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Abstract

:

The Drosophila imaginal disc has been an excellent model for the study of developmental gene regulation. In particular, long non-coding RNAs (lncRNAs) have gained widespread attention in recent years due to their important role in gene regulation. Their specific spatiotemporal expressions further support their role in developmental processes and diseases. In this study, we explored the role of a novel lncRNA in Drosophila leg development by dissecting and dissociating w1118 third-instar larval third leg (L3) discs into single cells and single nuclei, and performing single-cell RNA-sequencing (scRNA-seq) and single-cell assays for transposase-accessible chromatin (scATAC-seq). Single-cell transcriptomics analysis of the L3 discs across three developmental timepoints revealed different cell types and identified lncRNA:CR33938 as a distal specific gene with high expression in late development. This was further validated by fluorescence in-situ hybridization (FISH). The scATAC-seq results reproduced the single-cell transcriptomics landscape and elucidated the distal cell functions at different timepoints. Furthermore, overexpression of lncRNA:CR33938 in the S2 cell line increased the expression of leg development genes, further elucidating its potential role in development.
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1. Introduction


Long non-coding RNAs (lncRNAs) are defined as RNAs longer than 200 nucleotides and not translated into functional proteins. Human GENCODE (v40) identifies 17,748 lncRNA genes, which roughly equates to the number of protein-coding genes (19,988) signifying the importance of lncRNAs. The majority of lncRNAs are transcribed by RNA polymerase II and are often 5′-end 7-methyl guanosine (m7G) capped, 3′-end polyadenylated, and spliced similarly to mRNAs. They are often classified based on their position relative to neighboring genes (divergent, convergent, intergenic, antisense, sense, enhancer, intronic, and miRNA host), transcript length (long intergenic, very long intergenic, and macroRNA), association with annotated protein-coding genes, association with other DNA elements, protein-coding RNA resemblance, association with repeats, association with a biochemical pathway, sequence and structure conservation, biological state, association with subcellular structures, and function [1,2]. As lncRNAs provide supportive roles by fine-tuning gene expression levels at the epigenetic, transcriptional, and post-transcriptional levels, they are implicated in various biological processes and diseases. The contribution of lncRNAs to organ development in several mammalian species has revealed a transition of broadly expressed lncRNAs towards an increasing number of spatiotemporal-specific and condition-specific lncRNAs [3]. The role of lncRNAs in cancer has been studied extensively, but they are also involved in many other human diseases from neurological disorders to cardiovascular issues [4]. Notably, lncRNA expression is generally spatiotemporal specific, indicating the unique functions and probable pharmacological targeting of lncRNA.



Drosophila melanogaster (fruit fly) is an ideal model organism to study developmental and cellular processes in higher eukaryotes, including humans, because a wide range of genetic tools can be applied and its genome has been extensively studied [5]. In fact, the D. melanogaster genome is 60% homologous to that of humans and nearly 75% of human disease-causing genes are believed to have functional homologs in the fruit fly [6]. Furthermore, its short generation time, high fecundity, and low maintenance as well as the abundance of publicly available fly stocks and databases also make D. melanogaster an appealing model organism.



Despite different taxonomic origins, the Drosophila larval leg disc, which develops into the adult leg, is an ideal model for studying the complex vertebrate limb because it is relatively simple and amenable to genetic manipulations. Research on fly imaginal discs has revealed the tissue compartments and organ-specific regulator genes critical to development, and has generated established models for the study of cellular interactions and complex genetic pathways [7]. Moreover, the easy accessibility of imaginal discs further supports their utility.



Advances in the past decade on single-cell RNA sequencing (scRNA-seq) and related computational analysis pipelines have allowed scientists and bioinformaticians to understand the cellular heterogeneity of tissues at an unprecedented level, from manually selecting a single-cell under the microscope to plate-based and droplet-based high throughput methods with multimodal capabilities [8]. Since the publication of the first single-cell transcriptome study based on a next-generation sequencing platform, the number of publications on scRNA-seq addressing development, disease, and bioinformatics tool improvement has exponentially grown [9,10,11,12]. Many of these publications have focused on developmental biology, often involving single-cell studies, as it represents a crucial period during which cells first begin to differentiate [13]. Single-cell transcriptomics studies on Drosophila larval imaginal wing and eye-antennae discs have emerged since 2018 [14,15,16,17,18,19] and shown that single cells could be mapped to the distinct subregions of their respective imaginal discs, thus confirming the spatial expression of genes determined by previous immunostaining methods.



While the Fly Cell Atlas recently performed single-nucleus RNA-sequencing (snRNA-seq) on adult Drosophila legs [20], single-cell transcriptomics and epigenomics studies on the developing leg imaginal disc remain lacking due to the challenges of its dissection compared to the larger wing and eye-antennae discs. We thus report the single-cell transcriptomic and epigenomic landscapes of w1118 third leg discs (L3) across three time points of development of third-instar larvae. We identified and validated a novel, highly expressed lncRNA in the distal epithelial cells that changes its spatial expression at various stages of development and confirms its importance in leg development.




2. Results


2.1. Generation of a Transcriptomic Cell Atlas of the Developing Leg Imaginal Disc


2.1.1. Single-Cell RNA-Sequencing Identifies Four Main Cell Types in L3 Discs


To study the cellular heterogeneity of developing L3 discs, collected embryos were dissected for L3 discs at 121 h (T1), 133 h (T2), and 168 h (T3) after egg laying (AEL) (Figure 1A) for scRNA-seq. Sequencing statistics showed similar data quality amongst the three samples, including the percentage of mapped reads, percentage of mapped reads aligned to genes, number of cells, and mean reads per cell (Table S1). The L3 disc was identified as a trio of discs on either side of the larval body that differed from the wing and haltere discs in morphology and patterning (Figure 1B). Cell preparation workflow involved dissection and dissociation of L3 discs into single cells, after which a portion of the cells was used for scRNA-seq and the remaining cells having their nuclei isolated for single-cell assay for transposase-accessible chromatin (scATAC-seq) (Figure 1C). Both assays used the 10× Genomics platform and the prepared libraries were subjected to sequencing and subsequent data analysis. The integrated dataset overlayed T1, T2, and T3 individual samples and identified four distinct clusters (Figure 1D). The largest cluster represented the leg disc epithelium, which expressed epithelial markers Fasciclin 3 (Fas3) and narrow (nw) (Figure 1E) [21]. Expression of Sp1 and Ultrabithorax (Ubx) confirmed that the cells originated from L3 discs [22,23]. The second-largest cluster represented muscle cells, which expressed the muscle markers twist (twi), Holes in muscle (Him), Secreted protein, acidic, cysteine-rich (SPARC), tenectin (tnc), cut (ct), Amalgam (Ama), and terribly reduced optic lobes (trol) [17,24,25]. The identity of the immune cell cluster was determined by the expression of regucalcin, Hemolectin (Hml), Peroxidasin (Pxn), Transferrin 1 (Tsf1), and reversed polarity (repo) [19,26,27]. The smallest cluster represented the neuronal cells, which expressed found in neurons (fne) and couch potato (cpo) [15,28]. The relative expression levels of the marker genes were tabulated (Table A1).




2.1.2. Subclustering of the Main Cell Types Reveals Cell Subtypes


The muscle cell cluster was composed of early and late muscle cell subclusters (Figure 1F). The early cells expressed tenectin (tnc), terribly reduced optic lobes (trol), cut (ct), maternal gene required for meiosis (mamo), Thor, kin of irre (kirre), roughest (rst), and rolling pebbles (rols) (Figure 1G) [17,19,24,25,29]. The late cells expressed Holes in muscle (Him), twist (twi), Myocyte enhancer factor 2 (Mef2), muscleblind (mbl), and Fasciclin 2 (Fas2) [19,30]. Early muscle cells increased expression of late muscle cell marker Fas2 over time in terms of both expression level and the number of cells that expressed this gene (Figure S1). Late muscle cell marker Mef2, a skeletal muscle differentiation transcription factor, similarly increased expression in the late muscle cell subcluster over time in terms of both expression level and the number of cells that expressed the gene. The heatmap of the most upregulated genes in the early and late muscle cells showed a distinction in upregulated genes between the two subclusters (Figure S2).



The neuronal cell cluster was also composed of early and late neuronal cell subclusters (Figure 1H). The early cells expressed miranda (mira), LIM homeobox 1 (Lim1), and empty spiracles (ems) (Figure 1I) [31,32,33]. The late cells expressed bruchpilot (brp), neuronal Synaptobrevin (nSyb), embryonic lethal abnormal vision (elav), Synaptotagmin 1 (Syt1), Cadherin-N (CadN), nervana 3 (nrv3), Glutamic acid decarboxylase 1 (Gad1), knot (kn), vesicular glutamate transporter (VGlut), and tailup (tup) [34,35,36,37]. The heatmap of the most upregulated genes in the early and late neuronal cells showed a clar distinction between the two subclusters (Figure S3).



The immune cell cluster was composed of glia and hemocytes (including plasmatocytes), which are the phagocytes found in invertebrates (Figure 1J). Glial cells expressed Transferrin 1 (Tsf1), reversed polarity (repo), and moody [27,38], while the hemocytes and plasmatocytes expressed regucalcin, Peroxidasin (Pxn), and Hemolectin (Hml) (Figure 1K) [19,26]. These markers were highly specific to their respective cell subtypes and the heatmap of the most upregulated genes in the glia and hemocytes (including plasmatocytes) showed a clear distinction between the two subclusters (Figure S4).



The leg disc epithelium cluster was subclustered into six cell subtypes, including the distal, medial, and proximal cells as well as stem cell-like cells, such as those of the proximal-distal-axis (PD axis) and anterior-posterior-axis (AP axis), and cells of undetermined fate (Figure 2A). Identification of fate undetermined cells was based on their top upregulated DEGs and gene ontology analysis of the DEGs (Table A2 and Table A3). The distal cells expressed the markers aristaless (al), C15, and Distal-less (Dll) (Figure 2B) [22]. The medial cells expressed dachshund (dac) and Dll, while the proximal cells expressed teashirt (tsh) and homothorax (hth) [22]. The PD axis cells expressed vestigial (vg), spalt-related (salr), and spalt major (salm) [39], and the AP axis cells expressed hase und igel (hui) (FlyBase ID FBgn0033968).





2.2. Identification and Characterization of a Novel Long Non-Coding RNA


2.2.1. Identification of a Long Non-Coding RNA of Unknown Function in Distal Cells


The most upregulated genes in each leg disc epithelium subcluster are shown in a heatmap (Figure 2C). The genes colored black represent known markers for their respective subclusters, those colored blue represent genes with known functions as potential markers for their respective subclusters, and the genes colored red represent genes with unknown functions as potential markers for their respective subclusters. lncRNA (lncRNA:CR33938) is unique because the 10× 3′ gene expression kit uses oligo(dT) primers to detect polyA-tailed transcripts, which mostly include mRNAs. However, lncRNA:CR33938 expression was observed in this study (Figure 2D). Indeed, lncRNA:CR33938 was identified in other studies by using polyA+ bulk RNA-sequencing [40,41]. Upon splitting the integrated data into its respective samples (T1, T2, and T3), lncRNA:CR33938 expression was negligible in T1, appeared more widespread in T2 and became specific to the distal cells in T3. Note that while most distal cells expressed lncRNA:CR33938, a small subset of medial and proximal cells also expressed the lncRNA.




2.2.2. Experimental Validation of lncRNA:CR33938 Expression in L3 Discs


Fluorescence in-situ hybridization (FISH) of lncRNA:CR33938 in T1, T2 and T3 L3 discs was performed alongside region-delineating controls Dll and dac (Figure 2E). Expression of only Dll represented the distal cells, while co-expression of Dll and dac or only dac represented the medial cells. LncRNA:CR33938 expression in T1 L3 discs did not occur. LncRNA:CR33938 expression in T2 L3 discs was present in the proximal, medial, and distal cells, while lncRNA:CR33938 expression in T3 L3 discs was most prominent in distal cells, although medial cells also showed more limited expression. More specifically, six regions of large punctated lncRNA:CR33938 expression were observed in T3, including four regions of high expression and two regions of lower expression. Three of the six regions were within the distal cells, while the other three regions were outside of the distal cells, suggesting expression of lncRNA:CR33938 in cells other than the distal cells, namely the medial cells. The proximal cells also had a low level of lncRNA:CR33938 expression, as displayed by a tint of red fluorescence peripheral to the medial cells delineated by the dac marker. In fact, Figure 2D did show other cells expressed the lncRNA, but these cells represented only small subsets of the subclusters. Thus, these FISH results corroborated the scRNA-seq data. Note that the punctated regional expressions may suggest localized lncRNA:CR33938 function in aggregates.




2.2.3. Conservation of lncRNA:CR33938 in Insect Species


The conservation state of lncRNA:CR33938 across 124 insect species revealed that the lncRNA had a high conservation level in exon regions (Figure 3A). Moreover, a comparison with the conservation state of all 2258 lncRNAs annotated in the reference annotation suggested that lncRNA:CR33938 was more conserved than 90% of the other lncRNAs (Figure 3B). These concordances reflected a critical regulatory role of lncRNA:CR33938 in insect development.




2.2.4. Overexpression of lncRNA:CR33938 in S2 Cells


Transient overexpression of full-length lncRNA:CR33938 in S2 cells produced an approximately 40,000-fold increase in expression level compared to the empty vector control (Figure 3C) according to qRT-PCR. Correspondingly, expression of the PD axis genes (Hh, wg, and dpp) showed an increasing trend upon lncRNA:CR33938 overexpression. While there was no effect on the expression of genes controlling proximal leg femur growth, expression of distal leg tarsal disco-r and medial leg tibial dac significantly increased with lncRNA:CR33938 overexpression. This corroborated the scRNA-seq and FISH data that lncRNA:CR33938 more greatly affected (and was normally expressed in) the distal end of the leg.





2.3. Generation of an Epigenomic Cell Atlas of the Developing Leg Imaginal Disc


2.3.1. scATAC-seq Identified Similar Cell Types as scRNA-seq


The sample-wide integrated scATAC-seq dataset showed an overlaying of the T1, T2, and T3 individual samples (Figure 4A) and identified twelve distinct clusters based on differences in chromatin accessibility (Figure 4B). A heatmap distinguished the proportion of cells in each cluster at each timepoint and showed differences in chromatin accessibility and cell composition across three timepoints (Figure 4C). For example, cluster 6 (C6) showed greater than 80% of the cells in T1, a small proportion of the cells in T2, and nearly no cells in T3. Similarly, T1 had many cells from cluster 12 (C12) and cluster 2 (C2).



Upon integration of the chromatin accessibility data with the gene expression data, seven cell types identified in scRNA-seq were transferred to the scATAC-seq clusters (Figure 4D). These cell types corresponded to the cell subtypes of the PD axis of the leg disc epithelium (proximal, medial, and distal cells) as well as those of the muscle, neuronal, and immune cells.



The cell type identities were confirmed by an inferred gene score of chromatin accessibility for a list of known marker genes specific to the cell types (Figure 4E). Similar to the gene expression data in scRNA-seq, high gene scores of Sp1 and Ubx confirmed that the cells originated from L3 discs. All cells that composed the leg disc epithelium (proximal, medial, and distal cells) showed markers Fas3 and nw. The presence of Dll only (without dac), al, and C15 confirmed the identity of the distal cells. Dll (with dac) and dac only confirmed the identity of the medial cells. Similarly, tsh and hth were markers for the proximal cells, while Him and twi represented the muscle cells. The neuronal cells showed high gene scores for nervana 3 (nrv3) and complexin (cpx), and the immune cells produced high scores for Hml (for hemocytes) and Pxn (for plasmatocytes) markers.



The most enriched motifs for each cell type are shown as a heatmap (Figure 4F). The GATA motifs were evident in the immune cells, with several GATA family members observed. The PRDM9 and HIF2a.bHLH motifs were highly enriched in the medial and distal cells, respectively. While the NRF motif was enriched in the proximal cells, its enrichment was more evident in the neuronal cells. The muscle cells were enriched in many motifs, including Maz, KLF14, ZNF, Egr2, Olig2, Egr1, KLF10, and Klf9. The neuronal cells were also enriched for many motifs, including MyoD, Myf5, E2A, PAX5, MyoG, Tcf12, EKLF, Ascl1, and NRF.




2.3.2. Chromatin Accessibility Differentiated the T1, T2, and T3 Distal Cell Functions


Gene set enrichment of T2 genes relative to T1 and T3 genes relative to T1 showed differences in cellular processes (Figure 4G). The T2 distal cells were more involved in metabolic processes, while the T3 distal cells had a larger role in chitin-based larval cuticle development.



Fragment coverage within the 40,000 base pairs on either side of the distal cell marker gene Dll showed increased coverage in the distal cells with marked co-accessibility in neighboring genes (Figure 4H). Distal cell marker gene C15 similarly displayed increased coverage in the distal cells with marked co-accessibility in neighboring genes.






3. Discussion


We used scRNA-seq and scATAC-seq to explore the Drosophila L3 disc transcriptomic and epigenomic landscapes, respectively, at three timepoints of development. The multi-omics datasets corroborated each other and showed similar cell types that delineated the various regions of the leg disc, namely, those along the PD axis. Moreover, scRNA-seq identified an experimentally validated late-stage distal-specific and conserved lncRNA (lncRNA:CR33938) that, upon further characterization by overexpression studies, promoted distal leg growth gene expression. In addition, differences in chromatin accessibility determined by scATAC-seq indicated the disparate functions of early- and late-stage distal cells.



Given that the three legs of Drosophila differ in their developmental programs, their underlying differences cannot be ignored when studying leg disc development [23]. Subsequently, we specifically isolated the third leg disc to provide a more coherent single-cell atlas.



Simultaneous multi-omics library preparation methods, where the same cell or nuclei are used for different single-cell assays, were not available at the time these experiments were completed. As a result, the same cell suspension was used for both scRNA-seq and scATAC-seq to minimize biological variation. Furthermore, the limited number of cells extracted per leg disc prevented the execution of multiple experiments of biological replicates, in which one experiment consisted of one replicate. Rather, a single assay comprised of many biological replicates was conducted for each time point.



The computationally determined assignment of cell types to clusters depended upon the most upregulated genes in each cluster and prior information about cell type-specific marker genes. In addition to the prominent distal, medial, and proximal cell types, cells that did not express explicit marker genes denoting specific cell types represented early developing cells with undetermined fate, which we referred to as “stem-cell like cells”.



We found a large cluster of epithelial cells and a smaller cluster of muscle cells in the L3 discs, which corroborated previous studies that have shown the presence of many epithelial cells and accompanying muscle cells in the wing discs of third-instar larva [15,16,17]. Previous studies have suggested that the epithelial cells of the wing disc can be mapped to distinct subregions, including the pouch, hinge, notum, and peripodial membrane [16]. Similarly, the epithelial cells of the leg disc could be mapped to distinct proximal, medial, and distal subregions. Regarding muscle cells, research has shown that they can be subcategorized into direct and indirect flight muscles [17]. Given this finding, we also subcategorized the L3 disc muscle cells based on early versus late muscle development genes.



Our results also demonstrated the presence of neuronal and immune cells in L3 discs, which corroborates the recent single-nucleus transcriptomics study on the adult fruit fly leg by the Fly Cell Atlas showing the presence of various differentiated neurons as well as hemocytes and glial cells [20]. This illustrated that the neuronal cells in the developing leg disc have not yet differentiated, though they can subsequently differentiate.



Despite the publication of several works on single-cell transcriptomic landscapes of the Drosophila wing and eye-antennae imaginal discs [14,15,16,17,18,19], this study is the first to describe the transcriptomic and epigenomic landscape of the leg disc, specifically the third leg disc, at single-cell resolution. The Fly Cell Atlas study determined the single-nucleus transcriptomic atlas of the adult fruit fly leg, but it was based on fully differentiated tissues [20]. Conversely, our work was based on developing tissue and characterized the importance of an identified lncRNA.



lncRNAs tend to have lower expression levels than protein-coding genes [42]. The detection of lncRNA:CR33938 by our polyA-tailed single-cell transcriptomics assay indicated that it had a robust level of expression and suggested that it had an important physiological function in leg development given that lncRNA expression is environment-specific [42].



Our work highlighted the spatiotemporal expression of lncRNA:CR33938. It was largely distal-specific, as suggested by the scRNA-seq and FISH results, despite some cells other than the distal cells also showing expression. We also provided evidence that lncRNA:CR33938 may have an important role in leg development. We used a previously published list of larval stage genes that establish the PD axis of the Drosophila leg [43]. LncRNA:CR33938 promoted tarsal leg growth gene expression upregulation, namely disco-r. The expression of its paralog, disco, is maintained by Dll, and disco gene function is also required for the maintenance of Dll expression [44]. Given the important function of disco in maintaining a key gene in PD axis development, this suggests that lncRNA:CR33938 has an important potential role in leg development. Note that dac was also upregulated by lncRNA:CR33938 overexpression. This was not surprising, as the lncRNA was also expressed in the medial cells in T2. This suggests that lncRNA:CR33938 exhibits a spatiotemporal role, in which it first modulates medial leg cell fate early in development and then distal leg cell fate modulation later in development. This hypothesis could be tested by using the GAL80 temperature-sensitive and GAL4 with UAS system of flies to spatiotemporally overexpress lncRNA:CR33938 and to assess leg phenotype, such as leg length. Prior to this study, lncRNA:CR33938 did not have an annotated function, but our study indicated that it may influence late-stage distal, and perhaps mid-stage medial, leg growth.




4. Materials and Methods


4.1. Fly Maintenance and Stocks


The w1118 Drosophila melanogaster fly line was obtained as a gift from Prof. Edwin Chan’s lab at The Chinese University of Hong Kong. All flies were maintained at room temperature in regular light-dark cycles in vials containing standard cornmeal agar medium (Nutri-fly, #66-112).




4.2. Fly Breeding Schedule for T1, T2, and T3


Male and female w1118 flies were allowed to mate for 2 h at room temperature in a clear plastic cup with an attached petri dish containing apple juice agar. After this time had elapsed, embryos were transferred from the apple juice agar plate to a vial containing standard cornmeal agar medium. They were then allowed to grow for 121, 133 or 168 h, corresponding to T1, T2, and T3, after which the third leg discs of these third-instar larvae (L3) were dissected.




4.3. Third Leg Disc Dissection and Single Cell Dissociation


At least 70 L3 discs were dissected for T1, and at least 50 L3 discs each were dissected for T2 and T3. These discs were collected in an Eppendorf tube containing phosphate-buffered saline (PBS) with 0.04% bovine serum albumin (BSA) on ice. After pipetting out the PBS from briefly centrifuged samples, we added TrypLE Select Enzyme (10×) (ThermoFisher, Waltham, MA, USA, #A1217702). The discs were then incubated in a thermomixer shaken at 500 rpm for 25 min at 37 °C (with the tube being flicked every five minutes). S2 medium (Gibco, Waltham, MA, USA, #21720) supplemented with 10% fetal bovine serum and 2% penicillin/streptomycin were then added to stop the dissociation reaction. Finally, the isolated single cells were washed and resuspended in PBS + 0.04% BSA.




4.4. DNA Library Preparation and Sequencing


The complementary DNA (cDNA) libraries for T1, T2, and T3 were prepared according to the 3′ scRNA-seq library preparation protocol (v3.1) of 10× Genomics. In summary, a microfluidics chip was used to produce GEMs (Gel Bead-in-Emulsions), which are droplets that each contain a single microbead with attached oligonucleotides that include a unique cell barcode, a single cell, and reverse transcription reagents. When the single cell lyses within the intact GEM, the cellular polyA-tailed transcript sequences become exposed, reverse transcription occurs, and each cDNA transcript within the same cell receives the same cell barcode with a different UMI (unique molecular identifier). Subsequently, the droplets lyse and the cell-barcoded cDNA from all cells are pooled and amplified. cDNA library construction involved fragmentation, end-repair, A-tailing, double-sided size selection, and sample index incorporation. Quality control and qualitative analysis of the final library were performed on an Agilent Bioanalyzer DNA High Sensitivity chip (Beijing, China). Sequencing of the libraries was completed on the Illumina NovaSeq6000 platform by Novogene (Beijing, China).




4.5. scRNA-seq Raw Data Processing, Quality Assessment, and Filtering


The raw paired-end sequencing data files (Fastq) were processed using the Cell Ranger pipeline v4.0.0 with default settings. Read alignment and UMI counts were based on a BDGP6 genome reference fasta file and annotated by a BDGP6.28 gtf file developed by Ensembl. Cell-UMI count tables were loaded into Seurat v4.0 [45]. Cells with 1000–250,000 UMI counts and less than 5% mitochondrial genes were used as filtering gates to select cells for downstream analysis. We only kept genes with at least 20 UMI counts in all cells. Qualimap (v2.2.1) was further used to assess the percentage of mapped reads and percentage of mapped reads aligned to genes for comparison between T1, T2, and T3.




4.6. scRNA-seq Data Integration, Clustering, and Cell Type Identification


The T1, T2 and T3 filtered single-cell datasets were merged and integrated using Seurat (v4.0.) Batch effects between samples were corrected using Harmony (v1.0) prior to clustering analysis. PCA was used to determine the optimal dimension for dimensionality reduction, and clustering was performed based on K-nearest neighbor (KNN) graphs with a resolution of 0.02 before UMAP visualization of the single-cell data in two dimensions. The major cell types of the clusters were identified based on known marker genes, and these marker genes were listed among the most upregulated differentially expressed genes compared to other clusters. All clusters were further subclustered into constituent cells based on known marker genes. Dotplots, featureplots, heatmaps, and UMAPs were then generated. Other than the known marker genes, novel genes were also identified as potential markers.




4.7. Validation of scRNA-seq Results by FISH and Confocal Imaging


w1118 flies were bred and T1, T2, and T3 L3 discs were dissected as described above. The discs were fixed in 3.7% paraformaldehyde on ice for 30 min. Then, probe hybridization was completed according to the protocol provided by Molecular Instruments. The discs were first permeabilized in a detergent solution containing sodium dodecyl sulfate and Tween-20, before custom-designed probes for Dll, dac, and lncRNA:CR33938 were hybridized to the fixed and permeabilized discs for 20 h at 37 °C. After several washes with 5X SSC-Tween-20, hairpins with different fluorophores for each probe were added and incubated for 16 h in darkness at room temperature. The discs then underwent another several washes with 5X SSC-Tween-20 and were mounted onto a Menzel-Glaser Superforst Plus microscope slide (Thermo Scientific, Waltham, MA, USA, #J1800AMNZ) with a Hydromount mounting medium (National Diagnostics, Charlotte, NC, USA, #HS-106) and a 22 × 50 mm Deckglaser microscope coverglass (VWR, Radnor, PA, USA, #630-1461). The mounts were visualized on a Leica SP8 confocal microscope and each sample was imaged every 0.25 μm along the z-axis. The confocal images were z-stacked and processed with Leica Application Suite software.




4.8. Construction of lncRNA:CR33938 Expression Vector for Expression Studies


Total RNA was extracted from D. melanogaster L3 discs using NucleoZOL (Macherey-Nagel, UK, #740404.200) following the manufacturer’s protocol. Following RNase-free DNaseI (Thermo Scientific #EN0521) treatment and DNaseI inactivation by EDTA, the purified RNA was subjected to cDNA generation using PrimeScript II (Takara, Japan, #RR036A). The cDNA concentration was measured using the Qubit High Sensitivity double-stranded DNA assay. lncRNA:CR33938 was amplified with PCR from the cDNA using the following primers with restriction site sequences inserted: forward primer 5′-TTTGGTACCTTGAGTCCGAGAGGTT-3′ and reverse primer 5′-CGCTCTAGACTCTTTTTTTGGTAGCCTATT-3′). The amplicon and the pAc5.1/V5-His B expression vector (Invitrogen, Waltham, MA, USA, #V411020) were digested with KpnI (New England Biolabs, USA, #R3142) and XbaI (New England Biolabs, Ipswich, MA, USA, #R0145) restriction enzymes and subsequently ligated using T4 DNA ligase (Invitrogen #15224017). The ligation mixture was transformed to chemically competent Escherichia coli (Invitrogen, #C404003) and selected using 100 mg/mL of ampicillin. The sequence of the lncRNA:CR33938 construct cloned into the expression vector was verified by Sanger sequencing at the Beijing Genomics Institute. Transfection-ready plasmid DNA was extracted using a Plasmid Miniprep kit (Invitrogen, #K210011).




4.9. S2 Cell Culture and Transfection


D. melanogaster S2 cells were provided by Prof. Jerome Hui from the School of Life Sciences of The Chinese University of Hong Kong. S2 cells were cultured in Schneider’s Drosophila Medium (Gibco #21720) supplemented with 10% heat-inactivated fetal bovine serum (Gibco #10270) and 1% penicillin-streptomycin antibiotic mixtures (Gibco #15140122) in a 25 °C humidified incubator. The cloned pAc5.1-lncRNA:CR33938 construct was transfected into S2 cells using Effectene (Qiagen, Germantown, TN, USA, #301425) and the pAc5.1 backbone vector was used as a negative control. The cells were then incubated at 25 °C for 48 h prior to RNA extraction for qRT-PCR.




4.10. RNA Extraction and qRT-PCR of S2 Cells


RNA was extracted with NucleoZOL (Macherey-Nagel, Allentown, PA, USA, #740404.200). Following RNase-free DNaseI (Thermo Scientific #EN0521) treatment and DNaseI inactivation by EDTA, the purified RNA was subjected to cDNA generation using PrimeScript II (Takara, Tokyo, Japan, #RR036A). The cDNA concentration was measured with a Qubit High Sensitivity double-stranded DNA assay. For qRT-PCR, 1 ng of template cDNA and 1xTB Green II (Takara #RR820) were added to each well of a 96-well plate (Axygen, Union City, CA, USA, #PCR-96-FSC) and covered with an optical adhesive film (Applied Biosystems ABI, Waltham, MA, USA, #4311971) prior to execution on a BioRad CFX96 real-time PCR detection system. Primer sequences for each tested gene are listed in Table S2.




4.11. Nuclei Isolation for scATAC-seq


The same suspension of single cells used for scRNA-seq was used for nuclei isolation for scATAC-seq. Nuclei isolation was performed according to a 10× Genomics low input protocol for scATAC-seq with some optimizations. The cell suspension was pelleted and lysed on ice in a buffer containing the detergents Tween-20 and nonidet-P40 (NP40) for 30 s. The isolated nuclei were then washed twice and resuspended in chilled 10× diluted nuclei buffer (provided by 10× Genomics). Trypan blue stained nuclei were observed under the microscope to assess nuclei quality.




4.12. DNA Library Preparation and scATAC-seq


DNA library preparation was performed according to the scATAC-seq preparation protocol (v1.1) of 10× Genomics. First, the nuclei suspensions were incubated in a transposition mix that included a transposase that preferentially fragments the DNA in open regions of the chromatin. Simultaneously, adapter sequences were added to the ends of the DNA fragments. As in scRNA-seq, a microfluidics chip was used to produce GEMs (Gel Bead-in-Emulsions), but in this case, the droplets contained a single microbead with attached sequences consisting of a unique cell barcode, a single nucleus, and DNA amplification reagents. Once the DNA from each nucleus was barcoded, all nuclei were pooled for DNA library construction. Because only the histone unbound areas of the genome are cut by the transposase, the library consisted of DNA fragments that represented the open chromatin regions of the genome. Quality control and qualitative analysis of the final library were performed on an Agilent Bioanalyzer High Sensitivity DNA chip. The libraries were sequenced on the Illumina NovaSeq6000 platform by Novogene at PE50 with a sequencing depth of approximately 50,000 read pairs per cell.




4.13. scATAC-seq Data Analysis


The raw paired-end sequencing data were processed by Cell Ranger ATAC pipeline v2.0.0 with default settings, using a dm6 UCSC reference generated by the 10× Genomics mkref function. Data processing, filtering, dimensionality reduction, and clustering were performed with ArchR v1.0.1 [46]. UMAP visualizations of the scATAC-seq clusters were created before and after integration with scRNA-seq data. Determination of cell type identities were aided by manual annotation of cell type-specific marker genes based on gene scores estimated from the chromatin accessibility data. Peak calling with MACS2 v2.2.7.1 [47] was performed on each cell cluster. Identification of robust peak sets allowed the prediction of enriched transcription factor motifs for each cluster. Gene ontology analysis was performed using Cluster Profiler to determine the enriched distal process in T2 and T3 relative to T1. Genome browser plots depicting co-accessibility of distal genes with nearby genes were also generated using ArchR.
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Table A1. Relative expression levels of marker genes. The average log2FC expression levels of the marker genes displayed in Figure 1 and Figure 2 are tabulated here.
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	Cell Subtype
	Gene
	Percent Expressed
	Normalized UMI Count
	Seurat Scaled Normalized UMI Count





	Medial
	al
	14.47507953
	0.446617753
	−0.38657561



	Medial
	C15
	1.033934252
	0.020802751
	−0.414645183



	Medial
	Dll
	75.95440085
	5.128735566
	0.44025229



	Medial
	dac
	68.31919406
	3.578504256
	1.883267974



	Medial
	tsh
	8.324496288
	0.18788577
	−0.980689638



	Medial
	hth
	39.10392365
	4.268092807
	−0.888707309



	Medial
	vg
	1.802757158
	0.078396772
	−0.412093522



	Medial
	salr
	1.272534464
	0.028393623
	−0.448546528



	Medial
	salm
	1.405090138
	0.032101424
	−0.457590917



	Medial
	hui
	10.49840933
	0.275768473
	−0.441380335



	Medial
	betaTub56D
	99.73488865
	67.01346734
	−0.603531241



	Medial
	alphaTub84B
	99.70837752
	57.70906617
	−0.54154286



	Medial
	tsr
	99.60233298
	52.63663428
	−0.473061117



	Medial
	Act5C
	99.76139979
	61.24349032
	−0.509223741



	Proximal
	al
	17.52711497
	0.862922147
	0.067037547



	Proximal
	C15
	0.954446855
	0.015783215
	−0.4175847



	Proximal
	Dll
	28.63340564
	1.420345973
	−0.645129847



	Proximal
	dac
	18.13449024
	0.723348582
	−0.290659318



	Proximal
	tsh
	71.32321041
	4.083784238
	1.609816265



	Proximal
	hth
	96.52928416
	79.60652398
	1.461906241



	Proximal
	vg
	1.561822126
	0.068269738
	−0.417599705



	Proximal
	salr
	2.212581345
	0.12027794
	−0.360530445



	Proximal
	salm
	2.993492408
	0.195738255
	−0.347537362



	Proximal
	hui
	8.937093275
	0.343389783
	−0.426442771



	Proximal
	betaTub56D
	99.65292842
	67.46030873
	−0.576381945



	Proximal
	alphaTub84B
	99.52277657
	59.83865741
	−0.467998663



	Proximal
	tsr
	99.43600868
	53.94964304
	−0.392002795



	Proximal
	Act5C
	99.69631236
	64.22054168
	−0.447496433



	Fate_Undetermined
	al
	7.564469914
	0.479912329
	−0.350297209



	Fate_Undetermined
	C15
	1.088825215
	0.054030437
	−0.395186544



	Fate_Undetermined
	Dll
	37.13467049
	2.905723476
	−0.210385285



	Fate_Undetermined
	dac
	24.41260745
	1.538342317
	0.329880269



	Fate_Undetermined
	tsh
	13.29512894
	0.933420238
	−0.484960231



	Fate_Undetermined
	hth
	51.57593123
	10.93855676
	−0.680584009



	Fate_Undetermined
	vg
	1.891117479
	0.261258161
	−0.312669703



	Fate_Undetermined
	salr
	1.604584527
	0.097676107
	−0.382180764



	Fate_Undetermined
	salm
	2.063037249
	0.167802628
	−0.3663254



	Fate_Undetermined
	hui
	6.074498567
	0.405081245
	−0.412815111



	Fate_Undetermined
	betaTub56D
	99.94269341
	87.40336921
	0.635323338



	Fate_Undetermined
	alphaTub84B
	99.88538682
	77.19868569
	0.131519833



	Fate_Undetermined
	tsr
	99.82808023
	67.62449968
	0.452211633



	Fate_Undetermined
	Act5C
	99.77077364
	82.08451192
	−0.07709812



	Proximal-Distal-Axis
	al
	10.36789298
	0.323764339
	−0.520439017



	Proximal-Distal-Axis
	C15
	2.173913043
	0.053608202
	−0.395433811



	Proximal-Distal-Axis
	Dll
	34.44816054
	1.98972318
	−0.478482888



	Proximal-Distal-Axis
	dac
	12.04013378
	0.424840171
	−0.517944852



	Proximal-Distal-Axis
	tsh
	29.59866221
	2.366915062
	0.468215741



	Proximal-Distal-Axis
	hth
	81.27090301
	59.52749037
	0.835425868



	Proximal-Distal-Axis
	vg
	39.96655518
	4.585898734
	2.038686595



	Proximal-Distal-Axis
	salr
	43.81270903
	2.625894433
	2.039602193



	Proximal-Distal-Axis
	salm
	53.34448161
	3.74465689
	2.039279287



	Proximal-Distal-Axis
	hui
	6.18729097
	0.155657069
	−0.467912975



	Proximal-Distal-Axis
	betaTub56D
	99.49832776
	71.17380529
	−0.350756424



	Proximal-Distal-Axis
	alphaTub84B
	98.82943144
	59.83141261
	−0.468248858



	Proximal-Distal-Axis
	tsr
	98.66220736
	44.76118553
	−0.959250307



	Proximal-Distal-Axis
	Act5C
	99.49832776
	55.6216358
	−0.625789399



	Distal
	al
	60
	2.603285376
	1.963370297



	Distal
	C15
	73.57142857
	4.214292742
	2.041126432



	Distal
	Dll
	92.14285714
	9.809431808
	1.810211936



	Distal
	dac
	9.642857143
	0.250736492
	−0.650508111



	Distal
	tsh
	9.642857143
	0.248253186
	−0.940549437



	Distal
	hth
	27.85714286
	2.856922579
	−0.932736841



	Distal
	vg
	1.071428571
	0.02411907
	−0.441604926



	Distal
	salr
	1.071428571
	0.013810745
	−0.462515482



	Distal
	salm
	2.142857143
	0.045931453
	−0.448289565



	Distal
	hui
	12.85714286
	0.966716888
	−0.288749653



	Distal
	betaTub56D
	100
	62.93114147
	−0.851566182



	Distal
	alphaTub84B
	100
	55.43422202
	−0.620103282



	Distal
	tsr
	100
	53.09832627
	−0.444558658



	Distal
	Act5C
	100
	69.10840865
	−0.346149551



	Anterior-Posterior-Axis
	al
	4.519774011
	0.091887873
	−0.773096008



	Anterior-Posterior-Axis
	C15
	1.129943503
	0.014602416
	−0.418276194



	Anterior-Posterior-Axis
	Dll
	13.55932203
	0.493279925
	−0.916466206



	Anterior-Posterior-Axis
	dac
	5.649717514
	0.11476684
	−0.754035963



	Anterior-Posterior-Axis
	tsh
	56.49717514
	2.156294232
	0.3281673



	Anterior-Posterior-Axis
	hth
	88.70056497
	39.31225982
	0.204696051



	Anterior-Posterior-Axis
	vg
	0
	0
	−0.454718739



	Anterior-Posterior-Axis
	salr
	1.694915254
	0.093867563
	−0.385828973



	Anterior-Posterior-Axis
	salm
	3.389830508
	0.088684597
	−0.419536042



	Anterior-Posterior-Axis
	hui
	79.0960452
	11.49658469
	2.037300845



	Anterior-Posterior-Axis
	betaTub56D
	100
	105.6986505
	1.746912454



	Anterior-Posterior-Axis
	alphaTub84B
	100
	130.3298526
	1.966373831



	Anterior-Posterior-Axis
	tsr
	100
	89.72629303
	1.816661244



	Anterior-Posterior-Axis
	Act5C
	100
	182.5387119
	2.005757244
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Table A2. DEGs of fate undetermined cells. DEG list generated with cutoff value of log2FC equals 0.25 and minimum percentage of cells expressing the DEG of 0.25.
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	Gene
	p_val
	avg_log2FC
	pct.1
	pct.2





	eEF2
	2.63 × 10−76
	0.541911833
	0.949
	0.968



	fabp
	1.12 × 10−11
	0.468294279
	0.655
	0.722



	Uba1
	1.76 × 10−5
	0.462953007
	0.446
	0.655



	CG14984
	0.000107
	0.459747394
	0.323
	0.445



	Stip1
	2.15 × 10−8
	0.417890064
	0.375
	0.582



	Karybeta3
	5.45 × 10−13
	0.411510198
	0.293
	0.469



	CG3226
	0.024048
	0.409442343
	0.553
	0.731



	SmD3
	5.37 × 10−21
	0.403214155
	0.733
	0.868



	Ran
	4.25 × 10−44
	0.394201883
	0.888
	0.942



	AsnRS
	1.47 × 10−11
	0.392768286
	0.36
	0.569



	Nph
	1.83 × 10−39
	0.388031758
	0.86
	0.928



	CG9922
	0.673966
	0.381062842
	0.531
	0.76



	UQCR-Q
	1.16 × 10−23
	0.377240451
	0.782
	0.901



	SmD2
	2.31 × 10−16
	0.375790159
	0.724
	0.865



	eIF3b
	0.002117
	0.374134239
	0.619
	0.813



	CCT2
	0.275826
	0.370703182
	0.539
	0.763



	CG8149
	5.72 × 10−7
	0.369303556
	0.41
	0.627



	COX5A
	2.80 × 10−27
	0.36834579
	0.789
	0.9



	CG3760
	4.05 × 10−6
	0.3672513
	0.625
	0.792



	san
	0.000989
	0.366350781
	0.443
	0.663



	CCT7
	0.000414
	0.36533304
	0.601
	0.799



	Tudor-SN
	0.001026
	0.363468674
	0.489
	0.701



	CG11858
	0.594245
	0.362893992
	0.531
	0.743



	CG11980
	8.49 × 10−10
	0.362794172
	0.382
	0.598



	Fkbp39
	1.10 × 10−34
	0.362430772
	0.837
	0.917



	CG17202
	0.063868
	0.362292286
	0.508
	0.74



	Cyt-c-p
	0.739486
	0.360850946
	0.547
	0.754



	Tim9a
	8.62 × 10−5
	0.360541648
	0.447
	0.675



	UQCR-14
	5.71 × 10−9
	0.35959829
	0.693
	0.862



	Rpb8
	0.014119
	0.3594748
	0.474
	0.699



	CCT8
	3.72 × 10−8
	0.355410141
	0.642
	0.81



	alphaTub84B
	9.72 × 10−106
	0.351533668
	0.999
	0.996



	ATPsynbeta
	5.99E-54
	0.351328277
	0.926
	0.955



	betaTub56D
	2.12 × 10−111
	0.351110198
	0.999
	0.997



	eEF1delta
	3.35 × 10−36
	0.348262336
	0.861
	0.934



	eIF6
	8.97 × 10−5
	0.346187749
	0.437
	0.661



	CG11267
	4.58 × 10−18
	0.345982895
	0.788
	0.902



	Aos1
	3.11 × 10−5
	0.345697042
	0.633
	0.808



	NHP2
	1.59 × 10−5
	0.34467569
	0.66
	0.835



	mod
	1.41 × 10−12
	0.343973569
	0.709
	0.863



	CG2021
	4.20 × 10−12
	0.343366272
	0.345
	0.547



	Nurf-38
	5.99 × 10−18
	0.339601891
	0.75
	0.879



	ND-ACP
	9.76 × 10−13
	0.338718622
	0.711
	0.872



	CG13994
	1.07 × 10−15
	0.337794285
	0.295
	0.484



	tsr
	1.61 × 10−102
	0.336728868
	0.998
	0.995



	ATPsynCF6
	1.79 × 10−26
	0.335348459
	0.818
	0.923



	Nedd8
	1.67 × 10−12
	0.334310017
	0.715
	0.876



	Nap1
	6.07 × 10−12
	0.334107702
	0.773
	0.895



	hoip
	6.18 × 10−6
	0.333796151
	0.689
	0.847



	SmB
	1.14 × 10−20
	0.333628184
	0.785
	0.895



	Incenp
	2.62 × 10−15
	0.332481608
	0.315
	0.513



	CG14210
	6.88 × 10−10
	0.332309093
	0.381
	0.598



	alpha-Spec
	7.27 × 10−22
	0.331563515
	0.298
	0.518



	Act5C
	6.76 × 10−84
	0.330948608
	0.998
	0.997



	Pfdn5
	0.000266
	0.328369305
	0.65
	0.83



	tsu
	0.026133
	0.32834557
	0.602
	0.804



	RanGAP
	1.02 × 10−11
	0.328311508
	0.339
	0.531



	CCT1
	0.001893
	0.326762196
	0.621
	0.814



	CRIF
	8.74 × 10−14
	0.326369065
	0.313
	0.499



	Ahcy
	0.140383
	0.325984833
	0.497
	0.717



	UbcE2M
	2.61 × 10−5
	0.324931312
	0.452
	0.684



	LysRS
	1.92 × 10−20
	0.324481333
	0.284
	0.486



	Pfdn1
	0.015668
	0.322437535
	0.505
	0.745



	janA
	0.027436
	0.322236117
	0.64
	0.84



	Ote
	2.27 × 10−11
	0.321707361
	0.335
	0.517



	Rpn9
	0.001611
	0.321592929
	0.626
	0.817



	CG1542
	1.21 × 10−12
	0.321248406
	0.351
	0.568



	COX5B
	1.43 × 10−14
	0.320658424
	0.768
	0.899



	eIF3l
	3.71 × 10−6
	0.320621493
	0.434
	0.656



	Pen
	3.70 × 10−15
	0.320548585
	0.764
	0.892



	nop5
	3.23 × 10−8
	0.31963021
	0.432
	0.655



	HP4
	0.192532
	0.319387871
	0.517
	0.737



	NAT1
	1.18 × 10−16
	0.318248392
	0.38
	0.613



	Rpn1
	1.24 × 10−10
	0.318033663
	0.422
	0.661



	ND-51
	1.15 × 10−9
	0.31799648
	0.41
	0.652



	Txl
	0.013031
	0.317304773
	0.484
	0.704



	Prosbeta5
	8.73 × 10−19
	0.316609822
	0.779
	0.894



	wac
	0.050386
	0.316434419
	0.484
	0.703



	Hsc70-4
	5.19 × 10−63
	0.316015021
	0.982
	0.986



	me31B
	0.419468
	0.315758713
	0.581
	0.797



	GluProRS
	1.96 × 10−9
	0.315644484
	0.181
	0.28



	Prp8
	1.00 × 10−14
	0.3153532
	0.221
	0.363



	Set
	1.77 × 10−13
	0.3136136
	0.755
	0.882



	Pfdn2
	7.64 × 10−6
	0.313432961
	0.669
	0.849



	SelD
	0.008104
	0.313112222
	0.61
	0.807



	HmgD
	3.22 × 10−58
	0.31212012
	0.995
	0.994



	Jafrac1
	1.11 × 10−22
	0.311403095
	0.867
	0.935



	Mcm6
	4.23 × 10−10
	0.309433046
	0.267
	0.404



	lost
	0.001046
	0.309298263
	0.7
	0.873



	Sem1
	0.001049
	0.309268908
	0.67
	0.863



	smid
	2.02 × 10−16
	0.308262181
	0.306
	0.505



	CG15019
	0.475046
	0.308257341
	0.587
	0.808



	Echs1
	0.000121
	0.308112475
	0.662
	0.836



	CG34132
	4.59 × 10−11
	0.307967688
	0.386
	0.61



	Rpn10
	0.557285
	0.30744727
	0.577
	0.784



	CCT5
	1.39 × 10−12
	0.306858295
	0.739
	0.862



	baf
	1.48 × 10−9
	0.30568901
	0.746
	0.88



	CG16985
	7.99 × 10−12
	0.305096172
	0.231
	0.368



	ND-13B
	0.003083
	0.304167028
	0.516
	0.768



	Cdk1
	0.182413
	0.3034567
	0.507
	0.731



	Phb2
	0.056628
	0.30342253
	0.597
	0.798



	La
	0.012425
	0.30287118
	0.513
	0.741



	Prp19
	5.29E-15
	0.301071904
	0.342
	0.558



	CG12321
	4.27E-21
	0.300344146
	0.292
	0.501



	ox
	0.214652
	0.299991914
	0.533
	0.769



	Prosalpha3
	5.63E-19
	0.298876442
	0.791
	0.903



	SmE
	4.45E-06
	0.298829465
	0.694
	0.867



	CG3594
	2.93E-15
	0.298465681
	0.286
	0.471



	Pomp
	5.66E-19
	0.298305603
	0.813
	0.907



	CG5903
	0.6842
	0.297434191
	0.571
	0.795



	Acbp1
	0.059744
	0.297149608
	0.557
	0.768



	CG6523
	0.022022
	0.296185019
	0.602
	0.808



	aurB
	3.70E-05
	0.295450632
	0.4
	0.586



	ND-SGDH
	0.175992
	0.295209903
	0.581
	0.802



	mtSSB
	1.81E-10
	0.294435499
	0.409
	0.639



	Rpb5
	1.51E-06
	0.293998942
	0.444
	0.68



	CG2862
	8.93E-22
	0.293161476
	0.83
	0.931



	Sgt
	0.056897
	0.292139314
	0.537
	0.763



	pch2
	9.67E-12
	0.292049575
	0.399
	0.631



	CG12848
	7.97E-15
	0.292017665
	0.334
	0.547



	His2Av
	2.63E-27
	0.291847689
	0.915
	0.954



	Prosalpha7
	0.000855
	0.290548841
	0.652
	0.843



	ATPsynD
	1.62E-27
	0.289427165
	0.868
	0.941



	CCT3
	4.81E-05
	0.289356898
	0.669
	0.852



	tko
	0.060424
	0.288967965
	0.515
	0.744



	ND-19
	6.71E-06
	0.288617644
	0.468
	0.717



	CG9752
	1.15E-05
	0.288354586
	0.316
	0.44



	mge
	2.15E-08
	0.288185938
	0.449
	0.704



	Srp19
	8.31E-13
	0.287931596
	0.401
	0.64



	Chc
	3.98E-16
	0.287462202
	0.377
	0.612



	eIF3j
	6.29E-20
	0.287256028
	0.367
	0.623



	CG14543
	1.82E-16
	0.286760991
	0.276
	0.458



	CCT6
	0.088352
	0.286307611
	0.598
	0.809



	Mdh2
	2.50E-12
	0.285312875
	0.39
	0.639



	bonsai
	2.32E-18
	0.284517765
	0.311
	0.53



	feo
	2.85E-14
	0.28445883
	0.342
	0.551



	CG5355
	7.68E-19
	0.284380697
	0.371
	0.611



	GlyRS
	6.75E-13
	0.283564199
	0.405
	0.644



	CG9205
	2.12E-11
	0.28348611
	0.394
	0.623



	Rrp40
	5.61E-18
	0.282892518
	0.274
	0.461



	l(1)G0004
	1.37E-17
	0.282407454
	0.303
	0.511



	Non2
	9.28E-23
	0.282276666
	0.856
	0.941



	CG10576
	3.19E-07
	0.281613969
	0.695
	0.85



	CG6617
	1.29E-11
	0.281332974
	0.408
	0.653



	CCT4
	3.04E-07
	0.280798696
	0.7
	0.856



	Tom7
	1.14E-06
	0.280078089
	0.706
	0.878



	Pfdn6
	0.957133
	0.279903383
	0.564
	0.792



	Uch
	1.44E-06
	0.279613571
	0.492
	0.738



	CG4866
	1.67E-13
	0.279468463
	0.341
	0.555



	roh
	9.19E-20
	0.279380844
	0.816
	0.916



	Rpn13
	0.12711
	0.279322366
	0.543
	0.772



	alphaTub84D
	3.38E-07
	0.279114348
	0.666
	0.844



	Nlp
	3.51E-44
	0.278341613
	0.955
	0.978



	fzy
	1.92E-16
	0.277611464
	0.293
	0.481



	Nmt
	1.32E-15
	0.277587163
	0.364
	0.6



	CG34200
	2.80E-19
	0.277548087
	0.342
	0.573



	CG3420
	6.50E-15
	0.2771143
	0.362
	0.589



	Cdc37
	9.32E-12
	0.276940009
	0.45
	0.704



	CG10038
	6.04E-16
	0.276910568
	0.308
	0.506



	CG10638
	8.48E-05
	0.276901373
	0.466
	0.701



	Tim23
	0.098321
	0.27545809
	0.536
	0.772



	Rpn11
	0.777644
	0.274812562
	0.548
	0.771



	CG5515
	8.66E-09
	0.274683335
	0.434
	0.676



	Pcd
	9.01E-12
	0.274174524
	0.433
	0.671



	DENR
	7.60E-11
	0.27411005
	0.418
	0.67



	CG8635
	4.18E-08
	0.274072152
	0.449
	0.698



	Rpn12
	0.021678
	0.273993176
	0.513
	0.745



	pont
	1.01E-08
	0.273709261
	0.417
	0.654



	Grx1
	6.78E-20
	0.273641436
	0.344
	0.58



	Gart
	6.00E-18
	0.27314057
	0.297
	0.5



	Nacalpha
	6.76E-49
	0.272817196
	0.981
	0.988



	GstO2
	4.65E-08
	0.272726982
	0.441
	0.685



	CG14817
	6.98E-14
	0.272320839
	0.377
	0.598



	cype
	7.38E-26
	0.2714151
	0.857
	0.948



	COX7A
	2.08E-20
	0.270870929
	0.858
	0.936



	Rpn8
	5.05E-07
	0.270666209
	0.468
	0.725



	Prosalpha2
	1.35E-06
	0.27064609
	0.708
	0.865



	Prosalpha5
	4.93E-09
	0.270487893
	0.705
	0.86



	Rpn7
	0.494035
	0.27046284
	0.551
	0.765



	Ski6
	1.25E-18
	0.270029048
	0.269
	0.461



	Scsalpha1
	0.33089
	0.269419769
	0.568
	0.784



	COX8
	2.60E-14
	0.269389489
	0.808
	0.923



	CG7630
	1.15E-13
	0.268873423
	0.803
	0.922



	Arp1
	2.34E-15
	0.268500605
	0.411
	0.662



	Prosbeta7
	0.700295
	0.268425349
	0.597
	0.804



	eIF3c
	6.27E-06
	0.268191638
	0.509
	0.751



	CG6937
	1.25E-14
	0.267816225
	0.356
	0.588



	Rae1
	8.51E-20
	0.267383088
	0.301
	0.509



	Art1
	0.001476
	0.266939135
	0.488
	0.72



	Roc1a
	6.33E-16
	0.266631796
	0.801
	0.918



	CG17059
	2.17E-09
	0.266613285
	0.453
	0.708



	Non3
	4.49E-17
	0.266495993
	0.339
	0.564



	ncd
	4.47E-16
	0.264327838
	0.277
	0.447



	CG4511
	1.92E-16
	0.264239389
	0.394
	0.649



	Updo
	2.45E-20
	0.264041525
	0.345
	0.591



	CG1598
	1.46E-17
	0.263529104
	0.362
	0.604



	CG1789
	3.81E-22
	0.263440367
	0.319
	0.548



	ATPsynE
	8.47E-21
	0.263433084
	0.848
	0.943



	Nop56
	0.013911
	0.262395693
	0.655
	0.841



	Prosbeta6
	0.000207
	0.262237698
	0.678
	0.857



	COX4
	1.30E-19
	0.262022839
	0.844
	0.936



	CG13364
	5.33E-09
	0.261858812
	0.768
	0.914



	Rpt5
	1.59E-07
	0.26115752
	0.467
	0.709



	CG9667
	8.35E-18
	0.261015475
	0.269
	0.454



	ATPsynB
	1.97E-20
	0.261004129
	0.854
	0.934



	ND-13A
	1.30E-15
	0.260501665
	0.389
	0.632



	Ssb-c31a
	0.428003
	0.260444449
	0.609
	0.813



	eEF1beta
	2.95E-47
	0.260441246
	0.986
	0.989



	RnrL
	3.99E-14
	0.25996256
	0.231
	0.365



	ND-B15
	0.00029
	0.259827447
	0.501
	0.742



	p23
	3.03E-21
	0.259045322
	0.88
	0.947



	RFeSP
	0.446974
	0.258835685
	0.601
	0.82



	AIMP2
	1.69E-19
	0.258671195
	0.332
	0.569



	CG17776
	1.54E-13
	0.257691639
	0.398
	0.638



	Usp5
	4.82E-22
	0.257589507
	0.232
	0.413



	Rpn3
	9.87E-05
	0.257434516
	0.487
	0.726



	blw
	1.28E-26
	0.257118864
	0.883
	0.946



	Rpn5
	0.209107
	0.256465518
	0.572
	0.8



	pAbp
	3.06E-12
	0.256184891
	0.972
	0.994



	ssx
	6.04E-19
	0.256144854
	0.193
	0.338



	CHORD
	3.20E-17
	0.255801888
	0.191
	0.33



	Cbs
	1.29E-15
	0.255282574
	0.308
	0.498



	Vha14-1
	0.000131
	0.255064003
	0.497
	0.74



	CG9643
	2.04E-22
	0.254773967
	0.286
	0.495



	Fib
	2.20E-09
	0.254765817
	0.444
	0.685



	endos
	0.001143
	0.2546236
	0.677
	0.86



	msd5
	3.63E-13
	0.254565067
	0.268
	0.423



	Prosbeta3
	8.21E-15
	0.254528661
	0.785
	0.904



	cl
	0.010449
	0.254513723
	0.679
	0.86



	CG11444
	0.171588
	0.25436775
	0.559
	0.779



	CG8891
	8.66E-09
	0.254175553
	0.443
	0.691



	icln
	0.000109
	0.25393175
	0.492
	0.748



	mAcon1
	2.12E-21
	0.253581166
	0.295
	0.51



	SmF
	0.001047
	0.253472919
	0.677
	0.866



	porin
	1.68E-18
	0.252948112
	0.846
	0.943



	Nup50
	1.92E-19
	0.252683608
	0.259
	0.443



	dpa
	1.96E-08
	0.252625619
	0.22
	0.322



	thoc6
	1.31E-18
	0.252359096
	0.296
	0.498



	RpA-70
	4.90E-19
	0.252331257
	0.243
	0.413



	CG9705
	0.019547
	0.252183496
	0.676
	0.873



	Shmt
	1.73E-06
	0.251894976
	0.455
	0.699



	alien
	3.33E-15
	0.251507249
	0.385
	0.636



	Arl2
	1.16E-21
	0.251458627
	0.256
	0.445



	SerRS
	0.076293
	0.250933288
	0.547
	0.774



	CG1943
	2.38E-10
	0.250821203
	0.795
	0.895



	ND-B14.5B
	5.78E-05
	0.250452901
	0.496
	0.755
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Table A3. Gene ontology analysis of the fate undetermined DEGs indicated enrichment in metabolic processes, DNA replication, RNA splicing and translation initiation suggestive of highly active, premature, growing cells.
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	Analysis Type:
	PANTHER Overrepresentation Test (Released on 2 February 2022)
	
	
	
	
	
	



	Annotation Version and Release Date:
	GO Ontology database DOI: 10.5281/zenodo.6399963 Released on 22 March 2022
	
	
	
	
	
	



	Analyzed List:
	upload_1 (Drosophila melanogaster)
	
	
	
	
	
	



	Reference List:
	Drosophila melanogaster (all genes in database)
	
	
	
	
	
	



	Test Type:
	FISHER
	
	
	
	
	
	



	Correction:
	FDR
	
	
	
	
	
	



	GO biological process complete
	Drosophila melanogaster—REFLIST (13821)
	upload_1 (205)
	upload_1 (expected)
	upload_1 (over/under)
	upload_1 (fold Enrichment)
	upload_1 (raw P-value)
	upload_1 (FDR)



	mitochondrial electron transport, ubiquinol to cytochrome c (GO:0006122)
	13
	5
	0.19
	+
	25.93
	4.66E-06
	4.54E-04



	DNA unwinding involved in DNA replication (GO:0006268)
	11
	4
	0.16
	+
	24.52
	5.33E-05
	4.03E-03



	spliceosomal snRNP assembly (GO:0000387)
	18
	6
	0.27
	+
	22.47
	9.79E-07
	1.12E-04



	proton motive force-driven ATP synthesis (GO:0015986)
	21
	6
	0.31
	+
	19.26
	2.08E-06
	2.25E-04



	mitochondrial electron transport, cytochrome c to oxygen (GO:0006123)
	15
	4
	0.22
	+
	17.98
	1.45E-04
	9.39E-03



	ATP biosynthetic process (GO:0006754)
	23
	6
	0.34
	+
	17.59
	3.25E-06
	3.38E-04



	purine ribonucleoside triphosphate biosynthetic process (GO:0009206)
	27
	6
	0.4
	+
	14.98
	7.22E-06
	6.54E-04



	purine ribonucleoside triphosphate metabolic process (GO:0009205)
	27
	6
	0.4
	+
	14.98
	7.22E-06
	6.47E-04



	purine nucleoside triphosphate biosynthetic process (GO:0009145)
	27
	6
	0.4
	+
	14.98
	7.22E-06
	6.39E-04



	aerobic electron transport chain (GO:0019646)
	54
	12
	0.8
	+
	14.98
	1.70E-10
	4.56E-08



	purine nucleoside triphosphate metabolic process (GO:0009144)
	28
	6
	0.42
	+
	14.45
	8.66E-06
	7.42E-04



	mitochondrial electron transport, NADH to ubiquinone (GO:0006120)
	19
	4
	0.28
	+
	14.19
	3.16E-04
	1.89E-02



	mitochondrial ATP synthesis coupled electron transport (GO:0042775)
	58
	12
	0.86
	+
	13.95
	3.48E-10
	7.34E-08



	ribonucleoside triphosphate biosynthetic process (GO:0009201)
	30
	6
	0.44
	+
	13.48
	1.22E-05
	1.03E-03



	ribonucleoside triphosphate metabolic process (GO:0009199)
	30
	6
	0.44
	+
	13.48
	1.22E-05
	1.01E-03



	nucleoside triphosphate metabolic process (GO:0009141)
	36
	7
	0.53
	+
	13.11
	2.65E-06
	2.83E-04



	ATP synthesis coupled electron transport (GO:0042773)
	62
	12
	0.92
	+
	13.05
	6.83E-10
	1.40E-07



	respiratory electron transport chain (GO:0022904)
	69
	13
	1.02
	+
	12.7
	1.75E-10
	4.54E-08



	oxidative phosphorylation (GO:0006119)
	69
	13
	1.02
	+
	12.7
	1.75E-10
	4.39E-08



	electron transport chain (GO:0022900)
	76
	14
	1.13
	+
	12.42
	4.43E-11
	1.38E-08



	nucleoside triphosphate biosynthetic process (GO:0009142)
	33
	6
	0.49
	+
	12.26
	1.98E-05
	1.60E-03



	germarium-derived female germ-line cyst formation (GO:0030727)
	23
	4
	0.34
	+
	11.73
	5.97E-04
	3.35E-02



	female germ-line cyst formation (GO:0048135)
	24
	4
	0.36
	+
	11.24
	6.89E-04
	3.75E-02



	DNA duplex unwinding (GO:0032508)
	25
	4
	0.37
	+
	10.79
	7.90E-04
	4.16E-02



	aerobic respiration (GO:0009060)
	101
	16
	1.5
	+
	10.68
	1.33E-11
	4.70E-09



	cellular respiration (GO:0045333)
	111
	17
	1.65
	+
	10.33
	4.82E-12
	1.88E-09



	ATP metabolic process (GO:0046034)
	118
	18
	1.75
	+
	10.28
	1.18E-12
	5.73E-10



	mitochondrial respiratory chain complex I assembly (GO:0032981)
	36
	5
	0.53
	+
	9.36
	3.10E-04
	1.90E-02



	NADH dehydrogenase complex assembly (GO:0010257)
	36
	5
	0.53
	+
	9.36
	3.10E-04
	1.89E-02



	translational initiation (GO:0006413)
	53
	7
	0.79
	+
	8.9
	2.58E-05
	2.05E-03



	tRNA aminoacylation for protein translation (GO:0006418)
	38
	5
	0.56
	+
	8.87
	3.89E-04
	2.30E-02



	energy derivation by oxidation of organic compounds (GO:0015980)
	135
	17
	2
	+
	8.49
	7.90E-11
	2.28E-08



	tRNA aminoacylation (GO:0043039)
	41
	5
	0.61
	+
	8.22
	5.35E-04
	3.04E-02



	amino acid activation (GO:0043038)
	43
	5
	0.64
	+
	7.84
	6.53E-04
	3.61E-02



	protein folding (GO:0006457)
	132
	15
	1.96
	+
	7.66
	3.85E-09
	6.82E-07



	proteasome-mediated ubiquitin-dependent protein catabolic process (GO:0043161)
	217
	24
	3.22
	+
	7.46
	1.08E-13
	1.20E-10



	proteasomal protein catabolic process (GO:0010498)
	229
	24
	3.4
	+
	7.07
	3.16E-13
	2.74E-10



	generation of precursor metabolites and energy (GO:0006091)
	183
	18
	2.71
	+
	6.63
	8.59E-10
	1.67E-07



	centrosome cycle (GO:0007098)
	72
	7
	1.07
	+
	6.55
	1.53E-04
	9.85E-03



	ribonucleoprotein complex assembly (GO:0022618)
	117
	11
	1.74
	+
	6.34
	2.72E-06
	2.86E-04



	modification-dependent macromolecule catabolic process (GO:0043632)
	318
	29
	4.72
	+
	6.15
	2.43E-14
	4.74E-11



	microtubule organizing center organization (GO:0031023)
	77
	7
	1.14
	+
	6.13
	2.25E-04
	1.41E-02



	ribonucleoprotein complex subunit organization (GO:0071826)
	122
	11
	1.81
	+
	6.08
	3.96E-06
	3.90E-04



	modification-dependent protein catabolic process (GO:0019941)
	311
	28
	4.61
	+
	6.07
	9.51E-14
	1.23E-10



	ubiquitin-dependent protein catabolic process (GO:0006511)
	307
	27
	4.55
	+
	5.93
	4.57E-13
	2.97E-10



	proteolysis involved in cellular protein catabolic process (GO:0051603)
	332
	28
	4.92
	+
	5.69
	4.22E-13
	2.99E-10



	cellular protein catabolic process (GO:0044257)
	334
	28
	4.95
	+
	5.65
	4.83E-13
	2.90E-10



	microtubule cytoskeleton organization involved in mitosis (GO:1902850)
	85
	7
	1.26
	+
	5.55
	3.94E-04
	2.31E-02



	protein catabolic process (GO:0030163)
	343
	28
	5.09
	+
	5.5
	8.82E-13
	4.58E-10



	nuclear transport (GO:0051169)
	118
	9
	1.75
	+
	5.14
	1.02E-04
	6.99E-03



	nucleocytoplasmic transport (GO:0006913)
	118
	9
	1.75
	+
	5.14
	1.02E-04
	6.93E-03



	establishment of protein localization to membrane (GO:0090150)
	95
	7
	1.41
	+
	4.97
	7.35E-04
	3.95E-02



	purine ribonucleotide biosynthetic process (GO:0009152)
	96
	7
	1.42
	+
	4.92
	7.79E-04
	4.13E-02



	ribonucleoprotein complex biogenesis (GO:0022613)
	288
	21
	4.27
	+
	4.92
	5.00E-09
	8.65E-07



	cellular macromolecule catabolic process (GO:0044265)
	447
	32
	6.63
	+
	4.83
	5.01E-13
	2.79E-10



	purine-containing compound biosynthetic process (GO:0072522)
	112
	8
	1.66
	+
	4.82
	3.77E-04
	2.24E-02



	cell population proliferation (GO:0008283)
	122
	8
	1.81
	+
	4.42
	6.43E-04
	3.58E-02



	rRNA metabolic process (GO:0016072)
	168
	11
	2.49
	+
	4.41
	6.48E-05
	4.80E-03



	mRNA splicing, via spliceosome (GO:0000398)
	214
	14
	3.17
	+
	4.41
	6.56E-06
	6.08E-04



	RNA splicing, via transesterification reactions with bulged adenosine as nucleophile (GO:0000377)
	214
	14
	3.17
	+
	4.41
	6.56E-06
	6.01E-04



	rRNA processing (GO:0006364)
	153
	10
	2.27
	+
	4.41
	1.41E-04
	9.25E-03



	nucleotide biosynthetic process (GO:0009165)
	123
	8
	1.82
	+
	4.39
	6.77E-04
	3.71E-02



	RNA splicing, via transesterification reactions (GO:0000375)
	216
	14
	3.2
	+
	4.37
	7.25E-06
	6.35E-04



	macromolecule catabolic process (GO:0009057)
	494
	32
	7.33
	+
	4.37
	6.16E-12
	2.29E-09



	nucleoside phosphate biosynthetic process (GO:1901293)
	124
	8
	1.84
	+
	4.35
	7.12E-04
	3.85E-02



	spindle organization (GO:0007051)
	125
	8
	1.85
	+
	4.31
	7.48E-04
	3.99E-02



	translation (GO:0006412)
	304
	19
	4.51
	+
	4.21
	2.72E-07
	3.47E-05



	protein-containing complex assembly (GO:0065003)
	433
	27
	6.42
	+
	4.2
	7.19E-10
	1.44E-07



	establishment of protein localization to organelle (GO:0072594)
	179
	11
	2.66
	+
	4.14
	1.11E-04
	7.43E-03



	RNA splicing (GO:0008380)
	228
	14
	3.38
	+
	4.14
	1.29E-05
	1.06E-03



	peptide biosynthetic process (GO:0043043)
	310
	19
	4.6
	+
	4.13
	3.61E-07
	4.39E-05



	meiotic cell cycle (GO:0051321)
	215
	13
	3.19
	+
	4.08
	3.09E-05
	2.40E-03



	mitotic cell cycle (GO:0000278)
	399
	24
	5.92
	+
	4.06
	1.33E-08
	2.11E-06



	meiotic cell cycle process (GO:1903046)
	204
	12
	3.03
	+
	3.97
	8.02E-05
	5.63E-03



	organonitrogen compound catabolic process (GO:1901565)
	514
	30
	7.62
	+
	3.93
	3.34E-10
	7.64E-08



	microtubule cytoskeleton organization (GO:0000226)
	344
	20
	5.1
	+
	3.92
	3.88E-07
	4.65E-05



	nuclear division (GO:0000280)
	246
	14
	3.65
	+
	3.84
	2.88E-05
	2.27E-03



	cell cycle (GO:0007049)
	608
	34
	9.02
	+
	3.77
	5.64E-11
	1.69E-08



	ribosome biogenesis (GO:0042254)
	215
	12
	3.19
	+
	3.76
	1.29E-04
	8.49E-03



	mitochondrion organization (GO:0007005)
	235
	13
	3.49
	+
	3.73
	7.34E-05
	5.20E-03



	amide biosynthetic process (GO:0043604)
	350
	19
	5.19
	+
	3.66
	2.03E-06
	2.22E-04



	organelle fission (GO:0048285)
	259
	14
	3.84
	+
	3.64
	4.92E-05
	3.75E-03



	protein-containing complex organization (GO:0043933)
	527
	28
	7.82
	+
	3.58
	9.82E-09
	1.59E-06



	mRNA metabolic process (GO:0016071)
	344
	18
	5.1
	+
	3.53
	6.19E-06
	5.81E-04



	mRNA processing (GO:0006397)
	268
	14
	3.98
	+
	3.52
	6.98E-05
	4.99E-03



	cell cycle process (GO:0022402)
	513
	26
	7.61
	+
	3.42
	8.53E-08
	1.17E-05



	mitotic cell cycle process (GO:1903047)
	277
	14
	4.11
	+
	3.41
	9.75E-05
	6.72E-03



	chromosome organization (GO:0051276)
	476
	24
	7.06
	+
	3.4
	3.06E-07
	3.84E-05



	spermatogenesis (GO:0007283)
	264
	13
	3.92
	+
	3.32
	2.21E-04
	1.40E-02



	peptide metabolic process (GO:0006518)
	409
	20
	6.07
	+
	3.3
	4.90E-06
	4.71E-04



	protein localization to organelle (GO:0033365)
	249
	12
	3.69
	+
	3.25
	4.63E-04
	2.67E-02



	cellular catabolic process (GO:0044248)
	801
	38
	11.88
	+
	3.2
	3.45E-10
	7.48E-08



	microtubule-based process (GO:0007017)
	464
	21
	6.88
	+
	3.05
	8.79E-06
	7.44E-04



	male gamete generation (GO:0048232)
	310
	14
	4.6
	+
	3.04
	2.97E-04
	1.84E-02



	ncRNA metabolic process (GO:0034660)
	377
	17
	5.59
	+
	3.04
	6.83E-05
	4.97E-03



	cellular nitrogen compound biosynthetic process (GO:0044271)
	711
	32
	10.55
	+
	3.03
	3.45E-08
	5.07E-06



	regulation of catabolic process (GO:0009894)
	291
	13
	4.32
	+
	3.01
	5.39E-04
	3.04E-02



	RNA processing (GO:0006396)
	560
	25
	8.31
	+
	3.01
	1.46E-06
	1.63E-04



	organic substance catabolic process (GO:1901575)
	823
	36
	12.21
	+
	2.95
	8.56E-09
	1.42E-06



	intracellular protein transport (GO:0006886)
	328
	14
	4.87
	+
	2.88
	5.12E-04
	2.93E-02



	cellular amide metabolic process (GO:0043603)
	493
	21
	7.31
	+
	2.87
	2.10E-05
	1.69E-03



	female gamete generation (GO:0007292)
	628
	26
	9.31
	+
	2.79
	3.36E-06
	3.45E-04



	gene expression (GO:0010467)
	1120
	46
	16.61
	+
	2.77
	3.36E-10
	7.48E-08



	catabolic process (GO:0009056)
	932
	38
	13.82
	+
	2.75
	1.91E-08
	2.92E-06



	cellular macromolecule biosynthetic process (GO:0034645)
	496
	20
	7.36
	+
	2.72
	6.96E-05
	5.02E-03



	sexual reproduction (GO:0019953)
	931
	37
	13.81
	+
	2.68
	5.75E-08
	8.30E-06



	germ cell development (GO:0007281)
	713
	28
	10.58
	+
	2.65
	3.63E-06
	3.63E-04



	cellular component biogenesis (GO:0044085)
	1285
	50
	19.06
	+
	2.62
	2.90E-10
	6.85E-08



	organonitrogen compound biosynthetic process (GO:1901566)
	800
	31
	11.87
	+
	2.61
	1.34E-06
	1.52E-04



	cellular process involved in reproduction in multicellular organism (GO:0022412)
	852
	33
	12.64
	+
	2.61
	5.89E-07
	6.95E-05



	RNA metabolic process (GO:0016070)
	828
	32
	12.28
	+
	2.61
	9.37E-07
	1.09E-04



	gamete generation (GO:0007276)
	915
	35
	13.57
	+
	2.58
	3.38E-07
	4.18E-05



	oogenesis (GO:0048477)
	576
	22
	8.54
	+
	2.58
	6.48E-05
	4.76E-03



	cellular protein metabolic process (GO:0044267)
	1683
	63
	24.96
	+
	2.52
	4.07E-12
	1.67E-09



	cellular component assembly (GO:0022607)
	1109
	41
	16.45
	+
	2.49
	8.82E-08
	1.18E-05



	nucleobase-containing compound metabolic process (GO:0006139)
	1369
	50
	20.31
	+
	2.46
	2.65E-09
	4.79E-07



	cytoskeleton organization (GO:0007010)
	580
	21
	8.6
	+
	2.44
	3.13E-04
	1.89E-02



	nucleic acid metabolic process (GO:0090304)
	1105
	40
	16.39
	+
	2.44
	1.96E-07
	2.54E-05



	reproductive process (GO:0022414)
	1190
	43
	17.65
	+
	2.44
	6.16E-08
	8.57E-06



	developmental process involved in reproduction (GO:0003006)
	892
	32
	13.23
	+
	2.42
	5.10E-06
	4.84E-04



	cellular nitrogen compound metabolic process (GO:0034641)
	1801
	64
	26.71
	+
	2.4
	2.20E-11
	7.45E-09



	heterocycle metabolic process (GO:0046483)
	1451
	51
	21.52
	+
	2.37
	7.34E-09
	1.24E-06



	cellular macromolecule metabolic process (GO:0044260)
	2106
	74
	31.24
	+
	2.37
	3.46E-13
	2.70E-10



	organelle organization (GO:0006996)
	1721
	60
	25.53
	+
	2.35
	2.20E-10
	5.35E-08



	multicellular organismal reproductive process (GO:0048609)
	1041
	36
	15.44
	+
	2.33
	3.50E-06
	3.54E-04



	macromolecule biosynthetic process (GO:0009059)
	696
	24
	10.32
	+
	2.32
	1.57E-04
	1.00E-02



	cellular aromatic compound metabolic process (GO:0006725)
	1495
	51
	22.17
	+
	2.3
	1.55E-08
	2.42E-06



	proteolysis (GO:0006508)
	861
	29
	12.77
	+
	2.27
	5.96E-05
	4.46E-03



	organic cyclic compound metabolic process (GO:1901360)
	1558
	51
	23.11
	+
	2.21
	5.89E-08
	8.35E-06



	cellular metabolic process (GO:0044237)
	3877
	126
	57.51
	+
	2.19
	7.75E-23
	3.02E-19



	cellular component organization or biogenesis (GO:0071840)
	2778
	88
	41.2
	+
	2.14
	2.76E-13
	2.69E-10



	macromolecule localization (GO:0033036)
	874
	27
	12.96
	+
	2.08
	4.25E-04
	2.47E-02



	cellular biosynthetic process (GO:0044249)
	1178
	36
	17.47
	+
	2.06
	4.31E-05
	3.32E-03



	reproduction (GO:0000003)
	1421
	43
	21.08
	+
	2.04
	7.99E-06
	6.92E-04



	cellular component organization (GO:0016043)
	2616
	79
	38.8
	+
	2.04
	8.68E-11
	2.41E-08



	organic substance biosynthetic process (GO:1901576)
	1212
	36
	17.98
	+
	2
	9.41E-05
	6.55E-03



	macromolecule metabolic process (GO:0043170)
	3193
	94
	47.36
	+
	1.98
	1.44E-12
	6.23E-10



	biosynthetic process (GO:0009058)
	1239
	36
	18.38
	+
	1.96
	1.15E-04
	7.63E-03



	nitrogen compound metabolic process (GO:0006807)
	3671
	106
	54.45
	+
	1.95
	3.62E-14
	5.64E-11



	protein metabolic process (GO:0019538)
	2183
	63
	32.38
	+
	1.95
	1.26E-07
	1.67E-05



	multicellular organism reproduction (GO:0032504)
	1275
	36
	18.91
	+
	1.9
	2.28E-04
	1.42E-02



	metabolic process (GO:0008152)
	4548
	128
	67.46
	+
	1.9
	1.15E-17
	3.00E-14



	organonitrogen compound metabolic process (GO:1901564)
	2725
	75
	40.42
	+
	1.86
	2.76E-08
	4.14E-06



	primary metabolic process (GO:0044238)
	4039
	109
	59.91
	+
	1.82
	1.30E-12
	5.96E-10



	cellular process (GO:0009987)
	7306
	188
	108.37
	+
	1.73
	2.61E-33
	2.03E-29



	organic substance metabolic process (GO:0071704)
	4283
	110
	63.53
	+
	1.73
	2.91E-11
	9.45E-09



	biological_process (GO:0008150)
	11314
	197
	167.81
	+
	1.17
	1.87E-09
	3.47E-07



	Unclassified (UNCLASSIFIED)
	2507
	8
	37.19
	−
	0.22
	1.87E-09
	3.55E-07
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Figure 1. scRNA-seq revealed the major cell types of D.melanogaster third-instar third leg discs. (A) The time course of leg disc dissection. Embryos grew until dissection at T1 (121 h AEL), T2 (133 h AEL) or T3 (168 h AEL). (B) The third leg disc was differentiated from other leg discs as it occurred as a mid-size disc with a concentric ring-like pattern at its center within a trio of discs on bilateral sides of the larvae which also included the wing and haltere discs. (C) Flowchart of scRNA-seq and scATAC-seq experiments. Dissected leg discs were dissociated into single cells, a portion of which were used for scRNA-seq with the remaining cells having their nuclei isolated for scATAC-seq. Both scRNA-seq and scATAC-seq used the 10× Genomics Chromium Controller and proceeded with their respective library preparation protocols, sequencing, and data analysis. (D) UMAP visualizations of the scRNA-seq data show that T1, T2, and T3 overlay each other, although the four identified cell types were quite segregated. (E) Dot plot showing the known marker genes of the respective cell types identified in the UMAP visualization. (F) Muscle cell subset of the scRNA-seq data showing differentiation between early and late muscle cells. (G) Dot plot showing the known marker genes of the early and late muscle cells identified in the UMAP visualization. (H) Neuronal cell subset of the scRNA-seq data showing differentiation between early and late neuronal cells. (I) Dot plot showing the known marker genes of the early and late neuronal cells identified in the UMAP visualization. (J) Immune cell subset of the scRNA-seq data showing differentiation between hemocytes (and plasmatocytes) and glia. (K) Dot plot showing the marker genes of hemocytes (and plasmatocytes) and glia identified in the UMAP visualization. 
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Figure 2. Subclustering of the epithelial cell cluster with identified cell subtypes along the PD axis and a distal-specific lncRNA:CR33938. (A) Leg disc epithelium subset of the scRNA-seq data showing differentiation of cells along the PD axis of the fly leg. (B) Dot plot showing the known marker genes of the proximal, medial, and distal cells as well as the earlier stem-cell like cells of the PD axis. (C) Heatmap of the top ten most upregulated genes for each cell subtype (subcluster) of the epithelial cell cluster, where black represents known marker genes, blue represents genes of known function as potential markers, and red represents genes of unknown functions. LncRNA:CR33938 was identified as one of the most upregulated genes in the distal cells. (D) Feature plots showing the expression levels of lncRNA:CR33938 in different epithelial subclusters across T1, T2, and T3. (E) Validation of the scRNA-seq lncRNA:CR33938 identified using FISH showing negligible expression during T1, epithelium wide expression in T2, and mainly distal-specific expression in T3. Scale bar represents 50 µm. 
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Figure 3. LncRNA:CR33938 is conserved among insects and overexpression in Drosophila S2 cells increased expression levels of genes involved in leg development. (A) lncRNA:CR33938, identified on chromosome 3, is conserved within insects. (B) The fraction of conserved bases of lncRNA:CR33938 across insects is greater than 0.8. (C) Overexpression of lncRNA:CR33938 in S2 cells produced an increase in the expression of leg development genes, including PD axis genes, distal leg tarsal disco-r, and medial leg tibial dac according to qPCR. There was no effect on proximal leg femur genes. *, ***, **** equate to p-values of less than 0.05, 0.001 and 0.0001, respectively. 
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Figure 4. scATAC-seq revealed the same major cell types of Drosophila L3 disc as in scRNA-seq. (A) UMAP visualization of the scATAC-seq data, showing that T1, T2, and T3 overlay one another. (B) UMAP visualization revealing the different clusters identified prior to integration with scRNA-seq. (C) Heatmap showing the proportion of cells of each cluster within each sample (T1, T2, and T3). The color scale represents the cell proportion within each cluster. (D) UMAP visualization of clusters after integration of scATAC-seq data with scRNA-seq data. Most cell types and cell subtypes were remapped, including the proximal, medial, and distal cells as well as the muscle, neuronal, immune, and stem-cell like cells of the PD axis. (E) Feature plots showing the known marker genes, and the respective cell types and cell subtypes identified in the UMAP visualization after scRNA-seq data integration. (F) Heatmap of important motifs in each cluster. (G) Gene Ontology analysis of the chromatin-accessible distal genes of T2 and T3 relative to those of T1 showed many metabolic processes occurring in early T2 (left), while many chitin-based cuticle development processes occurred in late T3 (right). (H) Genome tracks of distal marker genes (Dll and C15) revealed high co-accessibility in neighboring genes. 
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