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Abstract: Inmunohistochemistry remains an indispensable tool in diagnostic surgical pathology.
In parathyroid tumours, it has four main applications: to detect (1) loss of parafibromin; (2) other
manifestations of an aberrant immunophenotype hinting towards carcinoma; (3) histogenesis of a
neck mass and (4) pathogenetic events, including features of tumour microenvironment and immune
landscape. Parafibromin stain is mandatory to identify the new entity of parafibromin-deficient
parathyroid neoplasm, defined in the WHO classification (2022). Loss of parafibromin indicates
a greater probability of malignant course and should trigger the search for inherited or somatic
CDC73 mutations. Aberrant immunophenotype is characterised by a set of markers that are lost
(parafibromin), down-regulated (e.g., APC protein, p27 protein, calcium-sensing receptor) or up-
regulated (e.g., proliferation activity by Ki-67 exceeding 5%) in parathyroid carcinoma compared
to benign parathyroid disease. Aberrant immunophenotype is not the final proof of malignancy
but should prompt the search for the definitive criteria for carcinoma. Histogenetic studies can be
necessary for differential diagnosis between thyroid vs. parathyroid origin of cervical or intrathyroidal
mass; detection of parathyroid hormone (PTH), chromogranin A, TTF-1, calcitonin or CD56 can
be helpful. Finally, immunohistochemistry is useful in pathogenetic studies due to its ability to
highlight both the presence and the tissue location of certain proteins. The main markers and
challenges (technological variations, heterogeneity) are discussed here in the light of the current
WHO classification (2022) of parathyroid tumours.

Keywords: parathyroid carcinoma; parathyroid adenoma; multiglandular parathyroid disease;
atypical parathyroid tumour; WHO classification; immunohistochemistry; parafibromin; Ki-67; p27;
calcium-sensing receptor; tumour microenvironment

1. Introduction

Primary hyperparathyroidism [1-4], the classic manifestation of parathyroid tumours,
represents the third most common endocrine pathology with an estimated prevalence of
3/1000 [5-7]. There is close bidirectional association between primary hyperparathyroidism
and neoplasms of the parathyroid glands. In most cases, primary hyperparathyroidism
is caused by parathyroid tumours. In turn, almost all parathyroid neoplasms present
with primary hyperparathyroidism although the existence of non-functional parathyroid
tumours, mainly carcinomas, has been suggested in few case reports [8-10]. Thus, the
clinical and laboratory manifestations of the primary hyperparathyroidism represent the
mainstay for the diagnostics of parathyroid tumours [1-4].

The epidemiological characteristics of parathyroid neoplasms are also largely derived
from the data on primary hyperparathyroidism because most cancer registries concentrate
on malignant entities while parathyroid tumours are predominated by adenomas. Indeed,
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adenomas are found in 80-85% patients affected by primary hyperparathyroidism. In
10-15% cases of primary hyperparathyroidism, multiple glands are involved; this con-
dition was formerly known as primary hyperplasia [11]. Currently, the given pathology
has been redefined by World Health Organization (WHO) as multiglandular parathyroid
disease [12]. Parathyroid carcinoma is associated with 0.1% to 5% [11,13] of all cases of
primary hyperparathyroidism. In the Western world, it is thought to be responsible for less
than 1% of all cases [13] although significantly higher proportion of 5.2% (16 cases) has
been reported in an Italian study of 290 surgically treated patients [14]. As the diagnosis of
parathyroid carcinoma occasionally is reached only by morphological evaluation of surgical
specimens, more frequent occurrence of malignancy could be expected among operated
patients compared to the general group of primary hyperparathyroidism. However, the
variability between surgical cohorts is also well-documented, e.g., parathyroid carcinoma
constituted 2.1% vs. 0.3% of surgically treated sporadic primary hyperparathyroidism in
two European cohorts [15]. In China, carcinoma constitutes 3.9% of primary hyperparathy-
roidism, affecting 14/361 operated patients [16]. The population incidence of parathyroid
carcinoma is 3.5-5.7 cases per 10 million [17], and it is rising, e.g., from 3.8 to 6.6 per
10 million person-years in Korea over time period from 2003 to 2016 [18]. Parathyroid
carcinoma represents 0.005% of total cancer burden [17].

Significant progress has been achieved in the diagnostics and treatment of parathy-
roid mass lesions. First, the growing awareness of parathyroid pathology and increased
availability of laboratory and radiological evaluation have shifted the diagnostic paradigm
from clinically based suspicion [11] or even difficult diagnosis [19] in symptomatic pa-
tients to almost incidental findings [20,21] via routine biochemical laboratory assessment
of serum calcium and parathyroid hormone (PTH) levels. Indeed, the incidence of primary
hyperparathyroidism raised sharply after standard serum calcium tests were invented [22].
The next surge of incidence has been associated with screening and in-depth evaluation of
osteoporosis patients via bone density measurements in combination with assessment of
calcium and PTH levels to identify secondary osteoporosis [7,22].

Second, the parathyroid surgery is currently benefitting from its golden age [21].
The indications, technologies and steps of operative intervention have been well-defined,
supported by intraoperative assessment of parathyroid hormone. Currently, parathyroid
surgery is considered safe and curative in 97-98% of cases [21].

Wider application of surgical intervention has expanded pathologists” experience
in diagnostic evaluation of parathyroid tissues. A stable basis for parathyroid research
was set as well. This led to the third major achievement in parathyroid pathology—the
current (2022) WHO classification that is based on deeper understanding of the patho-
genesis of parathyroid disease, bringing at least three revolutionary innovations [12] in
regard to (1) multiglandular parathyroid disease in primary hyperparathyroidism; as well
as (2) atypical parathyroid tumour and (3) the novel concept of parafibromin-deficient
parathyroid neoplasms.

Genetic and epigenetic changes drive the development of parathyroid neoplasms [23-25]
and influence the proteome. To assess the presence and cellular location of certain proteins,
immunohistochemistry is an indispensable tool. Due to its widespread use in diagnostic
surgical pathology and abundant quality control programs, pathologists and technicians
have reasonable experience with it, ensuring reliability. The method can be subjected to
quantification via digital pathology and to technological standardization, e.g., via total test
approach. Thus, immunohistochemistry has become a reasonable adjunct in pathology.
For instance, the clinical significance of immunohistochemical surrogate tests in breast
carcinoma is similar to gene expression profiling-defined molecular classification [26-28];
immunohistochemistry is studied as a substitute for molecular subtyping of gliomas [29,30]
and develops as next-generation immunohistochemistry for detection of genetic alterations
via evaluation of certain proteins [31].

In parathyroid pathology, immunohistochemical evaluation of parafibromin has an
equally important role along with genetic detection of CDC73 mutations. The other appli-
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cations of immunohistochemistry in parathyroid disease (Figure 1) include pathogenetic
studies (e.g., expression of cyclin D1 or PD-L1, or the cellular composition and molecular
characteristics of the tumour microenvironment); ability of certain proteins and panels to
distinguish between benign and malignant parathyroid tumours; and histogenetic differen-
tial diagnostic considerations (e.g., thyroid vs. parathyroid origin).

Diagnosis: Favours carcinoma over a benign tumour

Prognosis:

* Worse prognosis in confirmed carcinoma

« Higher recurrence risk in atypical parathyroid
tumour

Parafibromin-deficient parathyroid neoplasm

N\

Loss of
parafibromin

CARCINOMA:

* Loss of
parafibromin

« High proliferation
activity: Ki-67 > 5%

* Loss of APC, p27,
Bcl-2, MDM2, RB
or E-cadherin
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Figure 1. Applications of immunohistochemistry in parathyroid pathology.

Considering the practical and scientific implications, the current review is devoted to
immunohistochemical profile of parathyroid tumours in accordance with the new WHO
(2022) classification of parathyroid neoplasms.

2. The Definitions: Morphological Diagnostic Criteria of Parathyroid Tumours by
WHO Classification (2022)

To discuss the features of any clinicopathological entities, solid foundation is manda-
tory, namely, the definitions and diagnostic criteria, set by WHO and/or professional
associations. This is particularly relevant to parathyroid tumours, as a new edition of WHO
classification is released on 2022 [12], bringing some significant changes.

Historically, primary hyperparathyroidism was mostly attributed to three patholo-
gies. The most frequent cause of primary hyperparathyroidism was parathyroid adenoma
comprising 80-85% of cases; followed by primary parathyroid hyperplasia, found in
10-15% patients and the few cases of parathyroid carcinoma, responsible for less than
1% cases of primary hyperparathyroidism [32,33]. Upon typical presentation, these entities
were easily recognised. Parathyroid adenoma was diagnosed if a single encapsulated
or demarcated, non-invasive parathyroid neoplasm lacking intralesional adipose tissue



Int. . Mol. Sci. 2022, 23, 6981

4 of 25

was found in a patient experiencing surgery-related decrease of the parathyroid hormone
level [34-36]. The diagnosis of adenoma was further supported by an adjacent peripheral
rim of residual gland. Parathyroid hyperplasia presented as a multiglandular pathol-
ogy showing mixture of parenchymal and fat cells with increased parenchyma-to-fat
ratio [34,36,37]. Unequivocal invasive growth and/or presence of metastases justified the
diagnosis of parathyroid carcinoma [38].

However, the historical classification faced difficulties, which mainly focused on
two areas: the clinically significant distinction between carcinoma and adenoma, and
the differential diagnosis between adenoma and primary parathyroid hyperplasia. The
problem “carcinoma vs. adenoma” would be triggered by a tumour that shows worrisome
clinical, morphological or immunohistochemical features (Figure 2) yet lacks unequivocal
invasion fulfilling the criteria of parathyroid carcinoma. To denote such tumours, the term
“atypical parathyroid adenoma” was coined both in medical research [39-41] and informal
hospital communications where it was used to emphasise the increased concern about the
further course of disease, yet to avoid overtreatment and possible psychological insult
associated with diagnosis of carcinoma.

Issue diagnosis of
parafibromin deficient
parathyroid neoplasm and
proceed with morphological
diagnostics (adenoma vs.
atypical parathyroid tumour
vs. carcinoma)

* High proliferation activity:
Ki-67>5%

* Expression of PGP9.5,
galectin-3, hTERT or aberran
p53

* Loss of APC, p27, Bcl-2,
MDM2, RB, E-cadherin

* Loss of
parafibromin

Aberant
immuno-

Perform constitutional

henotype
P yp CDC73 gene sequencing

+ Band-like fibrosis
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capsule
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* Increased mitotic activity: > 5
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Search for
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* Metastasis

* Invasion into surrounding fat,
thyroid gland, oesophagus

* Angioinvasion with tumour
thrombus

* Perineural invasion

Figure 2. Suspicious features and unequivocal diagnostic criteria of parathyroid carcinoma.

The distinction between primary parathyroid hyperplasia and adenoma also had clini-
cal relevance regarding the number of glands that should be surgically removed to cure the
hyperparathyroidism. The pathological differential diagnosis could become difficult if no
adjacent rim of normal or atrophic gland was present in adenoma or if nodular cell groups
were evident in otherwise hyperplastic gland. In addition, the experiments in animal
models [42] and immunohistochemical studies of human parathyroid tissue [38] suggested
close pathogenetic relationship between so-called primary hyperplasia and adenoma. Fur-



Int. J. Mol. Sci. 2022, 23, 6981

50f25

ther, the cases previously designated as primary parathyroid hyperplasia showed clonality
contrasting to the expected polyclonal cellular proliferation in true hyperplasia [12].

Both these issues have been clarified in the current (2022) WHO classification of
parathyroid tumours [12]. The entity of “atypical parathyroid tumour” should be used to
classify former atypical adenomas that show certain suspicious features but still do not
reach the established diagnostic criteria of carcinoma. Primary parathyroid hyperplasia
involving multiple glands has been reclassified as multiglandular parathyroid disease [12],
a term that is in line with surgeons’ needs to describe targets and approach [43]. Multi-
ple multiglandular parathyroid adenomas is another recognised entity involving several
parathyroid glands; the diagnosis is issued if each nodule corresponds to the features of
adenomas [12].

Currently, the WHO classification of parathyroid tumours includes the entities of
multiglandular parathyroid disease, adenoma, atypical parathyroid tumour, and carci-
noma [12].

As previously, adenoma represents a benign tumour. It is well-circumscribed. In
approximately 50% of cases, adjacent normal or atrophic glandular tissue is still present,
contrasting with the tumour. Stromal fat is usually absent in adenoma; however, it can
be abundant in lipoadenoma. Adenomas are composed of chief, oncocytic, transitional
or water-clear cells. Follicles can be present; extensive follicular architecture must be
distinguished from thyroid tissues via morphology or immunohistochemistry. Specific
types of adenoma have been defined (Table 1).

Table 1. Diagnostic criteria for specific types of parathyroid adenomas.

Type Criterion Ref.
Oncocytic adenoma Oncocytes compose >75% of the tumour
Water-clear adenoma Entirely composed of water-clear cells Erickson et al.,
Cystic adenoma Extensive cystic change affecting >50% of parenchyma 2022 [12]
Lipoadenoma Stromal fat represents >50% of the tumour

Atypical parathyroid tumour is defined as a parathyroid neoplasm of uncertain malig-
nant potential. It shows some cytological or histological features that increase suspicion of
carcinoma, but the diagnostic criteria of carcinoma cannot be identified although sufficient
number of tissue samples has been submitted for microscopy. The worrisome features that
constitute the diagnostic criteria of atypical parathyroid tumour, include the following:

Trabecular or sheet-like architecture;

Band-like fibrosis in the absence of history of fine needle aspiration (FNA) that might
induce scarring via needle track or at the site of FNA-induced necrosis. Secondary or
tertiary hyperparathyroidism are also associated with fibrotic bands and should be
considered clinically;

Cytological atypia, enlarged nucleoli;

Mitotic activity exceeding 5 mitoses/50 high power fields;

Atypical mitoses;

Coagulation necrosis in the absence of history of FNA;

Adherence to the surrounding tissues but not frank invasion into these tissues;
Tumour cells located within the capsule, but lacking full-thickness penetration through
the capsule [12].

The presence of the listed traits should induce active search for the definitive criteria
of parathyroid carcinoma. However, the characteristics of atypical parathyroid tumour
themselves are not sufficient to justify the diagnosis of carcinoma.

Parathyroid carcinoma is a clear-cut malignancy, manifesting with either invasion or
metastasis. To classify a parathyroid tumour as carcinoma, any of the following diagnostic
criteria [12] must be present:

e Angioinvasion in a blood vessel located either outside the tumour or in the capsule;
the tumour growth through vascular wall and/or carcinoma cells within thrombus
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must be visible. Considering the fenestrated endothelium, a mere presence of neo-
plastic cells in an intratumoural vessel does not qualifies for true invasion. Vascular
invasion must also be distinguished from artificial displacement (“seeding”) of tumour
cells into blood vessel lumen, that can happen during grossing. True vascular invasion
is recognised by verified tumour penetration through vessel’s wall or by presence of
the tumour cells in a thrombus, showing a biological reaction to invasion;

e Invasion in lymphatics provided that retraction phenomenon is excluded. Immuno-
histochemistry for endothelial markers is highly recommended for this;

Perineural or intraneural invasion;

Invasion into surrounding soft tissues, thyroid, oesophagus, skeletal muscle. Pres-
ence of neoplastic cells within the tumour capsule does not qualify for the diagnosis
of carcinoma. The mere presence of parathyroid tissues within the thyroid also is not
sufficient to justify the diagnosis of parathyroid carcinoma, because ectopic location
of a parathyroid gland, adenoma or carcinoma is a well-known phenomenon [44,45].
Invasion must also be distinguished from parathyromatosis—a rare condition char-
acterised by a presence of multiple microscopic islets of benign parathyroid tissue
scattered throughout the soft tissues of neck and/or superior mediastinum [46-50];

e  Metastases in lymph nodes or distant organs [12]. However, considering the indolent
course of parathyroid carcinoma, metastatic spread is not always present. In a recently
published large, SEER-based study, evaluating 609 cases of parathyroid carcinoma
(1975-2016), lymph node metastases were found in 25.2% of all patients and 29.2% of
cases where lymph node status was reported. Distant metastases were present in 2.2%
of all patients and 3.8% of cases with a known stage [17].

3. Immunohistochemical Profile of Parathyroid Tumours
3.1. Parafibromin

Parafibromin, the tumour suppressor protein coded by Cell Division Cycle 73 (CDC73)
gene, represents the most extensively studied immunohistochemical target in parathyroid
pathology. It is the driver of parathyroid carcinogenesis and thus the only protein that
is advised to be detected immunohistochemically in parathyroid tumours (at least in all
carcinomas and atypical parathyroid tumours) in accordance with the current (2022) WHO
recommendations [12].

In 2002, germline mutation of CDC73 gene, known also as HRPT2 (hyperparathy-
roidism 2), was found in families affected by the autosomal dominant hyperparathyroidism-
jaw tumour syndrome (penetrance 65-90%). This syndrome attracted attention due to the
significantly increased lifetime risk of parathyroid carcinoma approaching 15% in mutation
carriers [12,51,52].

As the name of syndrome “hyperparathyroidism-jaw tumour syndrome” indicates,
carriers of germline mutation in CDC73/HRPT?2 gene have increased risk to develop hyper-
parathyroidism and ossifying fibromas of the maxillary and mandibular bones. The pres-
ence of parathyroid lesions and fibromas is reflected also in the name of parafibromin [51].
Regarding parathyroid pathology, single or multiple [35,39,53,54] parathyroid adenomas
or parathyroid carcinomas are the most frequent features of this syndrome, seen in 90%
of cases. Adenomas remain the most frequent cause of hyperparathyroidism even within
the frames of hyperparathyroidism-jaw tumour syndrome [12]. However, the proportion
of carcinoma is unusually high: in the hyperparathyroidism-jaw tumour syndrome pa-
tients, it is responsible for 15-37.5% of hyperparathyroidism cases [51] contrasting with
the rare occurrence (0.1-5%) of carcinoma in the general cohort of primary hyperparathy-
roidism [11,13]. Hyperparathyroidism-jaw tumour syndrome can present as a seemingly
sporadic parathyroid lesion. It has been estimated that 20-30% of apparently sporadic
parathyroid carcinomas are associated with germline CDC73/HRPT2 mutation [12,35,51].
Further, genetically confirmed hyperparathyroidism-jaw tumour syndrome can manifest
with multiglandular parathyroid disease [54]. The frequency of benign fibro-osseous lesions
(ossifying fibromas) of jaw bones is 10-30%; these lesions can be single or multiple, uni-
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or bilateral. In addition, renal cysts, hamartomas or tumours (Wilms tumour, papillary
carcinoma, metanephric adenoma) are present in 10% of cases and heterogeneous spec-
trum of uterine pathology (reported as leiomyoma, adenomyosis, endometrial hyperplasia,
adenofibroma or adenosarcoma)—in 40% of female patients. Occasionally, pancreatic ade-
nocarcinomas, mixed germ cell tumours of the testis, Hurtle cell adenomas of the thyroid
gland, and pituitary adenomas have been described in these kindreds [35,52-54].

However, the role of CDC73/HRPT?2 is not limited to a rare inherited syndrome. So-
matic mutations of CDC73 have been found in a significant fraction of sporadic parathyroid
tumours: 60-90.9% of parathyroid carcinomas and up to 6% of parathyroid adenomas
harbour CDC73 mutation [39,41,51,55].

Parafibromin is a tumour suppressor protein that induces cell cycle arrest by repress-
ing cyclin D1 [56]. It is involved in the regulation of p53 pathway [51]. CDC73 mutations
lead to loss of both function and immunohistochemical expression of parafibromin. Since
the first discoveries, absence of parafibromin has been associated with diagnostic evi-
dence [57-59] and worse prognosis of parathyroid carcinomas [59-61] and malignant
behaviour of tumours histologically diagnosed as atypical adenomas [40]. However, contro-
versies exist that can be attributed to technological differences and challenges [51], nuclear,
nucleolar or cytoplasmic location of reactivity [62—64] or cases showing partial or weak
expression [51,62,65,66].

In normal parathyroid glands, parafibromin is invariably present in the nuclei [67].
Loss of parafibromin has been reported in few cases (0-3.7%) of multiglandular parathy-
roid disease [38,67,68], 0-17.6% of adenomas [38,39,55,67] and 33.3-100% of parathyroid
carcinomas [38,55,67,69] except carcinomas associated with tertiary hyperparathyroidism
(0%) as reported by Tominaga et al., 2008 [70]. The main studies on parafibromin expression
in parathyroid tumours are summarised in Table 2.

Table 2. Loss of parafibromin expression in parathyroid tumours and tissues.

Absolute Numbers of Negative/Investigated Cases; Frequency of Parafibromin Loss (%)

. Atypical Multiglandular
Pattern Pca;::;}:g:: Parathyroid Adenoma Parathyroid Normal Gland Reference
Tumour Disease
Total nuclear loss 5/5; 100.0% 0/102; 0.0% 1/27 PPH; 3.7% 0/45; 0.0% Uljanovs et al., 2021 [38]
Total nuclear loss 2/10; 20.0% 2/46 AAZ; 4.3% 2/182;1.1% Juhlin et al., 2019 [71]
Partial nuclear loss 5/10; 50.0% 25/46 AA %; 54.3% 8/182;4.4% Juhlin et al., 2019 [71]
Nucleolar loss 0/10; 0.0% 3/46AA2; 6.5% 4/182;2.2% Juhlin et al., 2019 [71]
Nuclear loss, Hosny Mohammed et al
evaluated via 7/21; 33.3% 0/3 AA 2;0.0% 1/73; 1.4% osny 281;‘[ 6919 ctat,
cut-off score
dg;fﬁirslgigg ’ 7/14; 50.0% 6/19 AA2;31.6% 19/194; 9.8% Kumari et al., 2016 [72]
Total nuclear loss 2/2;100.0% 0/6 AAZ;0.0% 0/84;0.0% Karaarslan et al., 2015 [73]
Total nuclear loss 11/24; 45.8% Truran et al., 2014 [57]
Total nuclear loss 8/12; 66.7% 2/13 AA?;15.4% 3/17;17.6% Guarnieri et al., 2012 [39]
Total nuclear loss 9/15; 60.0% 1/18;5.6% 0/8 PH?3; 0.0% 0/5;0.0% Wang et al., 2012 [67]
N‘tfg;;j;’ss 3/8;37.5% 1/18;5.6% Kim et al., 2012 [66]
0/16 Fernandez-Ranvier et al
Total nuclear loss 5/16;31.3% 0/2 AA%;0.0% 0/18;0.0% 0/14PPH 1;0.0% parathyromatosis; 2009 [68 i
0.0% [68]
4,
Total nuclear loss 14/2751.9% 0/78:0.0% 0/ 125’ g;PH ; 0/4;0.0% Howell et al., 2009 [74]
5. .
Total nuclear loss 0/8 1 ;1()30(/; 1n<t75mts, Tominaga et al., 2008 [70]
o ()
Total nuclear loss 11/11; 100.0% 2/4 AA 2;50.0% 1/22;4.5% Cetani et al., 2007 [55]
Total nuclear loss 9/22;40.9% 0/48; 0% 0/25PPH; 0.0% 0/6;0.0% Tan et al., 2004 [75]

In the original sources, different terms have been used in accordance with the actual classifications and terminology
at the time of publication: ! PPH, primary parathyroid hyperplasia; > AA, atypical adenoma; 3 PH, parathyroid
hyperplasia; 4 PST PH, primary, secondary or tertiary parathyroid hyperplasia. 5 primary and metastatic
parathyroid carcinoma in the setting of tertiary hyperparathyroidism, i.e., “on the background of advanced
secondary hyperparathyroidism”.

Technological difficulties represent the greatest problem of immunohistochemistry for
parafibromin, followed and deepened by the differences in evaluation. The immunohis-
tochemical results show overlap between adenoma and carcinoma. However, this is not
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attributable solely to technological shortcomings, but rather to the tumour biology as gene
assessment also yields overlapping data. Mutations of CDC73/HRPT2 have been reported
in only 60-90.9% of parathyroid carcinoma and 1-6% of adenomas [39,41,51,55]. Clearly,
the parafibromin profile overlap between adenoma and carcinoma is a part of parathyroid
tumour biology.

In our experience, albeit the immunohistochemical stain is technically challenging, it
has a rewardingly high diagnostic value. The procedure must be followed rigorously, and
repeated stains can be necessary, but reliable final result with appropriate internal positive
controls can be reached [38].

3.2. Proliferation Activity by Ki-67

Ki-67 is a nuclear protein that is expressed during the active phase of cell cycle while
strongly down-regulated during the GO phase. As the presence of immunohistochemi-
cally detectable Ki-67 identifies proliferating cells, Ki-67 is widely used in morphological
protocols for tumour diagnostics, including grading, molecular classification, prognostic
evaluation and prediction of treatment efficacy. The biological functions of Ki-67 include
mitotic, interphase and regulatory processes. During mitosis, Ki-67 participates in the
build-up of perichromosomal layer: a ribonucleoprotein sheath that coats the condensed
chromosomes and prevents them from aggregation. In interphase, Ki-67 protein maintains
the structure of heterochromatin. Ki-67 also regulates the cell cycle via p21 protein-related
pathways [38,76,77].

The main studies on proliferation activity by Ki-67 in parathyroid tumours are sum-
marised in Table 3.

Table 3. Proliferation activity by Ki-67 expression in parathyroid tumours and tissues.

Absolute Numbers of Positive/Investigated Cases; Proportion of Positive Cases (%) or Proliferation Activity by Fraction of Positive

Cells (%)
A h to Evaluati i i
pproach to Evaluation Parathyroid Atyplcal' Multlglandl.llar
Cardi Parathyroid Adenoma Parathyroid Normal Gland Reference
arcinoma R
Tumour Disease
o .
Mean frgctlon ( /0.) of 5.8% 1.6% 1.0% PPH ! 0.4% Uljanovs et al., 2021
positive nuclei [38]
Hotspot-b_asedonuclear 11.8% 3.5% 2.8% PPH ! 1.0% Uljanovs et al., 2021
fraction (%) [38]
Exceeds cut-off > 5%; . o 2. o Sungu et al., 2018
NOS 5/10; 50.0% 5/14 AA ?;35,7% (78]
Exceeds cut-off > 5%; . o . o Ca o Hosny Mohammed
NOS 18/21; 85.7% 2/3;66.7% 0/73; 0.0% etal, 2017 [69]
Exceeds cut-off 5%; a0 2. 1m0, Karaarslan et al.,
highest * 0/2;0.0% 1/6 AA%;16.7% 1/84;1.2% 2015 [73]
Exceeds cut-off > 4%,; . o Truran et al., 2014
highest 5/23;21.7% [57]
1/15 .
Exceeds cut-off > 5%; X o 2.1 o E zo 1.1 o . Fernandez-Ranvier
NOS 9/15; 60.0% 0/2 AA4;0.0% 1/18;5.6% 0/14 PPH *; 0.0% parathzr;;natosm, etal,, 2009 [65]
Mean fraction of positive o o o Kaczmarek et al.,
maclet (%) 1.9% 1.8% 3.5% 2008 [79]
Exceeds cut-off > 5%; . o . ano Hadar et al., 2005
NOS 15/26;57.7% 0/26; 0.0% [80]
o, 1 o, 1
Mean fraction of positive égifng::;:a? d 2&Ziﬁ0(2§:2;2 127 3.38%in 21 PPH ; 0.19% in 10 normal Thomopoulou et al.,
nuclei (%) ¢ ) 3.14% in 30 SPH 3 glands 2003 [81]
2 carcinomas) carcinomas)
Mean fraction of positive o : . 3.3% in 11 2.6% in 11. 0.1 in 9 normal Abbona et al., 1995
- o 6.1% in 12 carcinomas hyperplastic
nuclei (%) adenomas glands glands [82]

* Authors classified the cases as <1% vs. 1-5 % vs. >5%. Only the latter group is shown here. In the original
sources, different terms have been used in accordance with the actual classifications and terminology at the time
of publication: 1 PPH, primary parathyroid hyperplasia; 2 AA, atypical adenoma; 3 SPH, secondary parathyroid
hyperplasia. NOS, not further specified.

Increased cellular proliferation by Ki-67 fraction has been shown in parathyroid
tumours and hyperplasia in contrast to non-altered glands [81]. Further, statistically
significantly higher proliferation activity was observed in parathyroid carcinomas than
in adenomas [83]. The reported mean proliferation fraction in carcinoma ranges from
6.1% [82] to 8.4% [84] or even 13.9% [85]. In adenomas, the mean proliferation index by
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Ki-67 is reported as 1.9 [79]-4.3% [86] significantly exceeding the Ki-67 levels in residual
parathyroid tissues [80]. Hence, currently it is generally believed that cut-off level at 5%
can help to distinguish benign parathyroid tumours from the carcinoma although the sole
proliferation fraction does not qualify for a WHO-accepted diagnostic criterion [12].

However, controversies still exist. Occasionally, the proliferation fraction in secondary
parathyroid hyperplasia and multiglandular parathyroid disease has exceeded the values in
adenoma and carcinoma [81]. Further, Kaczmarek et al. noted that normal and hyperplastic
tissues were characterised by proliferation fractions of 3.5% and 1.8%, respectively [79].
In contrast, other studies have reported on increasing proliferative activity from normal
glands to multiglandular parathyroid disease, adenoma and carcinoma [38].

Technological variables and shortcomings can affect any immunohistochemical vi-
sualisation procedure (Table 4). However, these issues are less probable regarding Ki-67
because it is a robust antigen, and most laboratories have extensive long-term experience
in its detection. In parathyroid pathology, traps for Ki-67 assessment are set by the tumour
biology. The most evident of them is the heterogeneity. Regarding Ki-67 expression, hetero-
geneity manifests as a prominent hotspot pattern: clustering of positive nuclei [38] strongly
suggesting that proliferation and cell cycle regulation in parathyroid tumours also follows
the principles of biological noise and positional effects [87]. Consequently, the mean and
hotspot-measured highest proliferation fraction in tumours can differ significantly. For
instance, the mean proliferation fractions in normal parathyroid glands, multiglandular
parathyroid disease, adenomas and carcinomas are 0.4%; 1.0%; 1.6% and 5.8%, respectively;
contrasting with hotspot-measured highest values in the same set of sections: 1.0%; 2.8%;
3.5% and 11.8% [38].

Table 4. Technological variables influencing immunohistochemical visualisation.

Step Variable

Time and temperature of cold ischemia before fixation; Choice
Fixation of the fixative;
Time of fixation; underfixation and overfixation
Protocol of dehydration;
Processing Incubation time in xylene and paraffin;
Temperature of melted paraffin
Type of antigen retrieval: heat-induced antigen retrieval (HIER)
vs. enzymatic treatment vs. none
Mode: microwave vs. temperature;
Temperature, time, pressure (if applicable);

Antigen retrieval

HIER parameters pH of the buffer: acidic (e.g., citrate; pH = 6.0), neutral (e.g., TBS;
pH =7.6) vs. basic (e.g., TEG; pH = 9.0)
Clonality (polyclonal vs. monoclonal), clone, isotype
Primary antibody Dilution;
Incubation time and temperature
Visualisation system Choice of the system
Washing of tissue sections Excessive or insufficient

The differences between Ki-67 expression in various parathyroid pathologies retain
statistical significance and range sequence between different pathologies irrespective of
the mode of counting: mean vs. hotspot [38]. However, the numerical values and thus
cut-off thresholds could differ. To avoid discrepancies, a unified evaluation protocol must
be established setting the approach to the counting and the number of cells.

3.3. Cell Cycle Regulation
3.3.1. p27 Protein
The p27 protein is best-known as a cyclin dependent kinase inhibitor and tumour

suppressor that slows cell cycle progression, mediating G1 arrest. It also regulates G2/M
progression. Other functions of p27 include control of cellular differentiation, motility and
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migration, as well as the activation of apoptosis. Malignant cells can lose p27 expression due
to impaired synthesis or accelerated degradation, or inappropriate intracellular localisation
of the relevant protein [88-90].

In parathyroid pathology, loss of p27 is considered an alert to possible malignancy.
The published data almost invariably highlight low expression in parathyroid carcinoma
despite slight controversies regarding benign parathyroid pathologies. Thus, decreasing
levels of p27 expression were reported in normal parathyroid glands, hyperplastic tissues,
parathyroid adenoma and carcinoma, namely, 89.6%, 69.6%, 56.8% and 13.9% by Erickson
et al., 1999 [84]. Later, the expression levels were reported to be similar in adenoma and
multiglandular parathyroid disease, but the down-regulation in parathyroid carcinoma
was re-confirmed as statistically significant (p = 0.010). The biological differences also were
marked. In normal parathyroid glands, almost all cells (97.9%) expressed p27 protein. The
fraction of p27-expressing cells was 94.3% in multiglandular parathyroid disease associated
with primary hyperparathyroidism and 92.8% in adenoma, contrasting with 59.0% upon
malignant change [38]. Suppression of p27 in carcinoma has been verified by Arvai et al.,
2012 [91], and the difference between adenomas, tumours of uncertain malignant potential
and carcinomas (80% of adenomas vs. 43% of atypical adenomas vs. 18% of carcinomas by
cut-off threshold at 30% of tumour cells) was found to be statistically significant [92].

Immunohistochemical downregulation of p27 protein represents one of the least
controversial features of aberrant immunophenotype, that points towards diagnosis of
carcinoma in a parathyroid tumour. Nevertheless, loss of p27 is also seen in parathyroid
pathology within the frames of multiple endocrine neoplasia (MEN) syndromes [93].

3.3.2. p21 Protein

The p21 protein controls cell cycle progression, apoptosis and transcription. It is
the key mediator of cell cycle arrest in response to DNA damage [94] and a component
of p53 pathway [92]. The expression of p21 has dual effects, including suppression or
enhancement of apoptosis [94,95].

In early studies, setting the cut-off threshold at the level of 10%, nuclear expression of
p21 was found in 58% of adenoma and 55% of carcinoma cases [92]. Tissue microarrays
were used in the given study [92]. Later, significant heterogeneity of p21 expression was
observed manifesting as the hotspot pattern [38]. The remarkable heterogeneity hinted on
cautious interpretation of microarray-based results although the differences and trends in
P21 expression were preserved independently of the counting mode: mean vs. hotspot [38].

The data provided by Stojadinovic et al., 2003, indicated similar p21 levels in adenoma
and carcinoma [92]. More recently, comparison of mean and highest fraction of p21-positive
cells disclosed statistically significant and biologically notable differences in p21 expression.
The mean values were 3.1% in normal glands; 12.8% in adenoma; 15.7% in multiglandular
parathyroid disease and only 7.6% in carcinoma (p < 0.001). The same pattern was followed
by hotspot-measured highest values: 3.8% in normal glands, 23.7% in adenoma, 29.8% in
multiglandular parathyroid disease and 15.6% in carcinoma (p < 0.001). Pathogenetically,
these findings indirectly indicate either the duality of p21 [95] or a protective action that
is up-regulated in early benign proliferations but lost upon malignant change. From the
diagnostic point, the intermediate values in carcinoma do not encourage to use p21 for dif-
ferential diagnosis between benign vs. malignant parathyroid disease. Finally, if changing
P21 levels by targeting its translational regulation or post-translational modification will be
considered as an additive therapy for specific cancers to suppress neoplastic phenotypes
or to reduce drug resistance [95], in parathyroid pathology, multiglandular parathyroid
disease, e.g., in relevant MEN syndrome patients could be the best-suited target.

3.3.3. Cyclin D1

The cyclin D1 regulates transcription and acts as an important molecular switch in the
proliferation control. As an allosteric activator, it forms a complex with cyclin dependent
kinases 4 and 6 (CDK4 and CDK®6) that phosphorylate and thus inactivate the tumour
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suppressor protein Rb, resulting in the cell cycle progress from the G1 to S phase [96,97].
The overexpression of cyclin D1 in parathyroid neoplasms can be caused by pericentric
inversion of chromosome 11p that results in CCND1 gene control by parathyroid hormone
gene promoter. However, this inversion is seen in lower frequency than the overexpression
of the relevant cyclin D1 protein, e.g., 5-8% vs. 40% in adenomas [98]. Consequently, other
mechanisms are involved, such as gene amplification, transcriptional activation, e.g., via
Wnt or MAPK pathways [96] or deranged degradation [99,100].

In transgenic mice, overexpression of the cyclin D1-coding gene resulted in hyper-
parathyroidism. This pathogenetic association was consistent with the primary role of
cyclin D1 in parathyroid hyperfunction. Morphologically, the animals developed hyperpla-
sia as well as asymmetrical encapsulated nodular growths that showed tubular architecture
and compressed the adjacent gland, thus closely resembling adenomas. By immunohisto-
chemistry, no cyclin D1 expression was found in parathyroid tissues of wild-type animals
while irregular positive staining was evident in hyperplastic glands of transgenic mice [42].

Paralleling animal experiments, high levels of cyclin D1 protein have been reported in
human multiglandular parathyroid disease in the setting of primary hyperparathyroidism.
The highest fraction of cyclin D1-expressiong cells in multiglandular parathyroid disease
exceeds the levels seen in adenoma hypothetically suggesting that cyclin D1 represents as an
early molecular driver in parathyroid cell proliferation [38]. This is also in accordance with
the fact that cyclin D1 stain lacks the ability to distinguish between benign vs. malignant
parathyroid tumours [12]. Instead, it may show expression differences between the early
stages: multiglandular parathyroid disease, formerly designated hyperplasia, and adenoma.
These differences are statistically significant and biologically notable in contrast with minor
margin regarding Ki-67 [38].

Expression of cyclin D1 shows remarkable intertumoural heterogeneity, both in adeno-
mas and carcinomas [41,55] as well as significant intralesional heterogeneity with presence
of cold and hot spots that closely resembles the patterns of Ki-67 and p21 expression.
The set-up of scoring protocols (mean vs. highest fraction of cyclin D1-positive cells) can
influence the degree of statistical significance and thus lead to different conclusions [38].

Several scientific teams have evaluated immunohistochemical expression of cyclin
D1 in parathyroid carcinoma (Table 5). Truran et al. defined negative staining for cyclin
D1 as the carcinoma-associated pattern. This feature was observed in a minor fraction of
parathyroid carcinoma cases (2/24; 8.3%), and authors did not recommend to include it in
the diagnostic panel of parathyroid carcinoma [57]. Several other research groups evaluated
the contrary pattern: nuclear overexpression of cyclin D1 either by mean fraction of positive
cells or by different cut-offs. However, they also disregarded overexpression of cyclin D1
as a marker for differential between parathyroid carcinoma versus adenoma [92,101].

Although higher levels of wild-type parafibromin have been shown to block expres-
sion of cyclin D1 [102], by immunohistochemistry, no correlation has been reported by
expression of cyclin D1 and loss of parafibromin in parathyroid pathology [38,41,55,103].

Table 5. Expression of cyclin D1 in parathyroid tumours and tissues.

Absolute Numbers of Pattern-Showing/Investigated Cases; Proportion of Positive Cases (%) or Fraction of Positive Cells (%)

. Atypical Multiglandular
Pattern Parat'hyrmd Parathyroid Adenoma Parathyroid Normal Gland Reference
Carcinoma !
Tumour Disease
Mean value of strong 31.5% 12.0% 24.8% PPH 1 10.1% Uljanovs et al.,
nuclear expression 2021 [38]
Highest (hotspot) value of o o o 1 o Uljanovs et al.,
strong nuclear expression 41.8% 22.8% 42.5% PPH 11.9% 2021 [38]
Nuclear expression . o 5. o . o Sungu et al., 2018
exceeding 5% 7/10; 70.0% 10/14 AA 2;71.4% 5/21;23.8% 179]
Lack of expression
considered as the 2/24:8.3% Truran et al., 2014

carcinoma-associated
pattern

[57]
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Table 5. Cont.

Absolute Numbers of Pattern-Showing/Investigated Cases; Proportion of Positive Cases (%) or Fraction of Positive Cells (%)

. Atypical Multiglandular
Pattern Parat'hyrmd Parathyroid Adenoma Parathyroid Normal Gland Reference
Carcinoma !
Tumour Disease
Nuclear expression . o 2. o L0190 Stojadinovic et al.,
exceeding 5% 2/11;18.2% 1/8 AAZ;12.5% 4/44;9.1% 2003 [92]
Strong nuclear expression . o S 0o Thomopoulou
exceeding 20% 2/2;100.0% 11/17; 64.7% 0/10; 0.0% etal,, 2003 [81]
27.4% in joint 27.4% in joint
Mean value of strong group of group of 14.5% in PPH ! <1% Thomopoulou
nuclear expression carcinoma and carcinoma and 3.7% in SPH 3 ° etal., 2003 [81]
adenoma adenoma
Nuclear expression 41/46;89.1% 9,/10; 90.0% Cristobal et al.,
p 7 67 7 70 2000 [104]
Mean value of nuclear o o Cristobal et al.,
expression 25.8% 27.1% 2000 [104]

More than 10% of cells in
adenoma stained more
intensively than
non-tumour cells

9/24 (7, nuclear; 2,
cytoplasmic);
37.5%

Ikeda et al., 2002
[105]

In the original sources, different terms have been used in accordance with the actual classifications and terminology
at the time of publication: ! PPH, primary parathyroid hyperplasia; > AA, atypical adenoma; 3 SPH, secondary
parathyroid hyperplasia.

3.3.4. p53 Protein

The “genome guard”, p53 protein is normally found within cells in small quantities
due to a short half-life. The low physiological concentrations are almost undetectable
by immunohistochemistry although some commercial antibodies stain wild-type p53
protein. TP53 mutations can result in the synthesis of aberrant p53 proteins that have
longer half-lives and therefore accumulate in cells reaching higher intracellular levels that
become immunohistochemically detectable. On the other hand, silencing TP53 mutations
lead to absence of protein and therefore negative stain. Thus, TP53 mutation analyses and
immunohistochemistry for p53 protein provide two different levels of molecular assessment
lacking correlation but providing complementary information [106].

Regarding p53 in parathyroid tumours, facilitated degradation of the relevant mRNA
can be implicated. Parafibromin can bind to mRNA of p53 and destabilise it [64]. Enhanced
association with mutant parafibromin [64] might result in faster degradation of p53 mRNA.
The final outcome would be absence of immunohistochemically detectable p53 expression
and enhanced cellular proliferation in parathyroid carcinoma while benign lesions retained
wild-type protein. The general landscape of p53 expression in parathyroid diseases thus
would lack diagnostic differences, remaining invariably negative. Indeed, constant negative
P53 expression in normal parathyroid as well as benign and malignant tumours has been
reported previously [38,92]. However, other research teams have noted reactivity in even
15% of adenomas [80] and overexpression of p53 in carcinoma [91]. Although reliable over-
expression of p53 protein is still considered an alarming sign of possible malignancy [12],
this feature seems to be rare in parathyroid carcinogenesis.

3.4. APC Protein

Adenomatous polyposis coli (APC) gene is a tumour suppressor that inhibits the Wnt
molecular pathway. It is known for its role in colorectal carcinogenesis and association
with familial adenomatous polyposis (FAP) [107,108]. Its protein product can be detected
by immunohistochemistry and has been recommended by WHO (2022) as an adjunct in
the diagnostics of parathyroid carcinoma [12]. Parathyroid adenomas usually retain APC
while carcinomas tend to become negative, therefore loss of APC has been listed among
the biomarkers that indicate an increased risk of malignant behaviour of a parathyroid
tumour [12]. Hosny Mohammed et al. observed loss of APC in 20/21 (95.2%) parathy-
roid carcinomas, contrasting with 38/73 (52.1%) adenomas [69]. However, Kumari et al.
reported on loss of APC (<10% of cytoplasmic staining) in 9% of carcinomas, 23.5% of
atypical adenomas and 22% of adenomas [72]. Loss of APC acts as a screening marker for
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malignant potential, but the diagnosis of carcinoma still must be proved by WHO criteria,
that are based on manifestations of invasive growth and metastatic spread.

Nevertheless, the information on APC in parathyroid tumours is quite scant. In a
recent systematic review on biomarkers of parathyroid cancer [58], only five articles on APC
levels (detected via immunohistochemistry or polymerase chain reaction) were included. In
two publications, the APC expression in parathyroid carcinoma was found to be statistically
significantly decreased. The third team noted a statistically insignificant up-regulation in
carcinoma, and statistical evaluation was not performed in the remaining two articles [58].

3.5. Intermediary Filaments
3.5.1. Cytokeratin 19

Cytokeratin 19 is a widely expressed intermediary filament. It is invariably present in
parathyroid adenomas, carcinomas [109] and normal parathyroid glands [110]. Recently, a
statistically significant up-regulation of cytokeratin 19 was found in proliferating parathy-
roid lesions encompassing adenoma, multiglandular parathyroid disease and carcinoma.
The expression was markedly heterogeneous [38].

From the point of view of surgical pathologist, it is important to remember that thyroid
tumours and cancer metastases in cervical lymph nodes also are likely to express cytokeratin
19 [111-115]. Hence, the diagnostic value of cytokeratin 19 in parathyroid pathology is
low but this antigen could rather evoke scientific interest because of its up-regulation in
carcinoma. As the diagnostic criteria of parathyroid carcinoma reflect capacity for invasion
and metastatic spread, the altered expression level of intermediate filaments might have
pathogenetic importance.

3.5.2. Vimentin

Vimentin is a major mesenchymal intermediate filament, controlling cellular motility,
signalling and directional migration [116].

The glandular histology mostly precluded the researchers from in-depth assessment
of vimentin in parathyroid tissues, except stroma [110]. In addition, the rarity of parathy-
roid carcinoma hampered the studies of epithelial-mesenchymal transition in parathyroid
malignancies.

In early reports, vimentin expression in normal parathyroid glands was found to be
restricted to stroma [110]. The limited data on adenomas confirmed stromal reactivity
but remained controversial in regard to the presence of vimentin in parenchyma [35,110].
Expression of vimentin has been reported in parathyroid carcinoma-derived cell line
exhibiting both epithelial and mesenchymal traits [117].

Recently, our team highlighted some new features: parenchymal expression, different
patterns and up-regulation of vimentin in proliferating parathyroid lesions along with
changes in its expression pattern. In normal glands, only perinuclear, highly heterogeneous
vimentin expression was observed. The fraction of vimentin-positive parenchymal cells
increased from 9.3% in normal tissues to 11.7% in multiglandular parathyroid disease,
19.3% in adenomas and 36.8% in carcinoma. Paralleling the scores of vimentin-positive
cells, cytoplasmic reactivity appeared. In carcinomas, the cytoplasmic expression pattern
was invariable. Multiglandular parathyroid disease and adenomas showed combination
of both patterns, with predominantly perinuclear pattern in multiglandular parathyroid
disease and tendency to more frequent cytoplasmic staining in adenomas. Heterogeneity
was remarkable in all groups, but only both benign proliferating parathyroid pathologies
showed nodularity of vimentin expression [38].

3.6. CD44

CD44 represents a family of integral cell surface glycoproteins. It is a single-span
transmembrane adhesion molecule lacking kinase activity [118,119]. The main ligand of
CD44 is hyaluronic acid that is abundantly present in extracellular matrix. The interaction
between ligand-binding domain of CD44 and hyaluronic acid changes the conformation of
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the molecule resulting in the recruitment of adaptor proteins (ERM, Src, and others) to its
intracellular domain. This, in turn, triggers downstream biological effects as proliferation,
motility and migration, adhesion and invasion. CD44 is expressed during embryonic de-
velopment, on mesenchymal cells and in carcinogenesis. In tumours, it frequently indicates
poor prognosis and is recognised as one of the cancer stem cell markers [29,118-122].

Only few scientific teams have studied CD44 expression in parathyroid tumours.
Focal, irregular expression of CD44 in normal parathyroid glands and adenomas was
described by Zeromski et al., 1998 [123]. A decade later, contrasting data appeared as up-
regulation of CD44 was found in primary and secondary hyperparathyroidism. CD44 was
present in 13/27 (48.1%) of the abnormal glands, showing statistically significant difference
(p = 0.03) from the immunophenotypic absence of CD44 in normal glands [124]. Still later,
almost complete absence of CD44 was re-confirmed in 179 parathyroid cases, including
normal glands, multiglandular parathyroid disease, adenomas and carcinomas [38]. Thus,
CD44 has no significant role of the pathogenesis, differential diagnosis or prognosis of
parathyroid pathology.

The lack of CD44 in parathyroid tissues and tumours might seem unusual considering
that chromogranin A expression in parathyroid neoplasms indicates neuroendocrine differ-
entiation [12], and several other neuroendocrine tumours express CD44, although it is not
a specific neuroendocrine marker. Presence of CD44 has been reported, e.g., in pancreatic
neuroendocrine neoplasms, pulmonary carcinoids and high-grade neuroendocrine carcino-
mas (small cell carcinoma and large cell neuroendocrine carcinoma), and medullary thyroid
carcinoma [125-129]. The key to solve the putative discrepancy might be in embryology.
Neural crest-derived neoplasms tend to be CD44-negative while CD44 expression is more
consistent for endoderm-derived neuroendocrine tumours [130]. Development of parathy-
roid glands in humans parallels the embryogenesis in mice [131] involving endoderm
of the third and fourth pharyngeal pouches that interacts with and receives molecular
signals from the surrounding neural-crest-derived mesenchyme [132-135]. Neural crest
mesenchyme also contributes directly to the development of cervical structures, including
parathyroid glands as evidenced by unusual co-expression of Snail, Twist and E-cadherin
in normal and benign parathyroid glands [36,136].

3.7. Neuroendocrine and Hormone Markers: Chromogranin A, Synaptophysin, CD56, PTH
and TTF-1

Neuroendocrine and hormone markers are helpful to detect the histogenesis of a
tumour or mass lesion. Parathyroid tumours occasionally have to be distinguished from
thyroid neoplasms because of close anatomic relation [137] between both glands, including
occasional intrathyroidal location of normal parathyroid gland or parathyroid carcinoma.
The histogenetic diagnosis is difficult also in fine needle aspiration cytology [138].

The neuroendocrine differentiation in parathyroid tissues is limited, generally man-
ifesting as isolated positive reaction for chromogranin A, that is observed in most (98%)
cases [12,139,140]. The expression of synaptophysin is less frequent albeit variable: 11-100%,
according to Li et al., 2014 and Yu et al., 2019 [109,140]. Insulinoma-associated protein 1
(INSM1) is absent [140] both from normal and pathological parathyroid tissues including
multiglandular parathyroid disease in primary hyperparathyroidism, secondary hyper-
plasia, tertiary hyperparathyroidism, adenomas, atypical adenomas and carcinomas [140].
Neural cell adhesion molecule CD56 is another negative marker despite frequent expression
in neuroendocrine tumours in other locations [38,141-144].

CD56 is a membrane glycoprotein, representing a member of the immunoglobulin
superfamily. It is expressed on neural cells, NK and certain other types of lymphocytes,
muscle fibres as well as in different neoplasms [145]. Considering parathyroid pathology,
early reports indicated absence of CD56 in normal and neoplastic glands [123]. Few
later studies have been devoted to CD56 in parathyroid pathology. Although occasional
expression by luminal membrane was noted [146], a recent study [38] confirmed the absence
of CD56 from parathyroid tissues and tumours (except perivascular nerve fibres). Thus, in
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controversial cases, CD56 expression in a cervical neoplasm would favour non-parathyroid
origin of the tumour. Follicular thyroid adenoma and carcinoma [147], primary and
metastatic neuroendocrine tumours [148-150], NK cell lymphomas [150], malignant plasma
cell dyscrasias, especially multiple myeloma [145]; and alveolar rhabdomyosarcoma [151]
represent just few examples of CD56-positive differential diagnoses. Notably, pulmonary
small cell carcinoma also express CD56 [149].

A positive result for chromogranin A should be combined with the data on PTH
expression in the removed tissues/nodule [137] because other chromogranin A positive
tumours enter the differential diagnosis. Medullary thyroid carcinoma is positive for chro-
mogranin A [152], and this differential diagnosis can be especially difficult due to manifold
histological structure of medullary thyroid carcinoma. Medullary thyroid carcinoma ex-
presses calcitonin (80%) and carcinoembryonic antigen CEA in association with negativity
for thyroglobulin. TTF-1 stain can be positive in up to 80%, and PAX-8 in 75% of cases.
Medullary thyroid carcinoma also frequently (90%) features calcitonin-containing stromal
deposits of amyloid, therefore positive reaction via Congo red stain and apple-green bire-
fringence under polarised light are of diagnostic significance. The amyloid deposits are
metachromatic upon visualisation with crystal violet [152-154].

Paragangliomas co-express vimentin, chromogranin A and synaptophysin but lack
cytokeratins and calcitonin [154-156]. Expression of second-generation neuroendocrine
markers, e.g., ISL1 and INSM1, has been reported in abdominal (sympathetic) paragan-
gliomas [157]. In our experience, the expression of vimentin in paraganglioma is more
marked, extensive and homogeneous than in benign parathyroid disease. Paraganglioma
features Zellballen architecture with S100-positive sustentacular cells—a feature that is not
seen in parathyroid neoplasms. However, the sustentacular cells can be lost in metasta-
sis [154-157].

Pulmonary small cell carcinoma can metastasize to cervical lymph nodes, and the
differential diagnosis can be emphasized by hypercalcemia due to lung cancer [158,159],
either via bone metastases or paraneoplastic syndrome [160]. This high-grade tumour
features a variable expression of neuroendocrine differentiation markers, including CD56,
chromogranin A, synaptophysin and insulinoma-associated protein 1 INSM1 [161,162]. In
our experience, chromogranin A and CD56 are the most informative markers in pulmonary
small cell carcinoma. Chromogranin A frequently shows perinuclear expression in the
form of tiny but bright perinuclear dots. Expression of CD56 is remarkable for its stability
as it is retained even in crushed specimens. CD56 in small cell carcinoma tends to be more
intense than chromogranin A: the contrary to parathyroid gland. The proliferation fraction
by Ki-67 is very high, usually 70-100% [162]. Nuclei show the diagnostic salt-and-pepper
structure of chromatin, and morphology reflects a high-grade malignancy with extensive
necrosis, Azzopardi phenomenon and high mitotic activity.

Regarding PTH, it is detectable immunohistochemically and almost always present
in parathyroid tumours and tissues [140,163] while being absent from thyroid gland [163].
Thyroid transcription factor TTF-1 and thyroglobulin are negative in parathyroid cells [12],
therefore these are valuable markers in the differential diagnostics between parathyroid and
thyroid origin of a neoplasm/mass [12,109]. Of note, calcitonin can be positive in parathy-
roid tumours [93] compromising the differential diagnosis with medullary carcinoma.

3.8. Immunohistochemical Profile of Parathyroid Disease in MEN Syndromes: Menin

Multiglandular parathyroid disease is a typical component of certain multiple en-
docrine neoplasia (MEN) syndromes, namely, MEN 1, MEN 2A and MEN 4. Loss of menin
is characteristic for MEN I, and decreased expression of p27—for MEN 4. However, menin
is a technologically “difficult” antigen similarly to parafibromin, and loss of p27 protein is
also seen in sporadic carcinomas [93].
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3.9. Calcium-Sensing Receptor (CaSR) and the Associated Molecular Pathways

Most of parathyroid tumours present with hypercalcemia that is higher and therefore
more frequently symptomatic in patients affected by parathyroid carcinoma, compared
to benign disease. Non-functioning parathyroid carcinoma hypothetically exists but is
exceptionally rare [9,10]. Although tumour weight is strongly associated with calcium
and PTH concentration in blood [164], abnormal feedback and/or disturbed sensitivity to
blood calcium levels could be expected in the neoplastic cells, and the dysfunction might be
more marked in carcinoma. Indeed, diminished calcium-sensing receptor expression has
been reported in parathyroid carcinoma but is rare in benign tumours [165]. Thus, 31% of
carcinomas showed downregulation of CaSR, contrasting with adenomas and hyperplasia.
In this study [166], only a single adenoma featured a “carcinoma-like” irregular or absent
CaSR staining pattern (1/104 in a mixed group of adenomas, primary multiglandular
disease, secondary hyperplasia and tertiary hyperparathyroidism) [166]. More recently,
global loss of CaSR has been reported in 5/10 carcinomas while all adenomas (21) showed
retained expression (p = 0.001), and only a single atypical adenoma (1/14) yielded global
loss of expression [66]. In contrast, Storvall et al. observed retained immunohistochemi-
cal CaSR expression in all the evaluated parathyroid tumours, including 32 carcinomas,
44 atypical adenomas and 77 adenomas; just a single carcinoma and one atypical adenoma
presented weaker expression [165]. CaSR shows negative correlation with Ki-67 both in
secondary hyperparathyroidism and adenoma [166-168].

Scaffold protein filamin A binds to calcium-sensing receptor and activates the mitogen-
activated protein kinase MAPK pathway. Cytoplasmic expression of filamin A was statisti-
cally significantly higher in carcinomas compared to atypical adenomas or adenomas [165].
The expression of filamin A also correlated with the serum levels of calcium and PTH, but
was not associated with Ki-67 indicating that filamin A plays significant role in calcium
turnover but is not associated with the degree of anaplasia [165]. Indeed, Mingione et al.,
demonstrated that loss of filamin A reduces CaSR expression in protein and mRNA levels;
the CaSR-induced ERK phosphorylation also decreases [169].

Filamin A levels are not associated with loss of parafibromin. Pathogenetically, this
finding points to different molecular pathways, suggesting diagnostically important conclu-
sion: complex evaluation of both markers might have higher informativity. This hypothesis
was proved by Storvall et al., 2021: parafibromin-positive tumours featuring low expression
of filamin were likely to be benign [165].

Decreased expression of CaSR in secondary hyperparathyroidism has been demon-
strated in an animal model [170] and is associated with hypermethylation of the CaSR
and VDR genes [171]. The down-regulation of CaSR in nodular hyperplasia has been con-
firmed in human patients, diagnosed with secondary hyperparathyroidism [172]. Tertiary
hyperparathyroidism also is associated with lower levers of CaSR [173].

Orphan adhesion G protein-coupled receptor GPR64/ADGRG2 interacts with CaSR.
It is overexpressed in parathyroid tumours and attenuates CaSR-mediated signalling [174].

3.10. Intratumoural Heterogeneity

Parathyroid tumours are characterised by remarkable biological heterogeneity, involv-
ing proliferative activity (Ki-67) and cell cycle regulation (p21, cyclin D1), expression of
intermediary filaments (cytokeratin 19, vimentin) and different receptors, e.g., calcium
sensing receptor or vitamin D receptor [175]. In addition, technological variations lead to
significant intertumoural heterogeneity and differences among data obtained in various
studies. The detection of parafibromin is the classic example.

4. Tumour Microenvironment

In addition to the gland or tumour parenchyma, represented by the specialised glan-
dular or neoplastic cells themselves, the microenvironment should be accounted for. In
neoplasms, the tumour microenvironment is defined as all non-malignant elements present
in the tumour that maintain, support, or hinder tumour evolution, for instance, immune
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and inflammatory cells (tumour-associated lymphocytes, macrophages, neutrophils), en-
dothelial cells along with the cascade of angiogenesis, fibroblasts and myofibroblasts [121].
Many of these cell types and the involved molecular messengers can be detected by im-
munohistochemistry.

Currently, only few studies have targeted the microenvironment of parathyroid tu-
mours although there are some direct or indirect reports on macrophages [176,177] that
were formerly known as a confounding factor in cytology [138,178], and angiogenesis
evaluated via morphology or radiological imaging [179,180]. Similarly, scant studies are
performed on systemic inflammatory reaction in patients diagnosed with parathyroid
tumours [181]. Tumour-infiltrating lymphocytes (TILs) and local immune landscape repre-
sent the best explored aspect of parathyroid microenvironment [176,177,182] as these data
provide a reliable basis to discuss the applicability of immune therapies [176,183,184].

Programmed death-ligand 1 (PD-L1) in parathyroid tumours has been studied by
several research groups [176,182]. On the basis of PD-L1 expression and the presence of
TILs, four types of tumour microenvironment have been defined [176]:

immunotype (IT) Is. adaptive resistance: TILs are present, and PD-L1 is expressed;
IT I s. immunologic ignorance: both TIL s and PD-L1 are absent;

IT II's. intrinsic induction: TILs are absent, but PD-L1 is expressed;

IT IV s. tolerance: TILs are present, but PD-L1 is negative.

The team of Silva-Figueroa et al., 2018 evaluated these immunophenotypes in parathy-
roid tumours. PD-L1 expression was mostly negative in parathyroid carcinoma, therefore
types Il and IV predominated (7/18; 38.9% each), followed by type I (3/18; 16.7%). Type Il
was the least common (1/18; 5.6%) [176]. In a later study, most of parathyroid carcinomas
(between 18 and 20 cases out of 26 tumours, depending on the clone of primary antibody)
and adenomas (19-25/37) also turned out to be negative [182]. The results were consistent
between the studies, but pointed out to technological heterogeneity. The intratumoural
density of CD3+, CD8+, CD45+, and CD163+ immune cells in pancreatic carcinoma corre-
lated with disease-free survival [177]. Thus, the evaluation of tumour microenvironment
can provide insights into prognosis and immunotherapeutic options (anti-PD-L1 treat-
ment, combination with radiotherapy, vaccines etc.) in accordance with the identified ITs
I-1V [176,177].

5. Conclusions

In conclusion, immunohistochemistry remains an indispensable tool in diagnostic
surgical pathology, including parathyroid tumours. In parathyroid pathology, immunohis-
tochemistry has four main applications. First, parafibromin must be detected to identify the
new WHO-defined entity, namely, parafibromin-deficient parathyroid neoplasm. Loss of
parafibromin indicates greater probability of malignant course and should trigger search for
inherited or somatic mutations in CDC73 gene. Second, a set of markers are down-regulated
(e.g., APC, p27 protein, calcium-sensing receptor CaSR) or up-regulated (e.g., proliferation
activity by Ki-67 exceeding 5%) in parathyroid carcinoma compared to benign parathyroid
disease and thus can be helpful increasing the suspicion of malignancy and prompting the
search for the definitive criteria for carcinoma. These criteria are based on morphology:
unequivocal invasion or metastasis. Third, upon necessity, immunohistochemistry can be
used to find out the histogenesis of a cervical or intrathyroidal mass, or distant metasta-
sis. The differential diagnosis between parathyroid and thyroid tumours, paraganglioma,
haematological or metastatic tumours can be clarified via PTH, chromogranin A, TTF-1,
calcitonin, LCA, CD56 and vimentin, among others. Finally, immunohistochemistry is a
useful tool in pathogenetic studies due to its ability to highlight both the presence and the
tissue location of certain proteins. The challenges include technological difficulties (espe-
cially, regarding parafibromin stain) and variabilities that might contribute to some of the
highlighted controversies. The future developments include both diagnostic and research
targets. For practical diagnostics, tumour heterogeneity and technological variations have
to be accounted for, finally yielding standardized protocols for staining and evaluation of



Int. . Mol. Sci. 2022, 23, 6981 18 of 25

a unified diagnostic set of immunohistochemical markers. Higher affinity antibodies for
parafibromin and menin would be highly desired. Considering pathogenesis of parathyroid
tumours, molecular features and tumour microenvironment represent attractive targets.
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