
Citation: Zhu, L.; Tian, Y.; Ling, J.;

Gong, X.; Sun, J.; Tong, L. Effects of

Storage Temperature on

Indica-Japonica Hybrid Rice

Metabolites, Analyzed Using Liquid

Chromatography and Mass

Spectrometry. Int. J. Mol. Sci. 2022, 23,

7421. https://doi.org/10.3390/

ijms23137421

Academic Editors: Jinsong Bao and

Jianhong Xu

Received: 7 May 2022

Accepted: 30 June 2022

Published: 4 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Effects of Storage Temperature on Indica-Japonica Hybrid Rice
Metabolites, Analyzed Using Liquid Chromatography and
Mass Spectrometry
Lin Zhu 1,† , Yu Tian 2,†, Jiangang Ling 1, Xue Gong 2, Jing Sun 1,* and Litao Tong 1,*

1 Key Laboratory of Preservation Engineering of Agricultural Products, Ningbo Academy of Agricultural
Sciences, Institute of Agricultural Products Processing, Ningbo 315040, China; zhulin0822@163.com (L.Z.);
nbnjg@163.com (J.L.)

2 Key Laboratory of Agro-Products Processing Ministry of Agriculture, Institute of Food Science and
Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; tianyu152302@163.com (Y.T.);
xuegong1214@163.com (X.G.)

* Correspondence: ycsunjing2008@126.com (J.S.); tonglitao@caas.cn (L.T.);
Tel./Fax: +86-10-6281-0295 (J.S.); +86-10-6281-7417 (L.T.)

† These authors contributed equally to this work.

Abstract: The Yongyou series of indica-japonica hybrid rice has excellent production potential and
storage performance. However, little is known about the underlying mechanism of its storage
resistance. In this study, Yongyou 1540 rice (Oryza sativa cv. yongyou 1540) was stored at different tem-
peratures, and the storability was validated though measuring nutritional components and apparent
change. In addition, a broad-targeted metabolomic approach coupled with liquid chromatography-
mass spectrometry was applied to analyze the metabolite changes. The study found that under
high temperature storage conditions (35 ◦C), Yongyou 1540 was not significantly worse in terms
of fatty acid value, whiteness value, and changes in electron microscope profile. A total of 19 key
differential metabolites were screened, and lipid metabolites related to palmitoleic acid were found
to affect the aging of rice. At the same time, two substances, guanosine 3′,5′-cyclophosphate and
pipecolic acid, were beneficial to enhance the resistance of rice under harsh storage conditions,
thereby delaying the deterioration of its quality and maintaining its quality. Significant regulation
of galactose metabolism, alanine, aspartate and glutamate metabolism, butyrate metabolism, and
arginine and proline metabolism pathways were probably responsible for the good storage capacity
of Yongyou 1540.

Keywords: indica/japonica hybrid rice; liquid chromatography–mass spectrometry; wide-targeted
metabolomics; storage temperature; storage performance

1. Introduction

Rice (Oryza sativa L.) is one of the major staple foods consumed all over the world,
notably in China, India, Indonesia, Bangladesh, Vietnam, Thailand, Myanmar, and the
Philippines. These countries contribute most highly to rice production, corresponding to
82% of global rice production and 69% of global rice consumption [1]. At the same time, rice
also provides 35–60% of dietary calories for most people in the world [2]. However, in the
next few decades, with the increase of population, the demand for food in China and the
world will remain a serious challenge. Breeding high-yielding rice varieties and developing
high-yielding cultivation techniques are considered two key approaches to address this
challenge [3,4]. Indica-japonica hybrid rice is a new type of rice cultivar developed by
hybridizing indica as the male parent and japonica as the female parent. Moreover, the
hybrid rice plant structure has the ability to support super high yield, and the Yongyou
series have a positive effect [5].
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The storage of rice is also an important part of its production and transactions, and
only with good storage performance can its commercial value be maintained in the com-
modity transaction link. Starch, protein, lipid, mineral elements and vitamins, are the main
nutritional components of rice [6–9], which is susceptible to microbial contamination and
oxidative deterioration during storage, leading to reduced physiological activity, fat oxida-
tion, and protein degradation [10]. The rice quality reduction was usually manifested in
the weakening of grain respiration, the reduction of vitality, the change of physicochemical
properties and the change of protoplasmic colloid structure [11]. There are many factors
affecting the aging of rice, such as the variety, water content, temperature, humidity, storage
time, storage conditions, and local climatic conditions.

Yongyou 1540 rice is a new variety jointly cultivated by the research group, and it has
been proved that Yongyou 1540 has good storability. However, the underlying mechanisms
are still largely unknown, which limits the promotion and application of the products.
Metabolomics is the systemic study of the metabolites, that is, of all small molecules in
a biological sample, to provide a snap-shot of the ongoing biochemical processes [12,13].
At the same time, it is also the science of qualitative and quantitative analysis of all
low molecular weight (<1000) metabolites of biological cells or organisms in a specific
physiological period [14].

In this study, in order to reveal the storage mechanism of Yongyou 1540, and to provide
theoretical data support for the production and promotion of this series of indica-japonica
hybrid rice, Yongyou 1540 was stored at different temperatures. The fatty acid and white-
ness values of each sample were determined, and the rice surface was observed with an
electron microscope. In addition, the changes of Yongyou 1540 metabolites under different
storage conditions were investigated using a broad-targeted metabolomic technology based
on LC-MS/MS. After multivariate statistical analysis such as principal component analysis,
cluster analysis, and path analysis, significant differential metabolites were screened out.
Finally, through enrichment analysis of metabolic pathways, the most relevant metabolic
pathways were found. The results showed that the key differential metabolites of Yongyou
1540 that were significantly up-regulated were guanosine 3′,5′-cyclic phosphate, pipecolic
acid and GABA. Based on the properties and effects of these substances, it is speculated
that these substances increase the resistance of rice to relatively harsh storage conditions,
thereby delaying the aging process and maintaining its quality.

2. Result
2.1. Measurement Results of Fatty Acid Value and Whiteness Value of Rice

As shown in Figure 1A, the higher the storage temperature, the higher was the fatty
acid value (from 0.085 to 0.350 g kg−1). According to the Chinese national standard
GB/T20569-2006, the fatty acid value of fresh rice should be less than 0.250 g kg−1 and that
of stored rice should be less than 0.350 g kg−1 [15]. Even under the storage condition of
35 ◦C, the fatty acid value met the requirements, and the degree of quality deterioration of
the Yongyou rice was not significant.

The test results of whiteness value are shown in Figure 1B. The whiteness value
represents the level of whiteness of the rice surface. Obviously, with the prolongation
of storage time, the whiteness value of rice at different storage temperatures showed a
significant downward trend, and then entered a stable stage and continued to decrease
slowly. Due to the influence of storage temperature, the higher the temperature, the greater
is the decrease of the whiteness value. However, the whiteness values (from 68% to 76%)
are still in the reasonable whiteness value range [16].

2.2. Electron Microscope Section Observation Results

The section images of rice at different storage temperatures were observed under
different magnifications (left: 1 mm, right: 200 µm) (Figure 2). Through observation, it can
be seen that with the continuous increase of the ambient temperature of the rice, the width
and depth of the cracks on the cut surface of the rice samples increased significantly by the
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90th day of storage. This may be due to the influence of temperature in the early storage
period. The loss of nutrients was accelerated, as well as the rate of surface water loss and
the degree of deterioration. On the 180th day of storage, there was no obvious further
deterioration compared with the previous period. This may be due to the fact that when
kept under unsuitable storage conditions for a long time, a certain metabolic system was
activated by the rice itself, which enhanced its resistance to stress and storage performance.
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Figure 2. Electron microscope profiles of rice (200 µm) at different storage temperatures. (A) Mor-
phological images of rice stored on day 0. (B–D) are the morphological images of rice on the 90th day
of storage at 15 ◦C, 25 ◦C, and 35 ◦C storage temperature, respectively. (E–G) are the morphological
images of rice on the 180th day of storage at 15 ◦C, 25 ◦C, and 35 ◦C storage temperature, respectively.

2.3. Metabolite Characterization of Samples

The LC-MS-based wide-targeted metabolomics approach was employed in the study.
By matching the substance database with conditions such as retention time and mass-to-
charge ratio, the substance could be qualitatively identified [17]. A total of 177 metabolites
were identified, as shown in Supplementary Table S1. In terms of quantity, alkaloids
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account for 14.12%, amino acids and their derivatives account for 9.60%, phenols and their
derivatives account for 8.74%, organic acids and their derivatives account for 8.47%, fatty
acyl groups account for 6.7%, and flavonoids account for 7.3%, carbohydrates and their
derivatives accounted for 6.21%, terpenoids accounted for 6.21%, and other small amounts
of substances such as steroids and their derivatives, plant hormones, coumarin, purines,
pyridines, etc. accounted for 12.99%. Alkaloids accounted for the largest proportion,
followed by amino acids and their derivatives, while steroids and their derivatives and
terpenes were also present.

2.4. Principal Component Analysis

The PCA score scatter plot of all samples (including QC samples) is shown in Figure 3.
The value of R2X in the scatter plot of the PCA model was 0.527, which further indicated that
the experimental model was not over-fitting, and the experimental results were reliable. It
could be clearly observed that there was a significant difference between HT_6, LT_6, NT_6
groups and the CK group, while the difference between the HT_6 group and CK group was
the most significant. The comparisons between the LT_6 group and the CK group were
close in degree of difference, suggesting that storage temperature was an important factor
affecting the metabolic activity of rice. However, there are a certain number of samples with
no obvious changes in the principal component differences. This may indicate that the rice
of this variety produces a certain substance that is self-regulating even under inappropriate
storage conditions.
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Figure 3. Scatter plot from PCA model for CK_6, LT_6, NT_6, HT_6, and QC groups. The abscissa
PC[1] and ordinate PC[2] in the figure represent the scores of the first and second principal compo-
nents, respectively. Each scatter represents a sample, and the color and shape of the scatter represent
different groups. The samples were basically within the 95% confidence interval, and the QC group
was tightly gathered and close to the middle of all samples, suggesting great system stability within
the entire measurement queue. R2X represents the model’s interpretation of the X variable and Q2

represents the predictability of the model. The closer the two metrics are to 1, the better the model
performs and the higher the interpretability.

2.5. OPLS-DA Analysis

The abscissa t[1]P in the OPLS-DA scored graph represented the predicted principal
component score of the first principal component, showing the difference between sample
groups, and the ordinate t[1]O represented the orthogonal principal component score,
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showing the difference within the sample group. In the present study, OPLS-DA was
modeled for the classification between the HT_6 and CK_6 groups, and the HT_6 and LT_6
groups, respectively. From the results of the score plot, it can be seen that the HT_6 group
was very significantly distinguished from the CK group and the LT_6 group, and the sam-
ples were all within the 95% confidence interval (Hotelling’s T-squared ellipse), indicating
that the storage temperature changed the metabolites of the rice samples. According to
the statistics, HT_6 vs. CK groups Q2 = 0.701, HT_6 group vs. LT_6 group Q2 = 0.654,
indicating that if new samples are added to the model, a relatively approximate distribution
will be obtained. The permutation test randomly changed the arrangement order of the
categorical variable Y, and established the corresponding OPLS-DA, modeled multiple
times (n = 200 times) to obtain the R2Y and Q2 values of the random model. The intercept of
the regression line of Q2 and the vertical axis was less than zero. At the same time, with the
gradual decrease of the permutation retention, the proportion of the permuted Y variable
increased, and the Q2 of the random model gradually decreased. The results above showed
that the original models of HT_6 vs. CK groups and HT_6 vs. LT_6 groups could meet the
acceptable requirements.

The Q2 values of NT_6 vs. CK groups, NT_6 vs. LT_6 groups, HT_6 vs. NT_6 groups
were close to 0.5, indicating that there were differences between sample groups, but the
degree of difference was not significant. The Q2 < 0.5 of the LT_6 group and the CK group
indicated that the metabolic difference between the two samples was not significant within
a certain range. This phenomenon shows that the metabolic activity of Yongyou 1540 rice
is slow under the storage condition of 15 ◦C (see Figure 4).
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2.6. Screening and Analysis of Differential Metabolites with Significant Changes in Content

In order to explore the effects of different storage temperatures on rice metabolites
and quality, the VIP value of the OPLS-DA model (threshold > 1) and the p-value of Stu-
dent’s t-test (threshold < 0.05) were used to screen for differential metabolites. The results
showed that there were 105 differential metabolites in HT_6 vs. CK group, 99 differential
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metabolites in the HT_6 vs. LT_6 group, 81 differential metabolites in HT_6 vs. NT_6
group, 93 differential metabolites in NT_6 vs. CK group, 87 differential metabolites in
NT_6 vs. LT_6 group and 49 differential metabolites in LT_6 vs. CK group. The differential
metabolites obtained through the above analysis often have the results and functional
similarity/complementarity in biology, or are positively regulated/negatively regulated
by the same metabolic pathway, showing similar or opposite expression characteristics
between different experimental groups. Hierarchical cluster analysis was used to help
explore similarities and differences between different groups. Figure 5 illustrated the
thermodynamic diagram of the hierarchical cluster analysis of experimental groups at
different storage temperatures [18]. The differential metabolites of the above experimental
groups were also subjected to matchstick analysis and chord analysis. Matchstick analysis
and chord analysis help to further screen the most closely related differential metabolites.
The identification of differential metabolites can help to find the relevant metabolic path-
ways. HT_6 vs. CK groups were used as the core of the analysis. The research groups
compared the results of their matchstick analysis and chord analysis, and screened for
19 key differential metabolites. These 19 substances are shown in Table 1. Among the
above 19 differential metabolites, 8 substances were distinct differential metabolites in
the HT_6 vs. NT_6 groups, and 14 substances were distinct differential metabolites in the
HT_6 vs. LT_6 groups. The metabolites of LT_6 and CK were so similar that it was difficult
to find the differential metabolites.

This result indicates that some reactions are only excited at the higher temperature
conditions where HT_6 and NT_6 are located. The two groups had 8 identical differential
metabolites, indicating that when the storage temperature was higher, the corresponding
metabolic pathways would be activated to produce corresponding metabolites. The only
other 11 differential metabolites expressed in the HT_6 vs. CK groups were those produced
by the corresponding stimulated metabolic pathways in this rice variety under relatively
harsher storage conditions. Among these 11 differential metabolites, adenosine 2′,3′−cyclic
phosphate, guanosine 3′,5′−cyclic monophosphate, (S) −2−aceto−2−hydroxybutanoate,
streptozotocin, palmitoylethanolamide, pimelic acid, pipecolic acid, these 7 substances are
up-regulated. Stachyose, maltotetraose, kojibiose, and denudatine were down-regulated.
The first three substances that were down-regulated are carbohydrates, and the down-
regulation of carbohydrates indicated that the metabolism of energy substances was signifi-
cant under high temperature storage conditions. HT_6 vs. LT_6 groups had the highest
number of overlapping differential metabolites with HT_6 vs. CK groups. The HT_6 vs. CK
group was the focus of the analysis, with a larger temperature span and wider coverage.

2.7. Effects of Storage on Metabolic Pathways of Rice

The research group mapped 19 key differential metabolites screened by the HT_6 vs.
CK groups to authoritative metabolite databases such as KEGG and PubChem, and found
all the pathways involved in the regulation of these differential metabolites (Figures 6 and 7).
Through a comprehensive analysis of metabolic pathways (including enrichment analysis
and topology analysis), the key pathways most associated with metabolite differences were
found. As shown in Figure 6A, five of the most relevant pathways were located, including
valine, leucine and isoleucine biosynthesis, galactose metabolism, lysine biosynthesis and
degradation, and glutathione metabolism. Meanwhile, the differential metabolites with the
highest correlation between the HT_6 and LT_6 groups were also located, and the most
closely related metabolic pathways were identified, as shown in Figure 6B. It can be seen
that the difference in metabolic pathways between the two experimental groups is only
in the high expression of starch and sucrose metabolism in the HT_6 and LT_6 groups.
The metabolic activity of rice stored at 15 ◦C was higher than that of rice stored at −80 ◦C.
Energy metabolism is the normal physiological activity of rice.
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Table 1. Key differential metabolites in HT_6 group.

No. Compound Name Rt(min) KEGG_ID EXACT_MASS VIP p-Value Fold Change LOG_
Foldchange

1 Adenosine 2′,3′−cyclic phosphate 1.86 C02353 329.0525 2.192 0.0001337 30.64 4.937

2 (S)−2−Aceto−2−hydroxybutanoate 0.66 C06006 146.0579 2.258 0.00002167 3.301 1.723

3 Pimelic acid 0.55 C02656 160.0736 2.131 0.00008361 3.421 1.774

4 Pipecolic acid 1.47 C00408 129.0790 2.303 0.0002440 3.809 1.930

5 9−OxoODE 11.98 C14766 294.2195 1.504 0.0005610 3.886 1.958

6 Palmitoylethanolamide 12.61 C16512 299.2824 2.259 0.0008559 4.063 2.023

7 4−Methyl−5−thiazoleethanol 2.66 C04294 143.0405 2.419 0.000003395 5.152 2.365

8 5−Methyl−2−furaldehyde 0.76 C11115 110.0368 2.329 0.00000001875 5.440 2.444

9 5−Oxoproline 0.56 C01879 129.0426 2.238 0.0002517 6.411 2.681

10 7−Methylguanine 1.56 C02242 165.0651 2.425 0.000007288 10.393 3.378

11 Streptozotocin 0.72 C07313 265.0910 2.025 0.0002545 16.726 4.064

12 Guanosine 3′,5′−cyclic
monophosphate 2.26 C00942 345.0474 2.135 0.00002303 18.115 4.179

13 4−Aminobutyric acid 0.66 C00334 103.0633 2.062 0.000000003593 21.814 4.447

14 D−Glutamine 0.66 C00819 146.0691 2.373 0.0005950 0.2028 −2.302

15 L−Glutamine 0.64 C00047;
C00064 146.1055 2.319 0.0005209 0.2270 −2.139

16 Denudatine 1.59 C08680 343.2511 2.327 0.000001120 0.3601 −1.474

17 Maltotetraose 0.64 C02052 666.2219 1.865 0.0026925 0.3738 −1.420

18 Stachyose 0.73 C01613 666.2219 1.865 0.0026925 0.3738 −1.420

19 Kojibiose 0.72 C19632 342.1162 2.316 0.0002408 0.4181 −1.258
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3. Discussion

The basic quality of You 1540 was evaluated from three aspects: fatty acid value, white-
ness value, and electron microscope section observation. According to the experimental
results, the following conclusions can be drawn: At different storage temperatures, the
changing trend of fatty acid value is different. The higher the storage temperature, the more
obvious was the increase of fatty acid value. However, under the storage condition of 35 ◦C,
the fatty acid value of rice was also within 0.350 g kg−1, indicating that the rice was slightly
unsuitable for storage at this temperature. However, the degree of quality deterioration of
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Yongyou rice was not significant. Similarly, for the whiteness value of Yongyou 1540, the
research team believes that the change of whiteness value was within an acceptable range
after evaluation, and there was no obvious deterioration. On the other hand, the section of
Yongyou 1540 was observed under an electron microscope with a magnification of 200 µm.
On the 90th day, the depth and width of surface cracks of rice stored at 35 ◦C were indeed
more obvious than those of rice at the other two storage temperatures. However, on the
180th day, the change of rice cracks was not obvious under different storage temperatures,
and the degree was lower than that on the 90th day. Based on the above conclusions, it
can be speculated that Yongyou 1540 performed certain metabolic activities and regulated
certain pathways under unsuitable storage conditions, and this activity was related to its
storage resistance and stress resistance.

To further analyze and explore the effects of metabolites on the storage performance
of Yongyou 1540, the research group used liquid chromatography and mass spectrometry-
based broad-target metabolomics techniques to isolate a total of 719 metabolites. Of these,
615 were recorded in public databases. Principal component analysis (PCA) and OPLS-DA
analysis were used in this study. PCA analysis is a statistical method that transforms a set
of observed, possibly correlated variables into linearly uncorrelated variables (i.e., principal
components) through an orthogonal transformation. The PCA method can reveal the
internal structure of the data and thus better explained the data variables between different
groups [19]. In fact, LC-MS-based metabolomics data are characterized by high dimension-
ality (many types of metabolites detected) and small sample size (too few samples detected).
These variables contain not only differential variables related to categorical variables, but
also a large number of interrelated indifference variables [20]. Therefore, the OPLS-DA
method, a supervised pattern recognition technique that outperforms PCA in class dis-
crimination, was used to find distinct metabolites between each pair of groups. Through
OPLS-DA analysis, orthogonal variables unrelated to categorical variables in metabolites
were filtered out, and non-orthogonal variables and orthogonal variables were analyzed
separately, so as to obtain more reliable information on the difference and influence degree
between metabolite groups. PCA analysis can provide support in the acquisition of related
metabolites, and OPLS-DA analysis can support the screening and identification of key
differential metabolites. At the same time, the 19 most important differential metabolites
were finally selected by using matchstick analysis and chord analysis to assist the screening.

Different storage temperatures were set in the experiments. The maximum storage
temperature of 35 ◦C was used as the core of the exploration, and the key differential
metabolites were analyzed. A certain number of differential metabolites overlapped with
differential metabolites screened at other storage temperatures. In order to explore the
metabolic activities and reactions of Yongyou 1540 at higher storage temperatures, the
research team chose to analyze 11 non-overlapping differential metabolites one by one.
Palmitoylethanolamide (PEA) is a natural amide of ethanolamine and palmitic acid. Pimelic
acid exists in the free acid form and is synthetically assembled from fatty acids. These two
substances are metabolites produced by the aging phenomenon caused by lipid metabolism
in rice during storage. Guanosine 3′,5′−cyclic monophosphate (cGMP), a second mes-
senger discovered in the 1960s, is found in both prokaryotes and eukaryotes [21]. The
molecule cGMP is synthesized from guanosine triphosphate (GTP) by guanylate cyclase
enzymes (GCs) and is involved in various cellular responses, such as protein kinase activity,
cyclic nucleotide gated ion channels and cGMP regulated cyclic nucleotide phosphodi-
esterases [22,23]. There is a positive correlation between the accumulation of cGMP in plants
and various developmental processes and responses to abiotic and pathogenic stresses.
Multiple groups have demonstrated that both NO-dependent and NO-independent cGMP
signaling pathways are important in the activation of defense responses during biological
stress [24–28]. Furthermore, NO-cGMP-dependent signaling pathways have been reported
to be involved in adventitious root development [29,30], stomatal closure during abiotic and
biotic stresses [31,32], protein phosphorylation [33,34] and transcriptional regulation [35].
Internal cGMP production in rice involves various signaling processes in the plant, espe-
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cially in control of stomatal pore size. In a high-temperature storage environment, this is
important for surviving water shortages, and this key metabolite helps rice maintain water
content in the body and delay quality deterioration. Pipecolic acid is L-Pip (hereinafter
referred to as Pip); the widespread occurrence of the non-protein amino acid L-Pip in plants,
animals, fungi, and microorganisms and its biosynthetic origin from Lys in plants and
animals was realized in the 1950s [36,37]. Pip, a common lysine catabolite in plants and
animals, is a key regulator of induced plant immunity. Pip is one of several key metabolic
mediators for the induction of resistance [38–40]. Based on the above analysis of differential
metabolites with significant effects, it can be speculated that under the storage condition of
higher temperature, Yongyou 1540 significantly accumulated pipecolic acid, which induced
rice to improve its own stress resistance to relatively harsh conditions and maintain its
own quality.

In conclusion, a broad target metabolomics technique based on liquid chromatography
and mass spectrometry was used in this study. The changes of metabolites of Yongyou 1540
at different storage temperatures were fully analyzed. Through the screening analysis and
metabolic pathway mapping of key differential metabolites, Yongyou 1540 was shown to
produce palmitoleic acid-related lipid metabolites that are associated with rice aging when
stored at 35 ◦C. At the same time, the key differential metabolites of Yongyou 1540 were
significantly up-regulated: guanosine 3′,5′-cyclic phosphate, pipecolic acid and GABA.

Based on the properties and effects of these substances, it is speculated that these
substances increase the resistance of rice to relatively harsh storage conditions, thereby
delaying the aging process and maintaining its own quality [41,42]. The results show
that Yongyou 1540 has self-regulating ability under unsuitable storage conditions, and
has good storage performance, which is beneficial to maintain the quality of production
and transaction links. Under the increasingly heavy pressure for global food staples, this
research can provide a theoretical and scientific basis for the popularization and production
of Yongyou 1540.

4. Materials and Methods
4.1. Rice Materials and Sampling

Yongyou 1540 rice was harvested in Xiangshan County, Ningbo City, Zhejiang Province.
The harvested rice was dried (RH 13–14%), and then ground into first-class rice according
to GB/T1354 standard. All samples were divided into four groups. The control (CK) was
frozen at −80 ◦C immediately after grinding. After the other three groups were milled,
the rice was put into PE bags (2.5 kg per bag) and stored in a constant temperature and
humidity box at 15 ◦C (LT_6), 25 ◦C (NT_6), or 35 ◦C (HT_6) (RH 60%), which were used as
the experimental groups. There were six samples in parallel for each group. All samples
were sent for testing after being stored for 6 months.

4.2. Materials and Reagents

Methanol (CAS: 67-56-1) and acetonitrile (CAS: 75-05-8) were supplied by CNW
Technologies, and SIGMA brand formic acid reagent (CAS: 64-18-6) was used. The purity of
the above reagents was all LC-MS grade. Ultrapure water was prepared in-house by a Milli-
Q Integral water purification system (Millipore, Bedford, MA, USA). During the experiment,
Sciex’s model ExionLC AD ultra-high performance liquid phase and QTrap 6500+ high-
sensitivity mass spectrometer were used. In addition, a Thermo centrifuge (Heraeus
Fresco17), a Merck Millipore water purifier (Clear D24 UV) and a Waters chromatographic
column (ACQUITY UPLC HSS T3 1.8 µm 2.1 ∗ 100 mm) were also used in the experiments.

4.3. Metabolites Extraction

The freeze-dried samples were crushed with a mixer mill for 240 s at 60 Hz. 400 mg
aliquots of individual samples were precision weighed and then transferred to an Eppen-
dorf tube. After addition of 2000 µL of extract solution (methanol/water = 3:1, precooled at
−40 ◦C, containing internal standard), the samples were vortexed for 30s, homogenized at
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40 Hz for 4 min, and sonicated for 5 min in an ice-water bath. After repeated homogeniza-
tion and sonication for 3 times, the samples were extracted over night at 4 ◦C on a shaker.
The resultant mixtures were centrifuged at 12,000× g rpm (RCF = 13,800× g, R = 8.6 cm) for
15 min at 4 ◦C, and the supernatant was carefully filtered through a 0.22 µm microporous
membrane, and transferred to 2 mL glass vials. Moreover, 20 µL aliquots of each sample
were pooled and prepared in parallel with other rice samples to yield quality control (QC)
samples. All samples were stored at −80 ◦C until the UHPLC-MS analysis.

4.4. LC-MS Analysis

The UHPLC separation was carried out using an EXIONLC System (Sciex). The
mobile phase A was 0.1% formic acid in water, and the mobile phase B was acetonitrile. The
column temperature was set at 40 ◦C. The auto-sampler temperature was set at 4 ◦C and
the injection volume was 2 µL. A Sciex QTrap 6500+ (Sciex Technologies, Framingham, MA,
USA), was applied for assay development. Typical ion source parameters were: IonSpray
Voltage: +5500/−4500 V, Curtain Gas: 35 psi, Temperature: 400 ◦C, Ion Source Gas 1:60 psi,
Ion Source Gas 2: 60 psi, DP: ±100 V. In fact, due to the large sample size of this study, the
detection task lasts for a long time, so it is very important to monitor the stability of the
instrument and whether the signal is normal during the detection process in real time. To
ensure the accuracy of the experimental results, the original data included 3 quality control
(QC) samples and 24 experimental samples. QC samples were made by mixing 20 µL of
each experimental sample. The retention times and peak areas of the QC samples TIC
overlap well, indicating good instrument stability. In addition, the retention time and peak
area of the internal standard 2-chlorophenylalanine response were very stable, indicating
that the instrument’s data acquisition stability was very good (Figures S1 and S2). The
experimental equipment is reliable and the data is credible [43–51].

4.5. Data Analysis

SCIEX Analyst Work Station Software (Version 1.6.3, Framingham, MA, USA) was
employed for MRM data acquisition and processing. MS raw data (.wiff) files were con-
verted to the TXT format using MSconventer. In-house R program and database were
applied to peak detection and annotation. After obtaining the collated data, the SIMCA
software (V16.0.2, Sartorius Stedim Data Analytics AB, Umea, Sweden) was used to screen
for differential metabolites using multivariate statistical analysis, such as principal com-
ponent analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA),
Student’s t-test, and variable importance in projection (VIP) principal components of the
OPLS-DA model. The card value standard used in this project is that the p-value of the Stu-
dent’s t-test is less than 0.05, and the VIP of the first principal component of the OPLS-DA
model greater than 1. According to the expression profiles of differential metabolites, the
changes of metabolites between groups can be summarized, and the useful information
behind them can be mined in combination with the disciplinary background. For example,
if some metabolites have the same or different variation trends among groups, combining
metabolic pathways can help to mine important metabolic pathways and regulatory re-
lationships. Differential metabolites were annotated in CAS and KEGG databases based
on retention time and mass-to-charge ratio (m/z). Afterwards, through comprehensive
analysis of differential metabolite pathways (including enrichment analysis and topology
analysis), the pathways were further screened to identify the key pathways of the most
relevant differential metabolites [52–54].

4.6. Determination of Rice Quality
4.6.1. Fatty Acid Value (Petroleum Ether Extraction Method)

Nutrients such as starch, protein, moisture, and lipids in rice itself will deteriorate
due to the influence of the environment and internal factors during the storage process.
Fatty acid value is an important indicator to measure the quality of rice. According to the
Chinese national standard GB/T5510-2011 “Grain and Oil Inspection—Determination of
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Fatty Acid Value of Grain and Oilseeds”, the research team measured the fatty acid value of
rice to judge the degree of deterioration of rice at different storage temperatures. Rice was
crushed by grinder under different storage conditions (the groups needed cleaning and
were passed through a 1.0 mm round hole sieve). A sample of 10 g (precision 0.01 g) was
weighed and placed in a 250 mL conical flask. 50 mL petroleum ether was added to the
pipette, and the plug was added before shaking for several seconds. The plug was opened
and deflated, and then the bottle was closed and the oscillator was shaken for 10 min. Next
steps: Take off the conical bottle, tilt and stand for 1–2 min, put filter paper into the short
neck glass funnel to filter. Go to the first few drops of filtrate, use colorimetric tube to
collect filtrate more than 25 mL, cover and save. (Tight timing is important: placed at 4 ◦C,
use within 24 h). 25 mL filtrate was removed in 150 mL conical flask with a pipette, 75 mL
50% ethanol solution was added into the measuring cylinder, 4–5 drops of phenolphthalein
indicator was added, shaken, titrated with potassium hydroxide solution until the lower
ethanol solution was slightly red, 30 s did not fade, the titration solution volume (V1) was
recorded, and 25 mL petroleum ether was used as the blank control group, the titration
solution volume (V0) was recorded.

The acid value (AK) formula is as follows:

AK = (V1 −V0) ∗ c ∗ 56.1 ∗ 50
25
∗ 100

m(100− w)
∗ 100

c-potassium hydroxide concentration (mol/L)
m—Sample mass (g)
w—Sample moisture mass (per 100 g)
56.1—Potassium hydroxide molar mass (g/mol)
50—The volume of the extraction solution used to extract the sample(mL)
25—Volume of sample extract for titration (mL)
100—Converted to the mass of 100 g dry sample (g)

4.6.2. Whiteness Value

The whiteness of rice under different storage conditions was measured with a white-
ness meter, and each sample was measured three times.

4.6.3. Observation of Appearance Features in Slices under Electron Microscope

Section observation (2 mm thick cross section), sampling at 90 d and 180 d, respectively.
Instrument name of the microscope used in this project: Thermal Field Emission Scanning
Electron Microscope (Zeiss G300); Model: GeminiSEM 300.

Supplementary Materials: The following supporting information can be downloaded at: https:
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