistic potentials deter-
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