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Abstract: The risk-characterization of chemicals requires the determination of repeated-dose toxicity
(RDT). This depends on two main outcomes: the no-observed-adverse-effect level (NOAEL) and the
lowest-observed-adverse-effect level (LOAEL). These endpoints are fundamental requirements in
several regulatory frameworks, such as the Registration, Evaluation, Authorization and Restriction
of Chemicals (REACH) and the European Regulation of 1223/2009 on cosmetics. The RDT results
for the safety evaluation of chemicals are undeniably important; however, the in vivo tests are
time-consuming and very expensive. The in silico models can provide useful input to investigate
sub-chronic RDT. Considering the complexity of these endpoints, involving variable experimental
designs, this non-testing approach is challenging and attractive. Here, we built eight in silico
models for the NOAEL and LOAEL predictions, focusing on systemic and organ-specific toxicity,
looking into the effects on the liver, kidney and brain. Starting with the NOAEL and LOAEL data
for oral sub-chronic toxicity in rats, retrieved from public databases, we developed and validated
eight quantitative structure-activity relationship (QSAR) models based on the optimal descriptors
calculated by the Monte Carlo method, using the CORAL software. The results obtained with
these models represent a good achievement, to exploit them in a safety assessment, considering the
importance of organ-related toxicity.

Keywords: NOAEL; LOAEL; QSAR; sub-chronic repeated-dose toxicity; organ-specific toxicity

1. Introduction

The European Commission (EC) requires continuous efforts to develop new ap-
proaches in the safety assessment of chemicals consistent with the regulatory framework.
The European Directive on cosmetics, for example, laid out a new vision in Europe for the
safety assessment of cosmetics, moving from the consolidated, animal-based, toxicological
approach to a novel paradigm that bans the use of animals for toxicity tests [1,2]. Regulators
explicitly require a deep examination of RDT, since it gives crucial details on the critical ad-
verse effects resulting from repeated exposure to a certain substance in a limited period [3,4].
REACH, which prescribes within its annexes an assessment on RDT [3], firmly supports the
application of new-approach methodologies in order to provide forward-looking solutions
in the field of risk assessment.

RDT studies usually employ a wide array of standards; indeed, they present differ-
ent exposure times and routes as well as various models, such as rodent or non-rodent
species [5]. The exposure times can be divided into three groups: (i) sub-acute toxicity
studies, which have a duration of up to 28 days (usually 2–4 weeks); (ii) sub-chronic toxicity,
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which has a duration of about 90 days; (iii) chronic (long-term) toxicity (repeated doses
over a major part of the life-span) [4].

As toxicologically relevant pieces of evidence, the NOAEL and LOAEL are derived
from the RDT studies. The NOAEL is the highest experimental dose at which no significant
adverse response is observed, and the LOAEL is the lowest dose at which adverse effects
arise compared to a control group [6]. NOAEL can be used to determine the important
toxicological values considered in the evaluation of human exposure, such as the acceptable
daily intake (ADI) and the reference dose (RfD) [7].

In the safety evaluation of cosmetics, when no benchmark dose (BMD) can be calcu-
lated, NOAEL is used to calculate the margin of safety (MoS) [4]—an essential parameter
in the product information file (PIF)—which is vital for placing the product in the Euro-
pean market [2] and fundamental for indicating the potential toxicity for human health of
substances in a cosmetic formulation [4].

NOAEL and LOAEL are marked by a substantial uncertainty since they are not
intended for the dose−response curves but as single-dose estimates that largely depend
on the experimental design [6]. As a result, other approaches such as the BMD have been
proposed in place of the classical methodologies [4,8]. Unfortunately, the availability of
data useful for BMDs is quite limited.

RDT studies require high costs and considerable time expenditures. For this reason, in
silico methods are needed to offer a valid, future-oriented alternative [9]. Moreover, only a
few attempts have been made to apply QSAR methods to simultaneously model NOAEL
and LOAEL [6,10,11].

The aim of this work was to develop new QSAR models to predict NOAEL and
LOAEL, focusing in particular on organ-specific toxicity, to obtain fundamental information
on systemic toxicity and the advanced solutions in the research used for the in silico
models. To achieve this, we used the Monte Carlo algorithm, with the CORAL software
(http://www.insilico.eu/coral/, accessed on 11 June 2021). Other attempts to develop
models for NOAEL and LOAEL using CORAL have been made in recent years [6,10,11].
In this work, we extended the method by applying the algorithm to new data related
to organs, particularly the liver, kidney and brain, focusing on the toxicity of a specific
organ. The models will be implemented on the VEGA platform (https://www.vegahub.eu,
accessed on 2 December 2021) and will be freely available.

Finally, these models will be used to refine the battery of models within the VERMEER
Cosmolife software [2] (https://www.life-vermeer.eu/download-software/, accessed on 3
May 2022), a new tool developed in the LIFE VERMEER project (LIFE16 ENV/IT/00016—
https://www.life-vermeer.eu/, accessed on 3 May 2022). In particular, the section of the
tool related to the dose–response assessment will be improved, to boost the potential of the
tool and provide new solutions in the field of risk assessment [2].

2. Results
2.1. Characterization of the Datasets

The datasets contain chemicals from different sources covering several functional
categories, such as pesticides, drugs, food additives and cosmetics. Figure 1 shows the
histograms of the ToxPrint chemotypes identified in the datasets, reported in Tables S1–S4
of the Supporting Information. The chemotypes matching the structures in the datasets are
shown if the frequency is over 10%. Out of 729 chemotypes, respectively, 376, 318, 211 and
328 were found in the general, kidney, brain and liver datasets. The most frequent ToxPrint
chemotypes in all datasets were aromatic benzenes, C=O carbonyl generic, halides, alkanes,
carboxamide, aminocarbonyl, heterocycles, aliphatic–aromatic ether and aromatic amines,
all with over a 16% frequency in the datasets. The chemical space, covered by chemicals
in terms of the structural and physico-chemical properties, is described in Tables S25–S28
(Supplementary Materials). Datasets present a similar structural and physico-chemical
profile. This represents important evidence, which allows us to say that these models
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could be suitable for predicting external data with a chemical space in line with what we
defined here.
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Figure 1. Histograms of ToxPrint chemotypes identified in the (a) general, (b) kidney, (c) brain and
(d) liver datasets.

2.2. Models Developed

The CORAL models were based on the hybrid optimal descriptors extracted from the
simplified molecular-input line-entry system (SMILES) and molecular graph. The models
for the predictions of NOAEL and LOAEL in rats for sub-chronic repeated-dose toxicity are
given in Equations (1)–(8), while Table 1 shows the statistical characteristics of the models.
We calculated the validation metrics for each model, such as the determination coefficient
(R2), the leave-one-out (LOO) cross-validated determination coefficient (Q2), predictive R2

(R2 pred), the criteria of predictability Q2
F3, the concordance correlation coefficient (CCC),

the index of ideality of correlation (IIC), the mean absolute error (MAE), the root mean
squared error (RMSE) and the Fischer F-ratio (F) [12–14]. The predictions and experimental
values, together with the extracted attributes of the models, are reported in Tables S9–S24
in the Supplementary Materials.
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Table 1. The statistical characteristics of the models.

Model Set n R2 CCC IIC Q2 Q2
F3 RMSE MAE F

General
NOAEL

active training 140 0.51 0.67 0.64 0.50 0.72 0.60 142

passive training 140 0.51 0.69 0.65 0.50 0.81 0.69 142

calibration 140 0.56 0.71 0.75 0.54 0.82 0.47 0.37 174

validation 141 0.55 0.69 0.56 0.53 0.65 0.45 172

LOAEL

active training 142 0.55 0.71 0.70 0.54 0.66 0.50 173

passive training 142 0.55 0.68 0.51 0.53 0.72 0.57 168

calibration 137 0.51 0.63 0.71 0.49 0.48 0.71 0.56 138

validation 137 0.53 0.63 0.59 0.32 0.72 0.53 149
Kidney
NOAEL

active training 95 0.50 0.67 0.67 0.48 0.56 0.48 94

passive training 95 0.52 0.54 0.57 0.51 0.73 0.64 103

calibration 45 0.62 0.78 0.78 0.58 0.86 0.32 0.27 70

validation 45 0.59 0.75 0.70 0.84 0.33 0.27 62

LOAEL

active training 97 0.51 0.68 0.62 0.49 0.51 0.40 99

passive training 102 0.59 0.58 0.72 0.57 0.52 0.44 143

calibration 46 0.67 0.81 0.82 0.63 0.77 0.35 0.28 88

validation 38 0.69 0.82 0.66 0.81 0.31 0.25 80
Brain

NOAEL

active training 23 0.55 0.71 0.57 0.46 0.67 0.59 26

passive training 22 0.61 0.42 0.64 0.52 0.75 0.68 31

calibration 23 0.58 0.74 0.76 0.51 0.88 0.31 0.26 28

validation 22 0.53 0.67 0.68 0.81 0.35 0.28 23

LOAEL

active training 22 0.54 0.70 0.51 0.44 0.61 0.55 23

passive training 23 0.69 0.42 0.83 0.61 0.91 0.82 48

calibration 22 0.66 0.76 0.81 0.59 0.84 0.34 0.30 39

validation 23 0.69 0.80 0.80 0.82 0.33 0.26 46
Liver

NOAEL

active training 97 0.76 0.86 0.72 0.75 0.38 0.29 297

passive training 94 0.73 0.83 0.78 0.72 0.44 0.34 247

calibration 30 0.78 0.83 0.89 0.75 0.82 0.35 0.28 103

validation 31 0.55 0.73 0.54 0.55 0.54 0.38 35
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Table 1. Cont.

Model Set n R2 CCC IIC Q2 Q2
F3 RMSE MAE F

LOAEL

active training 96 0.78 0.87 0.78 0.77 0.32 0.23 326

passive training 95 0.78 0.81 0.65 0.77 0.40 0.32 323

calibration 30 0.76 0.84 0.87 0.72 0.71 0.38 0.28 89

validation 31 0.61 0.71 0.61 0.55 0.48 0.40 46

The most important criterion for assessing the predictive potential of a model is the
statistical quality of an external validation set. In the general models, the predictive ability
R2 in the validation sets reached 0.55 and 0.53, respectively, for NOAEL and LOAEL. The
external validation metrics of the CCC and Q2

F3 for NOAEL were 0.69 and 0.53, and
0.63 and 0.32 for LOAEL. The LOO cross-validation technique Q2 was used to assess the
robustness of the models: it ranged from 0.50 to 0.54 for NOAEL and 0.49 to 0.54 for LOAEL.
A value of 0.5 is an acceptable threshold for the Q2 reported in the literature [13].

The performances were better in the models for the organ-specific toxic effects than in
the general models. In the kidney models, the predictive ability R2 in the validation sets
reached 0.59 for NOAEL and 0.69 for LOAEL. The external validation metrics, CCC and
Q2

F3, were 0.75 and 0.84 for NOAEL, and 0.82 and 0.81 for LOAEL. The Q2 ranged from
0.48 to 0.58 for NOAEL and from 0.49 to 0.63 for LOAEL. In the brain models, R2 in the
validation sets reached 0.53 for NOAEL and 0.69 for LOAEL. The agreement between the
experimental and calculated values, expressed by the metric CCC, was 0.67 for NOAEL
and 0.80 for LOAEL. The criterion of predictability Q2

F3 was 0.81 for NOAEL and 0.82 for
LOAEL. Moreover, Q2 ranged between 0.46 and 0.51 for NOAEL and 0.44 and 0.61 for
LOAEL. Last but not least, in the liver models, R2 reached 0.55 and 0.61 in the validation
sets for NOAEL and LOAEL, respectively. The metric CCC reached similar values for
NOAEL and LOAEL. The criterion of predictability Q2

F3 was 0.55 for both NOAEL and
LOAEL. The robustness of the models expressed by Q2 reached similar values: higher
than 0.72 for NOAEL and LOAEL. It can be noticed that LOAEL performs better than
NOAEL in all the cases. Considering the complexity of modeling these endpoints, the
overall performance is quite satisfactory for all the models. It is possible to observe that the
performance of the liver models is better than the other organ-specific models, showing
higher robustness, expressed by Q2, and lower MAE and RMSE values.

2.2.1. General Models

The general NOAEL model was built up using the equivalent distribution in the active
training set (n = 140), passive training set (n = 140), calibration set (n = 140), and validation
set (n = 141). The model was calculated as follows:

NOAEL = 2.1123367 (± 0.0064558) + 0.1651535 (± 0.0010034)× DCW(1, 30) (1)

The general LOAEL model was built up using the equivalent distribution in the active
training set (n = 142), passive training set (n = 142), calibration set (n = 137), and validation
set (n = 137). The model was calculated as follows:

NOAEL = 2.1123367 (± 0.0064558) + 0.1651535 (± 0.0010034)× DCW(1, 30) (2)

2.2.2. Kidney Models

The NOAEL kidney model was built up using the equivalent distribution in the active
training set (n = 95), passive training set (n = 95), calibration set (n = 45), and validation set
(n = 45). The model was calculated as follows:
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NOAEL− kidney = 2.1060212 (± 0.0059588) + 0.1735682 (± 0.0016214)×DCW(1, 10) (3)

The LOAEL kidney model was built up using the equivalent distribution in the active
training set (n = 97), passive training set (n = 102), calibration set (n = 46), and validation
set (n = 38). The model was calculated as follows:

LOAEL− kidney = 2.4150252 (± 0.0053276) + 0.1027443 (± 0.0010802)×DCW(1, 10) (4)

2.2.3. Brain Models

The NOAEL brain model was built up using the equivalent distribution in the active
training set (n = 23), passive training set (n = 22), calibration set (n = 23), and validation set
(n = 22). The model was calculated as follows:

NOAEL− brain = 2.3962455 (± 0.0337524) + 0.2029147 (± 0.0106681)× DCW(1, 33) (5)

The LOAEL brain model was built up using the equivalent distribution in the active
training set (n = 22), passive training set (n = 23), calibration set (n = 22), and validation set
(n = 23). The model was calculated as follows:

LOAEL− brain = 2.5305357 (± 0.0383210) + 0.1089317 (± 0.0053590)×DCW(1, 4) (6)

2.2.4. Liver Models

The NOAEL liver model was built up using the equivalent distribution in the active
training set (n = 97), passive training set (n = 94), calibration set (n = 30), and validation set
(n = 31). The model was calculated as follows:

NOAEL− liver = 1.7245212 (± 0.0040067) + 0.0530130 (± 0.0002568)× DCW(2, 15) (7)

The LOAEL liver model was built up using the equivalent distribution in the active
training set (n = 96), passive training set (n = 95), calibration set (n = 30), and validation set
(n = 31). The model was calculated as follows:

LOAEL− liver = 1.7148691 (± 0.0038133) + 0.0529304 (± 0.0002685)× DCW(2, 14) (8)

3. Discussion

In the present study, the in silico models were developed for predicting NOAEL
and LOAEL for the sub-chronic toxicity data (90 days of exposure). The development
of the in silico models for RDT represents a challenging task [9,15]. The uncertainty that
distinguishes the process derives, in particular, from the experimental design [6]. Indeed,
different designs can produce contrasting NOAEL and LOAEL for the same chemical [9].
This variability makes the development of computational models extremely challenging. In
recent years, only a few NOAEL and LOAEL models have been developed [6,10,15]. Table 2
shows the statistical characteristics that are in common with the models developed here,
which we will discuss in Section 3.1. The complexity of developing models for NOAEL and
LOAEL arises also from the fact that NOAEL and LOAEL are related to an extended range
of effects that could arise in different target organs. These aspects, as well as the extensive
modes and mechanism of actions, are difficult to consider separately, and often only partial
information is provided. In this view, all of these features contribute to the final toxicity
value. This study proposed new models for examining the critical effects that could arise
in target organs, bearing in mind the abovementioned criticisms and limitations. To the
best of our knowledge, this is one of the few attempts to develop NOAEL and LOAEL
models for organ-specific toxicity. Predicting target-organ toxicity is a focal point in the
next-generation risk assessment (NGRA) [16] and in the future, predictions of organ-level
effects, in particular for the liver, should represent the basis of in silico modeling [17].
Moreover, data with a more defined understanding of the mechanisms/effects and/or
adverse outcome pathways (AOP) is needed to improve the prediction strategy [17]. A
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thorough investigation of the ADME processes of a chemical, i.e., its ability to penetrate
certain biological barriers and its distribution within the human body, is fundamental in
the forward-looking NGRA approach [16]. Additionally, the physiologically-based kinetic
(PBK) models, which are fundamental in determining the exposure to possible toxicants,
can provide fundamental indications of concerns linked to target organs [18]. Considering
this context, the QSAR models for organ-specific toxicity, which we have developed in this
work, can provide outcomes useful for creating a future integrated-testing strategy.

Table 2. Comparison of QSAR models for NOAEL and LOAEL in rats for sub-chronic repeated-dose
toxicity (90 days exposure) in the literature.

Model Set n R2 Q2 CCC Q2
F3 RMSE MAE F Reference

NOAEL This work
active training 140 0.51 0.50 0.67 0.72 0.60 142

passive training 140 0.51 0.50 0.69 0.81 0.69 142

calibration 140 0.56 0.54 0.71 0.82 0.47 0.37 174

validation 141 0.55 0.69 0.53 0.65 0.45 172

validation in
AD (77%) 109 0.61 0.74 0.69 0.52 0.38 171

LOAEL This work
active training 142 0.55 0.54 0.71 0.66 0.50 173

passive training 142 0.55 0.53 0.68 0.72 0.57 168

calibration 137 0.51 0.49 0.63 0.48 0.71 0.56 138

validation 137 0.53 0.63 0.32 0.72 0.53 149

validation in
AD (74%) 102 0.51 0.64 0.55 0.58 0.45 105

NOAEL [6]
training 124 0.57 0.56 0.68 0.52 164

invisible
training 126 0.50 0.49 0.77 0.59 125

calibration 38 0.61 0.55 0.67 0.49 56

validation 38 0.65 0.68 0.52 68

validation in
AD (87%) 33 0.69 0.58 0.43

LOAEL [6]
training 124 0.55 0.53 0.66 0.51 147

invisible
training 126 0.45 0.43 0.80 0.63 102

calibration 38 0.61 0.51 0.69 0.51 49

validation 38 0.59 0.72 0.54 53

validation in
AD (87%) 33 0.62 0.59 0.44

NOAEL [10]
training 97 0.53 0.51 0.61 0.47 107

Test 16 0.73 0.67 0.49 0.37 38

validation 27 0.60 0.43 0.36 38

validation in
AD (96%) 26 0.61 0.42

Finally, our work follows the regulatory updates and aims to improve the risk-
assessment procedure, introducing new alternative methods. NOAEL and LOAEL are
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fundamental endpoints for human health risk assessment under different regulatory con-
texts, such as cosmetics and REACH [3,4]. A significant use of time and money characterizes
the in vivo RDT studies as well as the substantial number of animals involved. According
to the cosmetics regulation, the in vivo RDT studies are not part of the testing procedures
anymore [1], and REACH [3] calls for research to reduce the number of animals, according
to the 3R principle [19]. Therefore, there is a pressing demand for new and valid alternatives
for these endpoints.

However, the uncertainty of the NOAEL and LOAEL values, which is strongly de-
pendent on the experimental design, tends to be reflected in the predictions obtained
with the in silico models. Moreover, the link between the descriptors and systemic effects
could not be linearly explained, since there is no weighty mechanistic principle [20]. De-
spite all these limitations, a reliable predictivity for NOAEL and LOAEL may be obtained
using a combination of several techniques, such as QSARs, read-across, physiologically-
based pharmacokinetic modeling (PBPK), the threshold of toxicological concern (TTC), and
in vitro methods.

3.1. Comparison with Other Models

To the best of our knowledge, there are no NOAEL and LOAEL regression models
related to organ-specific toxicity reported in the literature. We will therefore compare
the general NOAEL and LOAEL models with the published and implemented models in
free software.

In the last few years, other models have been developed for NOAEL and LOAEL in
rats for sub-chronic repeated-dose toxicity (90 days of exposure). One model is currently
freely available for predictions in the VEGA software [10,21]. The authors in [10] looked
to studies in rodents to build NOAEL models. They considered studies with values for
28 days of treatment, dividing by 3 in order to approximate 90 days [4]. The dataset collected
consisted of 140 chemicals with toxicity data from the Integrated Risk Information System
(IRIS), Hazard Evaluation Support System (HESS) and Munro databases (https://www.epa.
gov/iris, accessed on 5 January 2021) and from the OECD QSAR Toolbox, version 3.2
(https://qsartoolbox.org/, accessed on 5 January 2021). The performance of the model [10]
is reported in Table 2.

In 2020, two new models (NOAEL and LOAEL) were developed [6]. These models
were built using toxicity data from the Fraunhofer RepDose database, a non-public database.
Studies only for the sub-chronic data from 90 days of oral toxicity in rats (Rattus norvegicus)
were included. The models were based on 326 compounds. The statistical characteristics of
the base model and the model based on chemicals inside the applicability domain (AD)
are reported in Table 2. In this work, the models are only based on the public sources
collected recently, covering more compounds than the other models reported in Table 2.
The presence of the various functional groups and the chemical domains described by the
physico-chemical properties, highlight the chemical heterogeneity of our datasets.

The most significant criterion for comparing the predictive potential of the models
considers the statistical quality of an external (validation) set. For the NOAEL model, the
validation set in [6] consisted of 38 compounds reaching R2 = 0.65. When excluding the
compounds outside the AD, the predictive capacity reached R2 = 0.69, with 33 compounds
covered. In the present work, the NOAEL model was based on a validation set of 141 com-
pounds and reached R2 0.55. Excluding compounds outside the AD improved the R2,
reaching 0.61 with a 77% coverage of compounds. The NOAEL model in [10] reached an
R2 of, respectively, 0.60 and 0.61 in the whole validation set and in the validation inside the
AD. However, the validation set had fewer compounds than the previous ones.

The LOAEL model in [6] reached R2 = 0.59. The predictive ability reached R2 = 0.62,
excluding compounds outside the AD, with 33 compounds inside it. In this work, the
LOAEL model was based on a validation set of 137 compounds and reached R2 0.53. R2

was similar, excluding compounds outside the AD with 74% of compounds.

https://www.epa.gov/iris
https://www.epa.gov/iris
https://qsartoolbox.org/
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4. Materials and Methods
4.1. Dataset Collection and Preparation

The datasets used to develop the QSAR models were built using the NOAEL and LOAEL
experimental sub-chronic (90 days of exposure) oral-toxicity data in rats, from different
publicly available databases, in line with their conformity to the OECD guideline, 408 [22].
These sources include the Munro and HESS databases, both of which are available from the
OECD QSAR Toolbox, version 4.4 (https://qsartoolbox.org/, accessed on 5 January 2021), the
IRIS database from the U.S. Environmental Protection Agency (EPA) (https://www.epa.gov/
iris, accessed on 5 January 2021), the COSMOS database [23] (https://www.ng.cosmosdb.eu/
about, accessed on 5 January 2021), the U.S. EPA’s ToxRefDB, v. 2.0 [24], and the European
Food Safety Authority (EFSA) OpenFoodTox database [25,26]. In order to ensure consistent
data, we took into account only data from the sub-chronic toxicity studies of oral exposure
in rats (90 days, but also 91 and 92 days in order to extend the number of data), removing
variability and inconsistencies due to interspecies’ differences [27]. Further, 2D SMILES
chemical structures were retrieved for each substance. In some cases, SMILES were already
present in the databases, otherwise, they were retrieved using a semi-automated data
curation and quality checking workflow, implemented in the KNIME Analytics Platform,
v. 4 [28,29].

Once a full dataset was set up under these rules, we rejected inorganic compounds,
metal complexes and data related to mixtures or polymeric structures. Ionized structures
were neutralized and counterions were excluded. Duplicates were analyzed and detected
by checking SMILES at the 2D level, and by the CAS number. For compounds with multiple
data, the lowest value was preserved, adopting a conservative approach. The experimental
values (in mg/kg body weight (bw) per day) were converted to a logarithmic scale. Finally,
to make the data more consistent, only chemicals with an NOAEL equal to or lower than
LOAEL were maintained.

Another step was to retrieve data related not only to general-systemic toxicity but also
to organ-specific toxicity. Therefore, following the same procedure, we built one dataset
for general NOAEL and LOAEL and separate datasets using NOAEL and LOAEL data
where the indication of the adverse effect is associated with a specific target/organ for the
liver, kidney and brain. This provides a general dataset of 573 unique chemicals. For the
organ-related data, we obtained 353 chemicals for the liver, 289 for the kidney and 91 for
the brain. The datasets containing IDs, CAS numbers, SMILES and experimental values
are reported in the Supporting Information, Tables S1–S4. A further curation aimed at
the development of a specific model will be described in the next sections. The complete
structure of these datasets is shown in Table 3.

Table 3. Datasets examined.

ID Model Initial Number
of Compounds

Final Number
of Compounds

Final Range Value
mg/kg bw/Day (log)

M1 General NOAEL 573 561 −1 to 3.591

M2 General LOAEL 573 558 −0.415 to 3.948

M3 Kidney NOAEL 289 280 0.097 to 4.301

M4 Kidney LOAEL 289 283 0.097 to 3.585

M5 Brain NOAEL 91 90 0.248 to 4.301

M6 Brain LOAEL 91 90 0.248 to 4.301

M7 Liver NOAEL 353 252 −0.432 to 3.499

M8 Liver LOAEL 353 252 −0.415 to 3.789

4.2. Characterization of the Datasets

The chemical structures of the molecules (Supplementary Materials, Tables S1–S4)
were analyzed with the ChemoTyper tool, v. 1.0, which searches and identifies 729 ToxPrint

https://qsartoolbox.org/
https://www.epa.gov/iris
https://www.epa.gov/iris
https://www.ng.cosmosdb.eu/about
https://www.ng.cosmosdb.eu/about
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chemotypes (https://www.chemotyper.org, accessed on 16 April 2021). The complete lists
and histograms of the chemotypes identified in the datasets can be found, respectively, in
Tables S5–S8 and in Figures S1–S4 (Supplementary Materials).

Chemicals were also analyzed on the basis of their physico-chemical properties. These
were calculated using the ‘Molecular Properties’ node of the analytics platform, KNIME
(https://www.knime.com/knime-analytics-platform, accessed on 16 April 2021). The prop-
erties included the molecular weight, hydrogen bond acceptors, hydrogen bond donors,
rotatable bonds count, Lipinski’s rule of five, topological polar surface area, atomic polariz-
abilities, bond polarizabilities and MannholdlogP. Tables S25–S28 in the Supplementary
Materials show the mean, maximum and minimum values of the selected properties for
each dataset.

4.3. Further Curation

To build the models, we removed the compounds with a low-frequency distribution
of NOAEL and LOAEL values, as they were considered noise. For the liver dataset, an
analysis was done to identify the possible structural or response outliers and activity
cliffs, employing the Small Dataset Curator tool, v. 1.0.0 [30,31] and the istSimilarity tool,
v. 1.0.7 [32]. The final number of compounds and the range of the NOAEL and LOAEL
endpoints are summarized in Table 3. Figures S5–S8 in the Supplementary Materials show
the frequency distribution of the experimental values.

4.4. Model Development and Optimal Descriptors

We used the CORAL software, v. 2020 (www.insilico.eu/coral, accessed on 6 June
2021), to build the QSAR models with the Monte Carlo method. The models were based
on the so-called hybrid optimal descriptor, accounting for the correlation weights (CW) of
both the SMILES and hydrogen-suppressed molecular graph (HSG) attributes [33,34].

The datasets were split randomly into the active training, passive training, calibration
and validation sets [33,35]. Each subset had its own task. The task for the active training
set was to calculate and identify which correlation weights gave the largest correlation
between the experimental and predicted endpoint for the active training set. The task for the
passive training set was to analyze if these correlation weights gave a reasonable correlation
coefficient for similar compounds. The calibration set was used to detect overtraining. The
validation set was used to evaluate the predictive potential of the model, using substances
never used in the phase of model building.

The general form of a CORAL model can be described by the following one-variable
Equation (9):

Endpoint = C0 + C1 × DCW(T∗, N∗) (9)

where C0 and C1 are the intercept and the slope, DCW is the optimal descriptor, T* and N*
are the best threshold and the best number of epochs of the Monte Carlo optimization. The
best threshold is an integer to classify a molecular feature as active or rare. The building
process never involves rare features. Both thresholds give the best statistical performance
for the calibration set.

The optimal descriptor—a function of molecular features—that we applied, comprises
the following components, as listed in Equation (10):

DCW(T, N) = DCWα(T, N) + DCWβ(T, N) + DCWγ(T, N) + DCWδ(T, N) (10)

where,

DCW∝(T, N) = x1×∑ CW(Sk) + x2×∑ CW(SSk) + x3×∑ CW(SSSk)

DCWβ(T, N) = ∑ CW(EC1k) + ∑ CW(EC2k) + ∑ CW(EC3k) + ∑ CW(NNCk)

https://www.chemotyper.org
https://www.knime.com/knime-analytics-platform
www.insilico.eu/coral
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DCWγ(T, N) = y1×∑ CW(APP[Cl, N]) + y2×∑ CW(APP[Cl, O])

+ y3×∑ CW(APP[Cl, S]) + y4×∑ CW(APP[Cl, P])

and
DCWδ(T, N) = ∑i ∑j=i+1 Mij

M =

F Cl Br N O S P = #
F a12 a13 a14 a15 a16 a17 a18 a19
Cl a23 a24 a25 a26 a27 a28 a29
Br a34 a35 a36 a37 a38 a39
N a45 a46 a47 a48 a49
O a56 a57 a58 a59
S a67 a68 a69
P a78 a79
= a89
#

where a12 = CW(APP[F, Cl]); a13 = CW(APP[F, Br]); . . . ; a89 = CW(APP[=, #]). Sym-
bols ‘=’ and ‘#’ are indicators of the double and triple covalent bonds. Some examples of
the atom-pairs proportions (APP) for APP[Cl,N] can be the following:

(Cl.N)..1.1.A molecule contains one chlorine atom and one nitrogen atom;
(Cl.N)..1.2.A molecule contains one chlorine atom and two nitrogen atoms;
(Cl.N)..2.1.A molecule contains two chlorine atoms and one nitrogen atom.

The others APP attributes are defined in the same manner. Table 4 contains the types
of attributes involved in the models with corresponding references.

Table 4. SMILES and molecular graph attributes.

Attribute Description

S, SS, SSS Single SMILES atom, a combination of two SMILES atoms and a
combination of three SMILES atoms [36,37].

EC1, EC2, EC3 Morgan connectivity of first-, second- and third-order [38].

NNC Nearest neighbors codes [33,39].

APP Atom pair proportions weighted presence of F, Cl, Br, N, O, S, P, #, = [40].

The correlation weights were based on the index of ideality of correlation (IIC) and on
the correlation intensity index (CII), both of which were calculated using the compounds in
the calibration set, as described in the literature [14,41].

Table 5 shows details of the eight models developed. Screenshots of the methods M1–M8,
utilized to build up the models, are shown in Figures S9–S16 (Supplementary Materials).

Table 5. Descriptors applied to build the models M1–M8 listed in Table 3 (+).

ID α β γ δ x1 x2 x3 y1 y2 y3 y4 IICw CIIw T* N*

M1 1 0 1 0 1 1 1 1 1 1 1 0.25 0.30 1 30

M2 1 0 1 0 1 1 1 1 1 1 1 0.20 0 1 30

M3 1 0 1 0 1 1 1 1 1 0 0 0.25 0 1 10

M4 1 0 0 0 1 1 1 0 0 0 0 0.20 0 1 10

M5 1 0 0 1 1 0 0 0 0 0 0 0.50 0 1 33
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Table 5. Cont.

ID α β γ δ x1 x2 x3 y1 y2 y3 y4 IICw CIIw T* N*

M6 1 0 0 0 1 1 0 0 0 0 0 0.20 0 1 4

M7 1 1 0 0 1 1 1 0 0 0 0 0.15 0 2 15

M8 1 1 0 0 1 1 1 0 0 0 0 0.25 0 2 14
(+) α, β, γ, δ are DCW indices; x1, . . . ,y4 are equation constants; IICw, CIIw are the correlation index weights; T* is
the best threshold and N* is the best number of epochs.

4.5. Definition of the Applicability Domain

The applicability domain (AD) implemented in CORAL is based on a probabilistic
measure defectSMILES, which measures the quality of the molecular features extracted from
the compound [33,36]. It is defined according to the distribution of the molecular features
(Sk) extracted from SMILES or HSG in the active training and calibration sets. The defect of
Sk was calculated as:

dk =

∣∣P(Sk)− P′(Sk)
∣∣

N(Sk) + N′(Sk)
(11)

where P(Sk) and N(Sk) are, respectively, the probability and frequency of Sk in the active
training set. P′(Sk) and N′(Sk) are, respectively, the probability and frequency of Sk in the
calibration set.

The defect of the SMILES was calculated as:

defectSMILES =
NA

∑
k=1

dk (12)

where NA is the number of non-blocked molecular features extracted from SMILES or HSG.
The criterion for the reliability of a prediction is defined as below in Equation (13):

defectSMILES < 2×D (13)

where D is the average of the statistical SMILES-defect for the compounds in the active
training set [33]. Compounds having defectSMILES greater than the calculated threshold
2×D were considered outside the AD. In contrast to a traditional interpretation of the
applicability domain, this approach provides a semi-qualitative criterion, named the statis-
tical defect. Indeed, this is a measure of the presence of the molecular features observed
in SMILES. If the majority of the molecular features are rare, then the SMILES have a
large defect, while if the majority of the molecular features are represented many times in
both the training set and in the calibration set, the defect is small. Tables S9−S24 in the
Supplementary Materials report the statistical quality and the calculated threshold for the
models applying the AD procedure described.

5. Conclusions

The present study provides new QSAR regression models for NOAEL and LOAEL, in
particular, new models for NOAEL and LOAEL for the liver, kidney and brain. Considering
the difficulty to obtain a robust model for these endpoints, predictions are quite satisfying,
particularly for the organ-specific models. This is encouraging, with a view to a future
integrated approach, where the prediction of NOAEL and LOAEL can be used to support a
new multi-tier assessment strategy. Particularly convincing are the results for the liver, an
organ of central importance for the risk assessment of various kinds of chemicals. These
QSAR models will be implemented in the VEGA platform (https://www.vegahub.eu,
accessed on 2 December 2021). The VEGA system will also show the six most similar
substances and an evaluation of the reliability of the predictions. They have the important
advantage of being freely available for the end users. Therefore, they can be used by the
scientific community, worldwide, to support their activities. These models can be used

https://www.vegahub.eu
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for a hazard characterization of chemicals as well as for screening, the prioritization of
chemicals and as supporting evidence for a risk-assessment approach.

Moreover, these models offer an innovative perspective for the risk-assessment tools
developed by the authors and their colleagues, in the context of the LIFE VERMEER project
(https://www.life-vermeer.eu/, accessed on 3 May 2022).

Finally, as we also previously highlighted within the text, some limitations were
present in this work due to the intricacy of the experimental design, the dependency of
the dose administered and the complexity of the toxicity mechanisms behind the adverse
effects. It is worth underlining that, in the future, these models could be refined, applying
the concept of the BMD, which is more reliable than NOAEL, since it is less influenced
by the sample size and selection of the treatment dose. Moreover, with the awareness of
their importance to refine the prediction of repeated-dose toxicity, a deeper evaluation of
relevant issues, such as the role of the metabolism and mechanism of actions, will be taken
into account in order to increase the work we are doing to provide advanced strategies for
risk assessment and regulatory purposes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23126615/s1.
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