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Abstract: Iron is necessary for essential processes in every cell of the body, but the erythropoietic
compartment is a privileged iron consumer. In fact, as a necessary component of hemoglobin and
myoglobin, iron assures oxygen distribution; therefore, a considerable amount of iron is required
daily for hemoglobin synthesis and erythroid cell proliferation. Therefore, a tight link exists between
iron metabolism and erythropoiesis. The liver-derived hormone hepcidin, which controls iron
homeostasis via its interaction with the iron exporter ferroportin, coordinates erythropoietic activity
and iron homeostasis. When erythropoiesis is enhanced, iron availability to the erythron is mainly
ensured by inhibiting hepcidin expression, thereby increasing ferroportin-mediated iron export from
both duodenal absorptive cells and reticuloendothelial cells that process old and/or damaged red
blood cells. Erythroferrone, a factor produced and secreted by erythroid precursors in response to
erythropoietin, has been identified and characterized as a suppressor of hepcidin synthesis to allow
iron mobilization and facilitate erythropoiesis.
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1. Introduction

Iron is an element necessary for the survival of almost all living organisms, so the
capacity of acquiring iron has been proposed as a significant driver of evolution on Earth [1].
In fact, it is required for oxygen transport and for the activity of enzymes involved in a
variety of metabolic processes [2]. By cycling between the ferrous (Fe**) and ferric (Fe3*)
oxidation states, iron allows hundreds of proteins to function in many processes essential
for life, including nucleic acid metabolism, energy production and neurotransmission.
However, Fe?* can promote Fenton-type reactions generating highly reactive oxygen
species (ROS) that cause lipid peroxidation and DNA damage, eventually leading to cell
death by ferroptosis [3-5]. Therefore, organisms develop precise regulatory mechanisms
that tightly control iron homeostasis at both cellular and systemic levels to generate Fe?* in
limited concentrations and transiently.

2. Systemic Iron Homeostasis

Body iron balance is preserved through a system of proteins that coordinates duodenal
iron absorption, recycling by reticuloendothelial (RE) macrophages, utilization (primarily
by erythroid and proliferating cells) and storage (mainly in liver and RE cells). Despite these
controlling mechanisms, human health is often affected because of too little or too much iron.
Indeed, more than one billion people suffer from iron deficiency, which can often evolve
into iron deficiency anemia. The latter is a huge global public health problem affecting
more than 10% of the world’s population [6]. On the other hand, dysregulated iron uptake
results in iron overload, such as in hereditary hemochromatosis, which is characterized by
excess iron accumulation and consequent damage in many tissues (particularly liver, heart
and endocrine glands) [7,8].
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2.1. Iron Absorption

In the absence of a mechanism influencing iron excretion, which mainly results from
unregulated mucosal lining and blood loss from the gastrointestinal tract, the control
of intestinal absorption is a key determinant of body iron homeostasis [9,10]. Iron also
cycles between the Fe?* and Fe®* states during its uptake, export and storage. Accordingly,
absorption of the poorly available non-heme Fe3* present in the diet requires the reduction
by membrane-associated ferric reductase (Dcytb) and the subsequent transport of Fe?*
across the apical side of duodenal cells by divalent metal transporter 1 (DMT-1) [9].

Heme is an important source of iron because it is more bioavailable than non-heme iron,
thereby largely compensating for its lower abundance in a standard diet. Several proteins
have been proposed as transporters of heme across the intestinal brush-border membrane,
but the precise mechanism of heme iron absorption remains not well understood [11], so
heme trafficking without specific deliverers has been hypothesized [12].

Iron released from heme through the action of heme oxygenase 1 (HO-1) and non-heme
iron is then exported from the enterocyte into the bloodstream by ferroportin (FPN) [13,14].
For the binding of iron to circulating transferrin, which delivers iron to all cells through the
interaction with the transferrin receptor 1 (TfR1), its conversion to Fe3* by two oxidases
is necessary, the membrane-bound hephaestin and the circulating ceruloplasmin [9,10,15].
Under physiological conditions, intestinal iron absorption is controlled primarily by body
iron content and erythropoiesis [16]. Specifically, iron uptake can be enhanced in the case
of higher erythropoietic demand or suppressed when iron stores are repleted.

Duodenal iron absorption is regulated by both cell-autonomous and systemic signal-
ing pathways. The local mechanism is centered on the interaction between iron regulatory
proteins (IRPs), which post-transcriptionally regulate the expression of the major proteins
of iron metabolism [17] and the iron- and hypoxia-sensing machinery based on hypoxia-
inducible transcription factors (HIFs), in particular HIF-2« [18]. Indeed, under conditions
of increased iron demand, HIF-2«x can increase the expression of Dcytb, DMT-1 and FPN.
At the systemic level, the IRP-1/HIF-2« interplay coordinates duodenal iron absorption
according to systemic oxygen and iron availability. When iron levels in duodenal entero-
cytes are low, IRP1 activation leads to translational repression of HIF-2¢, a mechanism
aimed at maintaining transcriptional activation of iron transporters under control [18]. A
similar dysregulation of the IRP-1/HIF-2x pathway, which links erythropoiesis and iron
availability, leads to unabated expression of the HIF-2-target gene erythropoietin (EPO)
and polycythemia in rare patients with mutations in IRP1 [19] and IRP1-knockout mice [20].

However, the most important player in the communication of body iron requirements
to the intestinal iron absorption sites is hepcidin, a short cysteine-rich peptide hormone
generated and secreted mainly by hepatocytes [21]. Hepcidin exerts its regulatory function
by binding to and downregulating the cellular iron exporter FPN. Upon binding, FPN is
internalized, ubiquitinated, probably through the action of the recently identified E3 ubiq-
uitin ligase RNF17 [22], and degraded [23]; the consequent block of iron flow, particularly
from RE cells and duodenal enterocytes, decreases circulating iron levels [21]. Therefore,
the hepcidin—FPN axis controls systemic iron homeostasis, and imbalances in this molecu-
lar circuit can lead to iron overload or deficiency conditions. Indeed, the removal or the
overexpression of the hepcidin gene in genetically manipulated mice results in tissue iron
overload and severe iron deficiency anemia, respectively. Importantly, altered hepcidin
expression also leads to dysregulated iron homeostasis in humans [24]. When enhanced
iron absorption is needed, hepcidin repression leads to FPN stabilization and increased
iron export from the intestine to the bloodstream. Interestingly, the hepcidin-mediated and
the local HIF-2x-dependent mechanisms collaborate, as iron efflux to the circulation results
in iron deficiency in intestinal cells. Since low iron levels increase HIF-20c by decreasing
prolyl hydroxylases activity, this results in a feed-forward cycle, favoring the expression of
apical and basolateral iron transporters (reviewed by [25]).

The major use of iron, at least from a quantitative viewpoint, is in oxygen distri-
bution. In fact, iron is an essential part of hemoglobin (Hb) (oxygen transport protein)
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and myoglobin (oxygen storage protein), and about 50% of body iron content is found in
erythrocytes. As a component of Hb, iron represents a limiting factor in erythropoiesis,
so, starting from erythroblast maturation, red blood cell (RBC) production increasingly
depends on iron uptake. However, the role of a sufficient iron supply for the mitochondrial
synthesis of iron-sulfur clusters and for the activity of several proteins that sustain the
high proliferation rate of RBC precursors should not be underestimated. RE cell-mediated
recycling of Hb-derived iron from the breakdown of senescent erythrocytes provides almost
80% of the considerable amount of iron (20-25 mg), which must reach the bone marrow
daily [21]. Intestinal absorption of dietary iron accounts for the balance.

2.2. Regulation of Hepcidin Expression

Hepcidin expression is finely regulated at the transcriptional level by divergent stimuli,
such as iron demand for erythropoiesis (the so-called erythroid regulator) and body iron
stores (the so-called store regulator) or inflammation [10]. Given the aim of this review, we
will briefly examine the mechanisms of hepcidin stimulation by iron and inflammatory
conditions and discuss more in detail the pathways of hepcidin inhibition triggered by
erythropoietic activity and hypoxia. For a detailed description of the control of hepcidin
transcription, readers are referred to recent reviews [26,27].

2.2.1. Hepcidin Regulation by Iron Availability

High iron availability stimulates hepcidin transcription through the bone morphogenic
proteins (BMP)-SMAD1/5/8 transduction pathway. In response to enlarged liver iron
stores, nonparenchymal cells, primarily sinusoidal endothelial cells, produce BMP2 and
BMP6, which initiate heterodimerization between BMP type I (ALK2/ALK3) and type II re-
ceptors BMPRII/ Act RIIA. This process results in the activation of the cytosolic SMAD1/5/8
complex and SMAD4, eventually increasing hepcidin expression [27]. Hemojuvelin (HJV)
functions as a BMP coreceptor and is critical for hepcidin expression in response to iron
loading [28], as shown by the severe iron overload (juvenile hemochromatosis) developed
by patients with mutations in HJV. In addition, BMP-dependent activation of hepcidin
transcription is modulated by a complex comprising human hemochromatosis protein
(HFE) and transferrin receptor 2 (TfR2). The lack of these proteins in mouse models leads
to iron overload, and mutations in the corresponding genes are present in patients with
distinct types of hemochromatosis (reviewed by [28-31]). Other liver proteins such as fu-
rin [32] and neogenin [33] interact with HJV to favor the proper assembly of BMPs/BMPR
complexes through still incompletely understood pathways. Conversely, when iron levels
fall, these pathways are inhibited mainly thanks to the action of matriptase-2 (TMPRSS6),
which cleaves HJV from the plasma membrane, thereby preventing its coreceptor function.
Further hepcidin inhibition is due to competition for BMPs by the cleaved soluble fragment
(s-HJV), which acts as a decoy molecule [34-36]. The key role of TMPRSS6 was demon-
strated by the strong hepcidin increase, followed by impaired iron absorption and anemia,
caused by its inactivation in mice [28-31]. Notably, mutations in the TMPRSS6 gene under-
lie a rare form of hypochromic microcytic anemia unresponsive to oral iron therapy [37].
Moreover, since heparin binds BMP and inhibits hepcidin synthesis, endogenous heparan
sulfates play a role in the control of hepcidin expression [38].

2.2.2. Hepcidin Regulation by Inflammatory Stimuli

Since a considerable amount of iron is required daily for Hb synthesis and erythroid
cell proliferation, the erythropoietic compartment is a privileged iron user. However, as
fundamental though efficient oxygen transport is, the need of limiting microbial growth
represents another relevant constraint in evolution, as pathogens desperately require iron.
This goal is achieved also by increasing hepcidin levels in response to inflammation and
infection, a defense mechanism that protects the host from pathogens by restricting iron
availability [39]. On the other hand, in chronic inflammation, persistently elevated cytokine
levels result in prolonged hepcidin activation and decreased iron bioavailability, which
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is a major contributor to the so-called anemia of inflammation (AI). At the molecular
level, hepcidin is induced by inflammatory mediators, in particular interleukin 6 (IL-6) [40],
which triggers hepcidin transcription mainly via the JAK-STAT3 signaling pathway, though
inflammation may stimulate hepcidin also through TGF-f3/BMP superfamily ligands, such
as Activin B [41]. Since a lack of iron can lead to Al but iron supplementation may
exacerbate the risk of infections, understanding the central role of hepcidin in the interplay
between iron handling, anemia and infections is of paramount importance.

3. Crosstalk between Iron and Erythropoiesis

The HIF system is the most important mediator of cellular adaptation to insufficient
oxygen. HIF1oe and HIF2ox induce the transcription of a large number of genes involved in
the response to hypoxia both at the cellular and organismal levels. HIF2a-mediated induc-
tion of EPO [42,43] is the systemic response to hypoxia, which eventually re-establishes
optimal oxygen supply to tissues [44]. EPO binding to its receptor promotes survival,
proliferation and differentiation of erythroid progenitors through the Jak2-Stat5 pathway,
ultimately leading to an increased number of circulating RBCs. Given the role of iron in
erythropoiesis, genes coding for proteins directly or indirectly involved in iron metabolism
are included in the variety of HIF target genes; in particular, as reported above, HIF2o
upregulates the expression of proteins required for iron trafficking [18]. Several recent
studies highlighted a direct EPO-dependent mechanistic connection between erythropoiesis
and iron homeostasis aimed at assuring the needed amount of iron to sustain the enhanced
RBC production. Indeed, differentiating erythroid precursors show a very high surface
display of TfR1 (about 800,000/ cell) to internalize transferrin-bound iron. Remarkably,
mice with deletion of Stat5, which suffer from microcytic anemia, showed a strong decrease
in TfR1-mediated iron uptake and Hb synthesis, as the Jak2-Stat5 pathway also controls
the transcription of TfR1 and IRP2 [45].

Under conditions of low iron availability, the regulatory mechanisms that maintain the
balance among the various components of Hb on the one hand suppress EPO production
via the IRP1-HIF2«x axis to prevent disproportionate iron use by erythropoiesis and on the
other hand also curb erythroid maturation by inhibiting aconitase [20]. Moreover, through
a pathway involving the iron-sensing TfR2, erythroid iron restriction represses Scribble, a
regulator of receptor trafficking, thereby altering the response to EPO [46]. Using mice with
specific deletion of TfR2 in erythropoietic cells, it has also been shown that TfR2 modulates
the sensitivity of erythroblasts to EPO [47], thereby indicating a role for TfR2 in the crosstalk
between iron homeostasis and RBC production. The link between iron and erythropoiesis
was also substantiated by a study showing that the inhibition of hepcidin, which underlies
testosterone’s stimulation of erythropoiesis is iron-dependent [48].

3.1. Hepcidin Regulation by Erythropoiesis

Studies in animal models showed that at the systemic level erythropoietic activity
and iron homeostasis are coordinated by hepcidin; when RBC production is enhanced,
hepcidin downregulation increases both duodenal iron uptake and release of iron from RE
macrophages and liver stores (Figure 1) [49]. Importantly, these findings were confirmed
in thalassemic patients, in which higher EPO concentrations and biomarkers of sustained
erythroid activity were associated with hepcidin suppression [50]. It should be noted that
hepcidin inhibition triggered by the “erythroid regulator” appears to prevail over other
pathways that induce hepcidin. Indeed, inflammation-dependent signaling in mice was
overcome by erythropoietic drive [51], and dysregulated erythropoiesis was able to inhibit
hepcidin even under conditions of iron overload [52].
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Figure 1. Major regulatory pathways involved in the effect of erythropoietic stimulation on the
regulation of systemic iron homeostasis.

Decreased oxygen availability caused by hypoxia or compromised oxygen trans-
port/delivery induces HIF-1 dependent erythropoietin (EPO) synthesis in the kidney.
Increased circulating EPO levels stimulate erythroid activity in the bone marrow, which is
accompanied by higher expression of erythroferrone (ERFE) by erythroid precursors. By
interfering with the BMP signaling pathway, ERFE downregulates hepcidin production in
the liver. In turn, the lower hepcidin levels permit ferroportin (FPN)-dependent iron release
into plasma out of the iron recycling (spleen macrophages) and iron absorption (duodenal
enterocytes) compartments. The higher iron availability in the bloodstream satisfies the
enhanced needs for red blood cell production.

3.2. The Role of Hypoxia

The role of hepcidin as a key regulator appears well established, but where does the
iron needed to sustain a massive increase in erythropoietic drive come from?

Optimization of iron transport mechanisms, including increased intestinal absorption
and fast and efficient recycling of iron derived by processed RBCs, can provide iron to
the erythroid bone marrow. Indeed, it has been shown that in healthy volunteers exposed
to hypoxemic conditions (rapid ascent to 4559 m) hepcidin is repressed, and duodenal
iron transport in biopsy specimens is rapidly upregulated [53]. These changes aimed at
ensuring a sufficient iron supply for hypoxia-induced compensatory erythropoiesis may
be accompanied by a reduction in iron stores. In fact, in mice overexpressing human
EPO, excessive erythrocytosis was associated with reduced transferrin saturation and low
iron stores [54]. Similarly, studies in which human subjects were acutely exposed to low
oxygen as a consequence of rapid [53,55] or relatively slow [56,57] ascent to very high
altitudes showed that increased erythropoiesis was accompanied by a massive mobilization
of iron from stores. These data are in line with the iron deficiency found in polycythemia
vera patients presenting with excessive erythrocytosis [58]. Therefore, the mechanisms
underlying the short-term adaptation of iron metabolism to high-altitude hypoxia are
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characterized by a hepcidin-regulated increase in iron absorption and decrease in iron
storage, which provides iron to meet the higher requirements [53,55-57].

It is less well established whether and how iron metabolism is regulated in residents at
high altitude who are chronically exposed to low oxygen [59]. More than 20 million people
worldwide live at high altitude (above 3000 m) and face several clinical problems [60]; most
of these individuals are residents of the Andean region of South America. The oxygen
homeostasis pathways respond to the stress of acute or chronic high-altitude hypoxia in
ways that facilitate peripheral oxygen delivery. The various highlands populations acclima-
tized successfully by means of different physiological mechanisms, and Andean people
adapted mainly by increasing Hb production [61]. Indeed, it has been recently demon-
strated that excessive erythrocytosis in Peruvian high-altitude residents is associated with
impressive total red blood cell volume expansion and very high Hbmass [62]. However,
the normal ferritin levels and transferrin saturation found in Puno residents (3400 m) [63]
indicated a lack of significant losses of stored iron. These results are also consistent with
the greater prevalence of iron deficiency in lowlanders than in adapted Tibetan Sherpa
upon ascent to 5050 m [57]. Similarly, Ethiopian highland subjects of Amhara and Oromo
ethnicities did not show decreased body iron stores despite significantly higher Hb concen-
tration [64]. Since hepcidin was not suppressed under steady-state hypoxia, the authors
hypothesized that the response was possibly due to the stable erythropoietic drive caused
by chronic exposure to hypoxia, in contrast with acute elevation of erythropoietic iron
requirements [64]. Though the mechanisms providing more iron in these subjects chroni-
cally exposed to hypoxia remain unexplained, the available data indicate an evolutionary
adaptation against iron deficiency. Despite adaptive mechanisms, a significant proportion
of high-altitude residents develop a clinical syndrome known as chronic mountain sickness
(CMS), which is mainly characterized by chronic and severe hypoxemia, excessive erythro-
cytosis and pulmonary artery hypertension (PAP) [65]. Since PAP is inversely related to
iron stores/availability [66], it is tempting to speculate that sparing iron stores represents
a defense against CMS for long-time residents at very high altitude, though additional
studies are necessary to validate this hypothesis.

Regarding the molecular mechanisms underlying hepcidin repression under con-
ditions of enhanced erythropoietic activity, though a study proposed HIF1x-dependent
repression of hepcidin transcription [67], subsequent findings [68,69] did not confirm a
direct suppressing effect of hypoxia/HIF1 on hepcidin transcription and showed that the
role of HIF in this context is to stimulate EPO production. However, the expression of
proteins that negatively control hepcidin expression, such as Matriptase2 [70], furin [32,71]
and platelet-derived growth factor BB [72], is induced by HIF-1/2«. The possible comple-
mentary role of these pathways in hepcidin downregulation in these settings remains to be
completely understood.

Initial studies showing (1) strong downregulation of hepcidin in mice injected with
EPO [18,52,73], (2) inhibition of hepcidin transcription in EPO-treated cell lines [74,75] and
(3) a prompt decrease in hepcidin levels [76,77] that preceded any significant change in
potential mediators following EPO administration to healthy human subjects [77,78] have
suggested that EPO could directly repress hepcidin expression. However, other evidence
has been obtained against a direct effect of EPO in hepcidin inhibition. In fact, hepcidin
levels are not decreased in mice with damaged bone marrow (BM) [79,80] and in patients
with Diamond-Blackfan anemia, which is characterized by erythroid hypoplasia [81].
Therefore, these results strongly indicate that hepcidin downregulation is not directly
controlled by EPO and instead requires the intervention of an active erythroid marrow.
Moreover, a report showing that the repressing effect of EPO on hepcidin was present also
in mice lacking EPO receptor in liver cells [82] rules out that EPO binding to liver receptors
is involved in hepcidin suppression.

Having excluded a direct influence of EPO, the search for effectors connecting erythro-
poiesis with liver hepcidin downregulation has been pursued. Among the candidates pro-
posed as potential “erythroid factors”, the role of growth differentiation factor 15 (GDF15),
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a member of the transforming growth factor-f3 superfamily, and twisted gastrulation factor
1 (TWSG1) have been suggested but not confirmed, and the hepcidin suppressing capacity
of PDGEF-BB [72] should be investigated further (discussed in [83]).

4. Erythroferrone

The hormone erythroferrone (ERFE) appears to be the major suppressor of hepcidin
expression in response to higher erythropoietic activity and EPO, i.e., the erythroid regulator
hypothesized by Finch (Figure 1) [16]. It has been shown that ERFE is mainly expressed
by erythroblasts in response to EPO treatment, and its induction depends on the JAK2-
STATS5 pathway [52]. However, ERFE is also expressed in skeletal muscle and adipose
tissue and is a member of the C1Q/tumor necrosis factor (TNF)-related protein family
(CTRP15). Indeed, the Fam132b mRNA coding for ERFE has been previously identified as
a transcript coding for a protein originally called myonectin [84]. Recently, an interesting
study demonstrated considerable EPO-independent production of ERFE by osteoblasts.
By inhibiting bone resorption, ERFE protects the bone, and thus, this mechanism may
represent a complementary way to favor expanded erythropoiesis [85]. Regarding the
molecular basis underlying the action of ERFE on hepcidin repression, it has been shown
that ERFE downregulates hepcidin transcription by binding to BMPs, thereby inhibiting the
interaction with their hepatic receptor and the downstream BMP/SMAD signaling [52,86].

The role of ERFE in basal erythropoiesis was indicated by studies in ERFE knockout
mice, which did not show abnormalities in iron and hematological parameters at baseline.
However, they were not able to promptly suppress hepcidin in response to erythropoietic
stress [73]. On the other hand, we showed that in healthy humans, ERFE responds even
to very low EPO doses not associated with Hbmass expansion, a functional marker of
erythropoietic response [87]. As such, ERFE appears a suitable marker to be included in the
Athlete Biologic Passport for the detection of EPO abuse and could represent an advance
in the antidoping field. Moreover, we recently showed in humans that ERFE levels are
enhanced by exposure to high altitude (3800 m) for 15 h, thereby indicating the role of
ERFE in acute adaptation to hypoxia [87]. Increased ERFE levels were also found after a
longer period of time spent at a more moderate altitude [88]. Overall, it seems that ERFE
function is not restricted to stress erythropoiesis, as previously supposed on the basis of
the first studies [89].

ERFE plays a relevant role also in pathological settings involving altered erythro-
poiesis; in particular ERFE induction was found in various types of mouse anemia [90],
and ERFE plasma levels are elevated in patients with hereditary hemolytic anemias [91].
Remarkably, high induction of ERFE expression has been observed in anemias with in-
effective erythropoiesis, such as 3-thalassemia, which are characterized by an expanded
erythroblast compartment [92]. Interestingly, deletion of ERFE improved iron overload and
ineffective erythropoiesis in a mouse model of thalassemia [93]. Even more severe anemia
and iron overload can be caused by ERFE variants either due to aminoacid substitution
in ERFE, such as in patients with congenital dyserythropoietic anemia type II [94] or in
splicing factors generating alternative ERFE transcripts, such as in subjects affected by
myelodysplastic syndromes, a group of disorders generally presenting with anemia and
iron overload [95]. In both cases, very high plasma concentrations of a variant ERFE that
maintained the capacity to suppress hepcidin were found.

ERFE may also be important in Al Studies in mice lacking ERFE showed that Al
caused by injection of inactivated bacteria was more severe than in control animals and was
associated with higher hepcidin levels and iron sequestration, thus suggesting that ERFE
antagonizes Al [96]. However, ERFE is not able to override the inflammatory induction
of hepcidin. A similar situation with elevated levels of both hepcidin and ERFE has been
recently described in patients with Al caused by Mycobacterium tuberculosis infection [97].
Notably, following treatment, hepcidin decreased rapidly along with inflammatory mark-
ers, whereas ERFE showed a slower decline. The persistence of its inhibitory effect could
thus possibly increase iron availability and contribute to the resolution of anemia. Using
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a mouse model with different levels of ERFE overexpression, it has been recently shown
that ERFE excess leads not only to iron overload but also impacts BMP-mediated develop-
ment [98]. These findings provide insights into the molecular mechanisms leading to the
developmental abnormalities that sometimes accompany the severe forms of iron loading
anemias with ineffective erythropoiesis.

The absence of an apparent phenotype in ERFE knockout mice under physiological
conditions suggests the possible existence of other unidentified regulators linking the
erythroid compartment with hepcidin expression in the liver. For example, it has been
demonstrated that erythroid TfR1 is an ERFE-independent inhibitor of hepcidin in response
to expanded erythropoiesis [99].

5. Conclusions and Future Directions

In recent years, several key aspects of the regulatory system by which the erythroid
compartment, which consumes the largest share of circulating iron, controls iron trafficking
to obtain iron for Hb synthesis have been unraveled. ERFE produced by erythroid precursor
cells is currently the best-characterized hepcidin inhibitor, and mechanistic insights into
its interaction with the hepatic BMP/SMAD pathway have been provided. Given the
role of dysregulated ERFE production in hematologic disorders, manipulation of ERFE
levels may represent an innovative therapeutic approach for diseases such as ineffective
erythropoiesis with iron overload or Al. The characterization of the mechanism based on
the ERFE-hepcidin-FPN axis by which systemic iron homeostasis is modified has seen
considerable advances. However, other mechanisms based on local iron supply for the
development of erythroid precursors in the BM may play a relevant role in this context.

In the BM, erythroblastic island macrophages (EIMs) are surrounded by erythroid
progenitors, adhere to erythroblasts, favor proliferation and differentiation and phagocy-
tose extruded nuclei, thus providing an environmental niche for RBC production [100].
Since EIMs are able to degrade heme and recycle iron [101], the possibility that EIMs could
directly provide iron to erythroblasts has been envisaged. Indeed, EIMs express high
levels of FPN [101], which is induced by SpiC [102], a transcription factor also essential for
EIM differentiation, EI formation and RBC production [103]. Moreover, the existence of
iron-recycling machinery in EIMs has been recently documented [104]. Such a mechanism,
in which EIMs function as iron-rich nurse cells and use FPN to export iron, thus providing a
prompt and direct supply of iron, may be particularly relevant when erythropoiesis is over-
active and TfR1-mediated internalization of transferrin, which has become iron saturated
in the gut and in the spleen, may not be able to provide enough iron to erythroblasts.

The situation might be even more complex; in fact, a recent study has shown that iron
availability in the BM is relevant for the development of other hematopoietic precursors, as
it controls hematopoietic stem cells (HSCs) self-renewal vs. differentiation decisions [105].
Under stress conditions, microbiota-produced butyrate stimulates erythrophagocytosis in
BM macrophages, which in turn provide iron to HSCs, thus favoring their differentiation at
the expense of self-renewal.

In conclusion, present and future advances in our knowledge of the interaction be-
tween iron metabolism and erythropoiesis are expected to translate into better therapies for
patients with disordered erythropoiesis.
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