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Abstract: The study of subcellular membrane structure and function facilitates investigations into
how biological processes are divided within the cell. However, work in this area has been hampered
by the limited techniques available to fractionate the different membranes. Free Flow Electrophoresis
(FFE) allows for the fractionation of membranes based on their different surface charges, a property
made up primarily of their varied lipid and protein compositions. In this study, high-resolution
plant membrane fractionation by FFE, combined with mass spectrometry-based proteomics, allowed
the simultaneous profiling of multiple cellular membranes from the leaf tissue of the plant Mesem-
bryanthemum crystallinum. Comparisons of the fractionated membranes’ protein profile to that of
known markers for specific cellular compartments sheds light on the functions of proteins, as well
as provides new evidence for multiple subcellular localization of several proteins, including those
involved in lipid metabolism.

Keywords: subcellular proteomics; membrane fractionation; membrane proteome; marker pro-
teins; subcellular localization; lipid metabolism; lipid biosynthesis; ATPase; mass spectrometry;
peptide library

1. Introduction

The plant membrane bilayer provides a barrier between cells and organelles and their
surroundings, providing protection from a constantly challenging environment. Cellular
membranes also allow compartmentalization of biochemical reactions and pathways into
defined units, conferring specific organelles with distinct functions within the cell [1,2].
Despite their importance for this, the contribution and complexity of the broad range of
lipids and proteins that make up the different membranes are far from fully understood,
and especially, the underlying mechanisms that lead to the diversity of lipid composition
remain to be explored [3,4]. A comprehensive analysis of the molecular composition of
subcellular membranes would help to provide a more detailed understanding of their
organization and function. While mass spectrometry-based proteomics has transformed the
ability to perform large-scale protein identification, the ability to profile cellular organelles
and endomembranes is still hampered by the limited techniques available to fractionate
the membranes. Moreover, when doing this, it is important to be able to associate pro-
tein composition with lipid profiles when trying to explain the complexity in membrane
processes.

In the past, plant researchers have tried to link the biological activity of membrane
fractions with their lipid composition using fractionated subcellular membranes. However,
data are generally restricted to studying a single organelle rather than providing a global
cellular overview. Approaches such as Localization of Organelle Proteins by Isotope
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Tagging (LOPIT) have shown promise to decipher protein localizations based on subcellular
fractionation by centrifugation and isotope tagging [5,6]. However, this method is unable
to associate protein features with lipid profiles of subcellular membranes. Therefore,
alternative approaches, which rely on distinct physicochemical properties of membranes
while maintaining the structural integrity of lipids and proteins, are required.

Free Flow Electrophoresis (FFE) allows for the continuous electrophoretic separa-
tion and fractionation of cells, organelles, membranes, and proteins from a wide variety
of organisms and cell types in a thin, non-denaturing liquid film based on net surface
charge [7]. The surface charge of subcellular membranes is the sum of mainly the protein
and lipids’ combined charges [8] (Figure 1). High resolution and extreme reproducibility
are the highlights of this technique [9–21]. FFE technique involves injecting a complex
mixture of membranes that have been initially collected by ultra-centrifugation of cell
lysates, into a chamber with a laminar flow buffer stream (Figure 1). These membranes
are then deflected by a perpendicular electric field, with the degree of deflection directly
related to the charge of the membrane. Fractions (up to 96) are then collected at the end of
the separation chamber (Figure 1).
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Figure 1. Schematic diagram of the working principle of Free Flow Electrophoresis (FFE) for plant subcellular membrane
fractionation. Subcellular membranes with different origins (organelle/subcellular compartment) possess different overall
surface charges mainly due to the chemical and compositional diversity of membrane lipids and proteins. In general,
membranes exhibit negative surface charges around a neutral pH. Subcellular membranes form vesicles during the
microsomal extraction procedure as described in “Materials and Methods”. Microsomal membranes are injected into the
chamber and subjected to a high-voltage electric field. Membranes separate according to their distinct surface charge.

In plants, FFE has been used to increase the purity of specific organelle and endomem-
brane fractions by first isolating/purifying the organelle via conventional methods and
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then sub-fractionating those samples. In this way, FFE fractionation has been successfully
achieved for thylakoid membranes, ER/Golgi membranes, peroxisomes, mitochondria,
vacuole, and plasma membranes [22–27], but until now, this method has not been used as
a method for global profiling across all cellular membranes in plants.

Combining the high-throughput, high-resolution FFE technology for fractionation of
cellular membranes with LC-MS/MS proteomic approaches allows for the comparison of
the abundance profiles of proteins throughout all separated fractions. These can then be
compared to the profile of known marker proteins of specific compartments to yield classes
of co-fractionated proteins from the same organelles, and can allow for the identification
and characterization of subcellular compartments. Further, fractionated samples with
known subcellular localization can be used for lipidomic studies. Additionally, with the
knowledge of the locations of lipid metabolism-related proteins, subcellular metabolic
maps of plant lipids may be achieved.

As a model plant for the study of salinity in plants, Mesembryanthemum crystallinum
employs both structural and metabolic adaptations including the presence of epidermal
bladder cells for salt accumulation and shifting from C3 photosynthesis to CAM to increase
water use efficiency [28]. Additionally, at the molecular level, salinity has been show to
induce changes to membrane lipids and proteins involved in transport, signaling and
compatible solute synthesis [29–31]. In this study the ability to fractionate subcellular mem-
branes of M. crystallinum and identify proteins and lipids will facilitate our understanding
of the importance of membrane regulation and remodeling in salinity tolerance.

2. Results
2.1. M. crystallinum Membrane Proteome

Free Flow Electrophoresis of microsomal membranes from leaf tissue of M. crystallinum
plants resulted in the high-resolution fractionation of membranes into 96 samples. Every
second fraction was then combined to give a total of 48 protein samples (i.e., sample 1 =
FFE fractions 1 and 2, sample 2 = FFE fraction 3 and 4, etc.). Fractions 15 to 70 (combined
samples 8 to 35) with positive protein values at O.D.280 (Figure 2B) were subsequently
analyzed by IDA for ion library generation and SWATH-MS for protein quantification. A
schematic representation of the approach is illustrated in Figure 2.

Spectra acquired by information-dependent acquisition (IDA) from all samples (28 sam-
ples × 3 biological replicates) were submitted to ProteinPilot 5.0.2 to generate the reference
spectral library, which included the fragmentation patterns and retention time of each
peptide that was required for targeted identification in SWATH-MS [32]. Peptides with
confidence scores higher than 95% were selected and summarized. The final ion library con-
tained 1917 distinct proteins at a critical false discovery rate of 1%. The identification and
quantification of proteins were performed using a SWATH-MS approach, which resulted
in the quantitative export of 1462 unique proteins across all the FFE samples.

In order to describe the composition of the M. crystallinum membrane proteome,
transmembrane domains were predicted using the transmembrane topology (HMMTOP
v2.0 and TMHMM v2.0) and beta-barrel membrane (MCMBB and TMBETADISC-RBF)
prediction programs [33–36]. The results are shown in Table S1. Proteins predicted to
possess a transmembrane domain by any of the four prediction programs (Figure 3) were
considered as membrane proteins. Over 62% (908 out of 1462) of the M. crystallinum
membrane proteome could be assigned to integral membrane proteins with at least one
transmembrane domain, while the others were considered as peripheral or membrane-
associated proteins.
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Figure 2. Schematic overview of sample fractionation by Free Flow Electrophoresis (FFE) and downstream analysis by
mass spectrometry. (A) Microsomal membranes from M. crystallinum leaf tissue were fractionated by FFE into 96 fractions
based on their different net surface charge; (B) The absorbance of FFE fractions was determined at 280 nm to identify the
range of fractions with positive protein values. Fractions 15 to 70 with positive protein values at O.D.280 were used for
subsequent protein identification; (C) Proteins were analyzed by SCIEX TripleTOF 6600 in IDA and SWATH-MS modes
for reference library generation, protein identification, and quantification; (D) The average protein abundance of three
biological replicates of each sample was used for the “digital western” FFE profile generation. Here we use the term digital
western to refer to the detection of proteins by MS/MS in specific FFE fractions, similar to a traditional Western where
proteins in the wells of a gel are detected by antibodies. Different colored columns indicate different subcellular membrane
origins based on marker protein profiles.
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2.2. Functional Annotation and Subcellular Localization

Functional annotation of the identified proteins was based on the best BLASTP hits
found in the National Center for Biotechnology Information (NCBI), UniprotKB/SwissProt
A. thaliana database (May 2020), with 10−5 as the e-value cut-off. The majority (1290, ~88%)
of the proteins were matched to homologs from A. thaliana (Table S2). The matched A.
thaliana genome accessions (AGIs) were then submitted to the Subcellular Localisation
Database For Arabidopsis Proteins 4 (SUBA4) [37] for subcellular localization information.
According to SUBA4, approximately 66% of the 1290 proteins were assigned to a high-
confidence marker (HCM) for subcellular compartments (Table S2), and the percentage of
proteins assigned to each compartment is displayed in the pie graph in Figure 4. Disregard-
ing the unassigned category, proteins classified to a chloroplast HCM comprised the largest
proportion of the M. crystallinum membrane proteome (22.3%), followed by cytosol (15.8%),
plasma membrane (10.4%), and mitochondria (6.7%) (Table S2). The secretory pathway
(from the ER to the TGN) together accounted for 4.3%, while the remaining categories were
less than 3%.
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(SUBAcon) predictions.

Although abundant experimental data from fluorescent protein tagging or mass spec-
trometry are available for the A. thaliana proteome, only approximately 30% of the proteome
is covered by high-confidence location data, whereas the remaining 70% has only been
computationally predicted [38]. Using a naive Bayes classifier, the SUBcellular Arabidopsis
consensus (SUBAcon) algorithm integrates 22 computational prediction algorithms, for ex-
perimental GFP and MS localization, protein–protein interactions, and co-expression data
to derive a consensus location of proteins [38]. The SUBAcon predictions of the submitted
proteome are listed in Table S2. Based on these predictions, 31.5% of the M. crystallinum
leaf proteome were categorized as chloroplast proteins, while 20.7 and 13.1% were from
cytosol and plasma membrane, respectively (Figure 4). Proteins assigned to other locations
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accounted for less than 10%, with 8.7, 8.4, and 5.3% classified to the secretory pathway,
mitochondria, and nuclear proteins, respectively. The remaining categories comprised less
than 5%, with vacuolar and peroxisome proteins representing 3.3 and 1.5%, respectively.
Notably, 5.7% of the identified proteome was predicted to be present in multiple subcellular
locations (Figure 4, Table S2).

2.3. FFE Profile of Representative Subcellular Membrane Markers

The averaged abundance of proteins from three biological replicates across all analyzed
FFE samples was then carried out to obtain “digital westerns” (Figure 2D), whereby peak
area for representative well-characterized marker proteins present in the samples was
aligned and visualized in Table 1, demonstrating the positioning of specific subcellular
membranes. These markers have been previously verified experimentally with high
confidence using cell biology approaches and are accepted to be representative of their
particular compartment [37].

Table 1. Digital western FFE profiles of selected membrane markers from different subcellular compartments a.

Uniprot Recommended
Name (Gene) b Location c Digital Western FFE Profiles d
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Table 1. Cont.

Uniprot Recommended
Name (Gene) b Location c Digital Western FFE Profiles d

galacturonosyltransferase 9
(GAUT9) GA
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population with a peak at sample 24. The FFE profiles of the tonoplast H+-ATPase subunits
exhibited isoform- and subunit-specific patterns. For example, VHA-B2, VHA-E3, and
VHA-F were present evenly in both populations, while the abundance of VHA-a3, VHA-c2,
and VHA-d2 were much higher in the anodic population (Table 2). Surprisingly, VHA-A
and VHA-D were mainly identified in the second population with a peak at sample 24
and were barely detected in samples 13 to 19. Similar to VHA-a3, VHA-c2, and VHA-d2,
tonoplast aquaporins and ion channels, including delta-TIP (TIP2-1) and gamma-TIP (TIP1-
1), two-pore calcium channel protein 1 (TPC1), chloride channel protein B (CLC-B), and
CLC-C were also present in both populations (Table 2), despite the peak of the second
population being much smaller compared to their anodic populations (Table 2).

Table 2. Digital western FFE profiles of tonoplast marker proteins a.

Uniprot Recommended Name (Gene) b Digital Western FFE Profiles c
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ER membrane markers, represented by cytochrome b5 isoform B (CYTB5-B) and very-
long-chain 3-oxoacyl-CoA reductase 1 (KCR1) (Table 1), were present in two populations
from samples 18 to 20, and 23 to 25 (Table 3). Markers of the Golgi apparatus overlapped
with ER markers, although the protein abundance was relatively greater in the second
population representing samples 23 and 24, as shown by the profiles for polygalactur-
onate 4-alpha-galacturonosyltransferase (GAUT1) and probable methyltransferase PMT8
(At1g04430) in Table 3. Notably, proteins that are known to frequently exchange between
the ER and Golgi were in very low abundance in the anodic population. As an example,
Coat Protein Complex II (COPII)-associated Sec23/Sec24, and COPI-associated coatomer
subunits, were found almost exclusively in samples 23 and 24 (Table 3). In addition, post-
Golgi trafficking markers, shown as AP-1 complex subunit gamma-2 and clathrin heavy
chain 1, were mostly concentrated in a single FFE sample, 24, suggesting a slightly different
profile of these proteins from those exchanged between ER and Golgi.

Table 3. Digital western FFE profiles of markers of cargo transport-involved subcellular compartments a.
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Name (Gene) b Location c Digital Western FFE Profiles d
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Proteins localized to chloroplast envelope membranes, such as inner/outer envelope
membrane protein translocon at the inner envelope membrane of chloroplasts 110 (TIC110)
and translocon at the outer envelope membrane of chloroplasts 34 (TOC34), were present
in a single population fractionating to the middle of the FFE chamber from samples 23
to 25 (Table 1). Nevertheless, proteins localized to thylakoid additionally presented in
high abundance in sample 20, as was observed for ATP synthase gamma chain 1 (ATPC1),



Int. J. Mol. Sci. 2021, 22, 5020 13 of 35

ATP synthase subunit delta (ATPD), and light reaction-related proteins, with only two
exceptions found for photosystem I (PSI) reaction center subunit II-2 (PSAD2) and subunit
psaK (PSAK) which presented almost exclusively in FFE samples 21 and 22 (Table 4).

Table 4. Digital western FFE profiles of markers localized to chloroplast envelope and thylakoid membranes a.
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Table 4. Cont.

Uniprot Recommended
Name (Gene) b Location c Digital Western FFE Profiles d
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Proteins with known localization to mitochondria were also found in sample 20
(Table 5), although their relative abundance in sample 20 was dramatically lower than that
of thylakoid markers (Table 4), as is shown for the mitochondrial outer membrane protein
porin 1 (VDAC1) and ATP synthase subunit beta-3 (mitochondrial inner membrane local-
ized) (Tables 1 and 5). It is also interesting to find that alternative NAD(P)H-ubiquinone
oxidoreductase C1 (NDC1), which was previously shown to have dual subcellular loca-
tions in both chloroplast and mitochondria [39], has a slightly different profile than either
chloroplast or mitochondrial markers in the FFE fractions, with a higher abundance than
mitochondrial markers in a population with a peak at sample 20, and also a wider distribu-
tion (samples 23–26) than that of the cathodic population of the chloroplast markers which
were present mostly in samples 23 and 24 (Table 5).

Table 5. Digital western FFE profiles of mitochondrial markers a.

Uniprot Recommended
Name (Gene) b Location c Digital Western FFE Profiles d
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The PM was the least negatively charged subcellular compartment, fractionating
closest to the cathode during FFE. The FFE profile of the PM was determined by the
presence of plasma membrane marker proteins in FFE samples 24 to 30 with a peak of
abundance at sample 25, for instance, P-type H+-ATPase including AHA2, AHA4, and
AHA5, as well as specific PM water channel proteins such as MIP-A, MIP-D, MIP-H, and
PIP2;8, with only the profile of PIP2;5 slightly moved towards the anode electrode with a
peak of abundance at sample 24 (Tables 1 and 6). PM-localized transporters, such as sucrose
transport protein SUC2 and polyol transporter 5 (PLT5), also showed a typical protein
distribution in line with other PM markers. Worth mentioning, as previously reported, is
PM nanodomain-localized proteins, fasciclin-like arabinogalactan proteins 2 and 6 (FLA2
and FLA6), and early nodulin-like protein 2 [40], distributed within a relatively narrower
population, were only identified in samples 24 to 26 (Table 6).

Table 6. Digital western FFE profiles of plasma membrane markers a.

Uniprot Recommended Name (Gene) b Digital Western FFE Profiles c
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Table 7 summarizes the distribution and corresponding abundance of several proteins
which show unexpected location profiles in the samples, which do not match the published
reports. These include sodium/hydrogen exchanger 7 (NHX7/SOS1) [41], sodium/calcium
exchanger (NCL) [42], ammonium transporter 1 member 1 (AMT1-1) [43], ABC transporter
G family member 40 (ABCG40) [44], ABC transporter C family member 4 (ABCC4) [45],
and equilibrative nucleotide transporter 1 (ENT1) [46]. According to previous experimental
evidence and SUBAcon, these proteins are suggested to be PM localized. However, in this
study, they all fractionated into anodic FFE samples 13-19, showing the greatest overlap
with tonoplast markers. Indeed, there are previous reports that have experimentally
provided evidence for the dual location of two of these, ABCC4 and ENT1, which were
both shown to localize to TP and PM [45–48].

Table 7. Unexpected FFE profiles of proteins known to localize to plasma membrane a.
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2.4. FFE Profiles of Lipid Metabolism-Related Proteins

With the help of “digital westerns” constructed using well-characterized membrane
marker proteins that revealed the separation and distribution of subcellular compartments
across the FFE fractions, a map of the distribution of lipid metabolism-related proteins
can be generated. Protein profiles of these proteins are shown in Table 8. The predicted
localization of the listed proteins indicates, as expected, that lipid metabolism occurs
mainly in Golgi, ER, PM, and chloroplast (Table 8), and these proteins can be assigned
to pathways including fatty acid synthesis and elongation, galactolipid and sulfolipid
synthesis, phospholipid synthesis and signaling, triacylglycerol synthesis, sterol synthesis,
and suberin synthesis.

A good overlap of the protein profiles of lipid metabolism-related proteins with marker
proteins from the expected subcellular compartments was observed from the results. For
example, lipid-related proteins suggested as chloroplast membrane localized, such as
esterase lipase thioesterase family protein, trigalactosyldiacyl-glycerol 2 and 4 (TGD2 and
TGD4), fatty acid desaturase 6 and 8 (FAD6 and FAD8), alpha beta-hydrolases superfamily
protein (DALL3), single hybrid motif superfamily protein (BCCP2), and long-chain acyl-
CoA synthetase 9 (LACS9), were present mainly in the single fraction sample 20 and in
the population fractionating to the samples 23 and 24, which match the protein profiles of
chloroplast markers present in Table 4. However, the protein abundance of these proteins in
the single chloroplast fraction at sample 20 was much lower than was observed for fractions
23 and 24. Moreover, phospholipid glycerol acyltransferase family protein (ATS1/GPAT),
AMP-dependent synthetase, and ligase family protein (AAE16) were completely absent
from that fraction. The protein distribution for acetyl CoA carboxylase carboxyltransferase
alpha subunit (CAC3), however, was different from the other chloroplast-localized proteins,
as it was also identified in FFE fraction samples 15 to 19.

Proteins identified as ER proteins, such as beta-ketoacyl reductase 1 (KCR1), cinnamate-
4-hydroxylase (CYP73A5), cytochrome b5 (CYTB5-B), phospholipid: diacylglycerol acyl-
transferase 1 (PDAT1), membrane-associated progesterone-binding protein 3 (MSBP2),
7-dehydrocholesterol reductase (DWF5), and very-long-chain enoyl-CoA reductase (ECR)
all presented primarily in two distinct populations (from samples 18 to 20, and 23 to 25),
matching what was observed for ER marker proteins (Table 8). Nevertheless, an excep-
tion was observed for synaptotagmin-1 (SYT1), which was previously classified as both
an ER- and PM-localized protein [49,50]. In this study, the profile of SYT1 matched that
of PM markers, being identified in samples 24 to 29 (Tables 1 and 6), similar to other
PM-localized lipid metabolism-related proteins (Table 8), including non-specific phos-
pholipase C4 (NPC4), PLC-like phosphodiesterases superfamily protein, phospholipase
D delta (PLDDELTA), non-specific lipid transfer protein GPI-anchored 2 (LTPG2), and
phosphatidylinositol-specific phospholipase C4 (PLC4). Additionally, phosphatidylinositol
3- and 4-kinase family protein (PI4KA1), AMP-dependent synthetase, ligase family protein
(LACS4), 3-ketoacyl-CoA synthase 6 (CUT1), ABC-2 type transporter ABCG15, and ABC-2
type transporter ABCG22 were also suggested as PM-localized lipid-related proteins by
SUBAcon. However, these latter proteins were also identified in samples 13 to 19 over-
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lapping with the tonoplast and the ER profiles, suggesting there may be uncharacterized
subcellular locations and biological functions of these proteins.

Table 8. Digital western FFE profiles of lipid metabolism-related proteins a.

Uniprot
Recommended
Name (Gene) b

Lipid
Metabolism
Pathway c

Location
d Digital Western FFE Profiles e
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3. Discussion

The ability to fractionate subcellular membranes with high resolution can provide
important information for understanding the subcellular location and biological func-
tion of a protein [52]. Combining high-resolution membrane fractionation by Free Flow
Electrophoresis (FFE) with the unbiased quantification method of SWATH-MS in this
study allowed the characterization of protein profiles for multiple membrane compart-
ments. Subcellular localization of numerous membrane proteins from M. crystallinum leaf
tissue was confirmed by their FFE profiles and shown to overlap with known marker
proteins. These results also enabled the identification of novel localizations for proteins
outside their characterized resident membrane, providing insight into poorly characterized
compartments.

3.1. V-ATPase VHA Subunit Localization

The vacuolar proton-pumping V-ATPase consists of 14 subunits divided between two
distinct domains; the membrane integral V0 domain and the membrane peripheral V1
domain. In this study, we identified 11 subunits (VHA-A, VHA-B, VHA-C, VHA-D, VHA-
E3, VHA-F, VHA-G1, VHA-H, VHA-a3, VHA-c2, and VHA-d2-). The majority of these had
similar FFE profiles, showing two distinct populations (Table 2). The more negative anodic
population showed close overlap with other tonoplast proteins, including pyrophosphate-
energized vacuolar membrane proton pump 1 (AVP1), two tonoplast intrinsic proteins,
aquaporins TIP1-1, TIP2-1, and the TPC1 calcium channel. However, there were several
VHA subunits that only presented in one of these two populations.
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Evidence has shown that V-ATPase subunits are localized not only to the tonoplast but
also to the TGN in plants [53]. Previous proteomics studies have identified VHA-A subunit
isoforms on Golgi in A. thaliana cell culture proteomic studies [54]. Moreover, pollen grains
from an A. thaliana vha-A mutant exhibited severe alterations in the morphology of Golgi
stacks and Golgi-derived vesicles, while vacuole morphology remained unaffected [55]. In
a vha-a2/vha-a3 double mutant, which showed increased sodium sensitivity, reduction in
V-ATPase activity in the trans-Golgi network/early endosome (TGN/EE) was observed,
suggesting a role for the V-ATPase in salt tolerance in these membranes [53]. In this study,
VHA-A and VHA-D appeared to be absent from the anodic population (samples 13–19),
presenting almost exclusively in sample 24 (Table 2). The single population of these two V-
ATPase subunit isoforms had almost identical FFE profiles to that of Golgi-specific markers,
such as GAUT1, GAUT9, and PMT8 (Tables 1–3), supporting their Golgi localization and
suggesting that these subunits may have a specific function in this membrane.

In contrast, the VHA-a3 subunit presented mostly in the anodic population from
samples 13 to 19, suggesting it was solely tonoplast localized (Table 2), and indicated a
different localization to that observed for the isoform in A. thaliana [56]. Additionally,
the relatively higher protein abundance (by peak area) of the cathodic population of
subunits VHA-B2, VHA-E3, VHA-F, and VHA-H suggested these may also play a role
in the Golgi/TGN V-ATPase holoenzyme organization in M. crystallinum [57]. Previous
MS/MS-based experiments have also shown their alternative subcellular locations on
Golgi-related compartments [54,58].

3.2. Proteins with Unexpected FFE Profiles

The FFE profiles of several PM-classified transporter proteins were unexpected, with
proteins exhibiting a fractionation profile overlapping with vacuolar markers, including
sodium/hydrogen exchanger 7 (SOS1/NHX7), sodium/calcium exchanger (NCL), am-
monium transporter 1-1 (AMT1-1), sulfite exporter TauE/SafE family protein 4 (TauE),
ABC transporters (ABCG40 and ABCC4), and equilibrative nucleotide transporter 1 (ENT1)
(Table 7). Among these proteins, SOS1, a well-studied member of the Na+/H+ exchanger
(NHX7) family, shown to have an important role in plant salt tolerance, showed a profile
similar to vesicle trafficking-related proteins, such as PRA1F2, RABB1C, RABG3A, and
RABG3F (Table S3). While this protein has been characterized as functioning at the PM in
plants [41,59], a study characterizing a sos1 mutant in A. thaliana demonstrated multiple
consequences in the cell due to the lack of this transporter, distinct from a role solely in
plasma membrane sodium transport; these included the inhibition of vesicle trafficking and
endocytosis in the mutant as well as a disintegrated tonoplast and a decrease in vacuolar
pH [60]. Further evidence for a non-PM role was shown in another study which demon-
strated that the function of the vacuolar-type H+-PPase in A. thaliana under salt stress
required the regulation of SOS1, as the pyrophosphate-dependent proton pump activity of
the vacuolar-type H+-PPase was significantly lower in the AVP1/sos1 line compared with
AVP1 overexpression line, suggesting SOS1 is epistatic to AVP1 [61]. However, evidence
for direct interaction between these two proteins was not presented.

In addition, while NCL and AMT1-1 are accepted as PM-localized proteins involved
in the transport of sodium/calcium and ammonium, respectively [42,43,62], evidence for
non-PM localization has been presented, including vacuolar localization of these proteins
as shown by fluorescent-tagging and MS/MS-based approaches [48,63,64], although the
biological function for their role on the tonoplast has not been determined. Similar to what
was shown for SOS1 and mentioned above, FFE fractionation may have also captured these
proteins in an endomembrane trafficking compartment as they share a similar profile to a
number of small GTPases (Table S3).

Our study also captured a number of mitochondrial proteins that appeared to be
co-localized with plasma membrane fractions, such as cytochrome b-c1 complex subunit
Rieske-1 (UCR1-1), mitochondrial-processing peptidase subunit beta (MPPbeta), and mito-
chondrial carnitine/acylcarnitine carrier-like protein (BOU) (Tables 5 and 6). Mitochondrial
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membranes have been shown to be tethered to the PM in yeast [65] and have been identified
in plasma membrane proteomics studies in plants, including a recent study using highly
purified plasma membrane fractionated in tandem by two-phase partitioning, followed by
FFE [26]. This suggests that rather than contaminants, they may represent mitochondrial
proteins associated with the plasma membrane through specific contact points. As FFE is
a non-denaturing technique, it is highly likely that membrane interactions remain intact
during the fractionation.

3.3. A Snapshot of the Components of Electrochemical Reactions

The FFE fractionation of photosynthetic membranes was also observed in this study.
Photosynthesis occurs on the thylakoid membrane inside the lumen of the chloroplast,
enclosed by a double-membrane envelope composed of the outer envelope membrane
(OEM) and the inner envelope membrane (IEM) [66]. The separation of OEM and IEM
was not observed in this study, as the OEM marker TOC34 and IEM markers, TIC55 and
TIC110, were all mostly present in samples 23 and 24.

However, while the chloroplast inner and outer membranes fractionated together
in samples 23 and 24, a particularly large number of thylakoid membrane proteins were
identified in sample 20 (Table 4). The thylakoid membrane is a lipoprotein system that has
an inner and outer surface with the inner face being more negatively charged [67], and
might explain the two distinct populations of thylakoid membrane markers in this study
(Table 4). Barber [67] has suggested that the thylakoid membrane is not homogeneous and
is likely to be derived mainly from protein rather than lipid components. Interestingly, the
protein profile of the primary electron acceptor of photosystem I, ferredoxin-1 [68] was
observed to be highly negatively charged in this study (Table 9).
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Ferredoxin-1, which based on sequence analysis does not possess any transmembrane
domains (tr_41050, Table S1), is likely associated with the membrane via protein/protein
interactions with the PS1 trimer. In support of this, a recent study using affinity chro-
matography and nuclear magnetic resonance demonstrated that the trimeric PSI complex
binds three ferredoxins, but in a non-equivalent manner, with one ferredoxin showing
stronger binding to PSI than the other two [69]. This might explain our results with the
negatively charged population of ferredoxins in the chamber (samples 8 to 14) representing
unbound protein that has been released from its protein interaction with PS1 due to the
FFE conditions and is more strongly attracted to the anodic electrode during FFE, while the
small population found in samples 23 and 24 represents protein still firmly bound to the
PSI on the thylakoid membrane, as shown by the small population of this protein which
overlapped with thylakoid profiles (Table 9). Interestingly, this is the only protein that
shows this profile, and no other proteins were detected in samples 8 to 14 in this study.

3.4. Subcellular Mapping of Lipid Metabolism

Characterization of the membrane distribution of lipid metabolism-related proteins
may give a better understanding of lipid signaling, as well as the compositional variance in
lipids within subcellular membranes, and how these change under certain developmental
and environmental conditions. While previous efforts have demonstrated lipid metabolism
pathways based on the types of lipids produced and their subcellular locations [51], the
exact localization of some of the enzymes in the biosynthetic pathways remained under
question, or in some cases were identified in different subcellular compartments by different
studies [70]. The comparative analysis of the protein profiles of lipid metabolism-related
proteins with well-known markers in this study would help provide a means for more
precise localization of these proteins.

Lipid biosynthesis enzymes are often promiscuous, utilizing a broad range of more or
less similar substrates, and the production of these substrates is usually strictly spatially
compartmentalized within cells [3], making it easier for us to observe the biological im-
portance of each pathway. To give an example, the plastid is the main site for fatty acid
synthesis and glycerolipid production in plants and algae [70–72]. Our results agree with
this, as lipid biosynthesis proteins suggested as plastid localized by SUBAcon, present
mainly in sample 20 and in the population fractionating in samples 23 to 25 (Table 8), match-
ing the profiles of chloroplast markers shown in Tables 1 and 4. However, unlike what was
observed for thylakoid lumenal protein, chlorophyll a-b binding proteins, and photosys-
tem I/II reaction center subunits (Table 4), lipid metabolism-related proteins (chloroplast
localized) had much lower abundance in sample 20 (Table 8). This is likely due to the fact
that biosynthesis of plastid glycerolipids takes place in the envelope membranes, which is
the site of fatty acid assembly [71,73,74], whereas the build-up of thylakoid membranes
requires the transport of lipids from envelope membranes during plastid biogenesis [75,76].
Notably, different from the other chloroplast-localized proteins, acetyl CoA carboxylase
carboxyltransferase alpha subunit was localized to samples 15-19 (Table 8). Although
this protein is a high-confidence marker for chloroplasts, it was previously observed in
Golgi [58], vacuole [77], and plasma membrane [78] by MS/MS approaches, indicating this
protein may have uncharacterized subcellular locations and biological functions.

In addition to the plastid (prokaryotic pathway), the ER is the other main site for fatty
acid elongation, acyl editing, and lipid assembly through the eukaryotic pathway. It was
suggested that in A. thaliana, around 2/3 of the fatty acids are thought to be exported to the
eukaryotic pathway, although half of which will be returned for plastid lipid assembly [79].
Our data show that proteins suggested as being involved in the fatty acid synthesis and
elongation distributed to the same FFE fractions as the ER markers (Tables 3 and 8),
fractionating in samples 18 to 20, and from 23 to 25.

The ER-type fractionation profiles were also seen for proteins that participate in
other ER-localized lipid metabolism pathways, such as triacylglycerol biosynthesis (phos-
pholipid: diacylglycerol acyltransferase) and steroid metabolism (membrane-associated
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progesterone-binding protein 3 and 7-dehydrocholesterol reductase). Notably, the pro-
tein abundance in samples 25 to 28 for phospholipid: diacylglycerol acyltransferase,
membrane-associated progesterone-binding protein 3,7-dehydrocholesterol reductase, and
very-long-chain enoyl-CoA reductase family protein was relatively high compared to the
other ER-localized proteins. Interestingly, these proteins were also identified as abundant
plasma membrane-localized proteins in previous studies using MS/MS proteomic ap-
proaches [26,78,80,81], indicating their subcellular location may need to be redefined and
re-validated. By contrast, concrete evidence by fluorescent protein methods has shown the
dual localization at both ER and PM of the lipid-binding protein synaptotagmin-1 [49,50],
whereas its protein profile is more like that of PM markers in this study (Tables 6 and 8).

Lipid metabolism-related proteins, including non-specific phospholipase C4, PLC-
like phosphodiesterases superfamily protein, phospholipase D delta, non-specific lipid
transfer protein GPI-anchored 2, and phosphatidylinositol-specific phospholipase C4, were
suggested as PM-localized proteins by SUBAcon and in this study presented in samples 24
to 29 with a peak at 25, which matched the protein profiles of PM markers (Tables 6 and 8).
Nevertheless, several proteins, such as phosphatidylinositol 3- and 4-kinase family protein,
AMP-dependent synthetase and ligase family protein, lipid phosphate phosphatase 2,
3-ketoacyl-CoA synthase 6, and ABC-2 type transporter family proteins ABCG15 and
ABCG22 were present in samples 13 to 19. Notably, even though 3-ketoacyl-CoA synthase
6 was suggested as PM localized by SUBAcon, it has been hypothesized that this protein is
likely involved in the transport of lipids (wax) from the ER to the PM [82], while further
verification of its ER localisation has been provided by fluorescent microscopy [83]. In
agreement with this, our data also showed the ER marker-like profile of this protein,
demonstrating the sensitivity of the method used in this study to characterize protein
subcellular location. Furthermore, evidence of non-PM locations was also available for
other proteins (suggested as PM localized by SUBAcon). For example, phosphatidylinositol
4-kinase was observed in the cytosol by fluorescent protein assay [84] and AMP-dependent
synthetase and ligase family protein was detected in vacuole and trans-Golgi network by
MS/MS methods [58], suggesting this approach can also provide valuable information on
proteins located in multiple cellular compartments.

4. Materials and Methods
4.1. M. crystallinum Plant Material

Mesembryanthemum crystallinum L. seeds were sown on commercial soil mix sup-
plemented with dolomite, slow-release fertilizer (Scotts Osmocote®, Bella Vista, NSW,
Australia), and micronutrients (Micromax®, Unanderra, NSW, Australia) in a seedling
propagation tray. Three-week-old seedlings of uniform size were transplanted to pots
containing the same soil mixture, with two plants per 15 cm diameter pot. Plants were
watered daily and supplemented with one-half strength Hoagland’s solution weekly. Once
the plants had reached eight weeks old, the second pair of mature leaves were collected for
downstream experimental analysis. Plants were grown in a glasshouse with evaporative
cooling to maintain the temperature between 15 and 32 ◦C and under natural irradiation
and photoperiod (photon flux density maximum of 1300 mmol m−2 s−1).

4.2. Microsomal Membrane Extraction

Leaf material (60 g) from M. crystallinum was harvested, cut into small pieces, and
immediately placed into 300 mL of ice-cold homogenization medium consisting of 400 mM
mannitol, 10% (w/v) glycerol, 5% (w/v) polyvinylpyrrolidine-10, 0.5% (w/v) bovine
serum albumin, 1 mM phenylmethylsulphonyl fluoride, 2 mM dithiothreitol, 30 mM
trisaminomethane, 5 mM MgSO4, 5 mM EGTA, 0.5 mM butylated hydroxytoluene, 0.25 mM
dibucaine, 1 mM benzamidine, and 26 mM K+-metabisulfite, adjusted to pH 8.0 with H2SO4.
Once homogenized in a commercial blender, leaf tissue was filtered through cheesecloth
and concentrated by centrifugation in a Beckman L8-M ultracentrifuge at 100,000× g for
50 min at 4 ◦C. The supernatant was removed, and microsomal pellets were resuspended
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using a Teflon pestle in suspension buffer containing 400 mM mannitol, 10% (w/v) glycerol,
6 mM Tris/Mes (pH 8.0), and 2 mM dithiothreitol, then immediately frozen in liquid
nitrogen for storage at −80 ◦C.

4.3. Free Flow Electrophoresis (FFE)

Microsomal membranes (3 biological replicates) from leaf tissue of M. crystallinum
were fractionated using a Free Flow Electrophoresis System (FFE Service GmbH). Samples
were diluted 2:1 (v:v) in separation medium containing 250 mM sucrose, 10 mM acetic acid,
10 mM triethanolamine, and 2 mM KCl, and centrifuged at 14,000× g for 20 min at 4 ◦C
prior to injection into the FFE chamber. Diluted samples (3 mg/mL protein) were injected
continuously through a peristaltic pump at a rate of 1.2 mL/h via the anodic sample
inlet while media inlet composition was as follows: inlets 1 and 9, stabilization medium
comprising 180 mM sucrose, 40 mM acetic acid, 40 mM triethylamine, and 8 mM KCl;
inlets 2 to 6, separation medium comprising 250 mM sucrose, 10 mM acetic acid, 10 mM
triethylamine, and 2 mM KCl: cathodic and anodic circuit electrolyte solutions consisted of
100 mM triethylamine, 100 mM acetic acid, and 10 mM KCl adjusted to pH 7.4 with NaOH.
In order to avoid the loss of chloride by anodic oxidation, formaldehyde (0.4%) was added
to the anodic solution. The counter flow medium was the same as the separation medium
for inlets C1, C2, and C3. FFE was conducted in a horizontal mode at a constant voltage
of 750 V (~135 mA) with a media and counterflow rate of 250 mL/h. The temperature of
the chamber was maintained at 5 ◦C throughout the whole FFE process by the continual
flow of coolant from a circulating water bath. Each injected sample was fractionated into
96 fractions, which were then continually collected into 15 mL polypropylene tubes placed
on ice. Fractionation by FFE was monitored by collecting microtiter plates (200 mL/well) at
the beginning and end of each run and protein in each well measured by taking the O.D.280
reading using a microplate scanning spectrophotometer (Victor X4 2030 Multilabel Reader,
PerkinElmer, Turku, Finland). Every second fraction was then combined to give a total of
48 protein samples (i.e., fractions 1 and 2, 3 and 4, 5 and 6, etc.). Samples from numbers 8
to 35, which gave positive protein values at O.D.280, were used in subsequent applications.

4.4. TCA Precipitation and Trypsin Digestion of Membrane Proteins

Two hundred microliters of 10X TE, 0.3% (w/v) sodium deoxycholate, and 72% (w/v)
trichloroacetic acid were added to 1 mL of each sample in a centrifuge tube in sequence and
vortexed between every step. Samples were incubated on ice for 1 h, and the supernatant
was discarded by aspiration after centrifugation in a Sigma 4K15 laboratory centrifuge at
14,000× g for 20 min at 4 ◦C. Pellets were resuspended with 90% methanol then incubated
overnight at −20 ◦C. Following the repeated steps of centrifugation and aspiration, protein
pellets were dried in a fume cabinet on ice.

Samples were made up to 1 mg/mL concentrations using 2 M urea in 50 mM ammo-
nium bicarbonate (pH 8.0). One hundred microliters of each sample were digested with
20 µg trypsin and incubated in an ultrasonic bath for 10 min. Tryptic digestion was carried
out overnight at 37 ◦C followed by 4 min in a microwave on the lowest power setting.
Samples were dried down using a Heto vacuum centrifuge at 45 ◦C for 2 h or until dry
and dissolved in 100 µL 1% trifluoroacetic acid in milliQ water, then 50 µL samples were
aliquoted into autosampler vials for injecting into the nanoHPLC/MS MS/MS system.

4.5. Information-Dependent Acquisition (IDA)

The tryptic peptide samples were analyzed using Ekspert nano LC400 uHPLC (SCIEX,
Concord, ON, Canada) coupled with a TripleTOF® 6600 quadrupole time-of-flight (QTOF)
mass analyzer (SCIEX, Canada) equipped with a PicoView nanoflow (New Objective,
Woburn, MA, USA) ion source. A trap column (5 mm× 300 µm, C18 3 µm, SGE, Ringwood,
VIC, Australia) and an analytical column (75 µm× 150 mm ChromXP C18 CL 3 µm, SCIEX,
Canada) were used. A linear gradient consisting of 0.1% formic acid in water (Solvent A)
and 0.1% formic acid in acetonitrile (Solvent B) was employed with Solvent B from 2 to 40%
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over 60 min, 40 to 90% for 5 min, 90% for 5 min, and equilibration at 2% between samples.
The mobile phase flow rate was 400 nL/min, and the column temperature was set at 45 ◦C.
The peptide samples (5 µL each) were loaded onto the trap column (10 µL/min, 5 min),
and eluted onto the analytical column at 400 nL/min. The ionization parameters were as
follows: interface heater 150 ◦C, ionspray voltage 2600 V, declustering potential 80 V, and
both nebulizer gas 1 (GS1) and curtain gas flow values set at 30. The protein identification
for peptide library production was achieved using the information-dependent acquisition
(IDA) mode of the QTOF. During the analysis, a full scan TOF (50 ms, 350–1800 m/z) was
first acquired, and then the 30 most intense ions (with minimum 200 counts and a charge
state of +2 to +5) of the TOF scan were selected to generate MS/MS spectra (100 ms each,
with a rolling collision energy, product ion scan 100–1500 m/z) using the QTOF. Analyst
TF 1.7 software (SCIEX, Canada) was used for data acquisition and analysis.

4.6. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS)

Peptide and protein quantification data were acquired under the same HPLC and mass
spectrometry experimental conditions as described for IDA, with the following exceptions.
Data were acquired using a SWATH, product ion ms/ms all approach, which continuously
acquires all fragment ion spectra (MS2) in an unbiased fashion for every scan cycle for the
complete gradient The SWATH experiment was set to acquire 100 product ion spectra from
m/z 350 to 1500 per scan cycle with a product ion window set to 6 Da and collision energy
from 16 to 60 V with an energy spread of 5 V. The TOF-MS scan acquisition time was set to
50 ms and each product ion scan to 25 ms. The data were acquired and processed using
Analyst TF 1.7 software (SCIEX, Canada).

4.7. Ion Library Generation

For ion library generation, all mass spectrometry files were searched in unison in Pro-
teinPilot™ software (Version 5.0.2, SCIEX) [85,86] using the paragon algorithm. Samples
were uploaded as unlabeled samples using the following parameters: protein identification,
digestion with trypsin, and no special factors (for sample preparation). The search was per-
formed by searching a M. crystallinum L. genomic database of all M. crystallinum ORFs [87].
Peptides with confidence higher than 95% were selected, and the distinct proteins in the
final ion library were filtered at a critical false discovery rate of 1%.

4.8. Peptide and Protein Quantification

Spectral alignment and targeted data extraction of SWATH-MS data were conducted
in the SWATH Processing Micro App in PeakView (Version 1.2, SCIEX) using the spectral
library generated above. All raw files were loaded using an extraction window of 15 min
with the following parameters: 6 peptides, 5 transitions and peptide confidence of >95%,
excluded shared peptides, and extracted ion chromatogram (XIC) width set at 75 ppm. The
peak area of proteins from all samples was normalized to protein concentration measured
at O.D.280.

4.9. Trans Membrane Domain, Functional Annotation and Subcellular Localisation

Transmembrane domains of identified proteins were predicted using the transmem-
brane topology (HMMTOP v2.0 and TMHMM v2.0) and beta-barrel membrane (MCMBB
and TMBETADISC-RBF) prediction programs to describe the composition of the M. crys-
tallinum membrane proteome [33–36]. Functional annotation of the identified M. crys-
tallinum proteome was based on the best BLASTP hits found in the National Center for
Biotechnology Information (NCBI), UniprotKB/SwissProt Arabidopsis thaliana database
(May 2020), with 10−5 as the e-value cut-off. Arabidopsis thaliana genome accessions (AGIs)
of the matched proteins were then submitted to Subcellular Localisation Database For
Arabidopsis Proteins 4 (SUBA4) [37] for subcellular location annotation.
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5. Conclusions and Perspectives

The future of plant biology studies is the progression from the mere identification
of biomolecules in a given organelle to the functional characterization of biomolecular
properties in complex cellular environments, that is, associating the results of multiple
“omics” studies to help explain the physiological mechanism in plants under different
conditions. Relying on the distinct surface charges instead of buoyant densities, this
study highlights the advantages of FFE separation technology to provide a means to
simultaneously isolate multiple subcellular membranes at high resolution without the
need for initial organelle purification, to give insight into protein function and provide
valuable information on proteins located in multiple cellular compartments. Due to the
non-denaturing feature of the FFE technique, fractionated microsomal membrane samples
assigned to known subcellular compartments can also be used for lipidomic studies in the
future, and with the knowledge of the abundance and locations of lipid metabolism-related
proteins characterized in this study, a sophisticated model for plant membrane metabolism
under various developmental and environmental conditions may be achieved.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22095020/s1, Table S1: Transmembrane predictions of identified proteins by four different
programs, Table S2: Functional annotation and subcellular localization of identified proteins, Table S3:
Digital western FFE profiles of Ras-related proteins.
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58. Heard, W.; Sklenář, J.; Tomé, D.F.A.; Robatzek, S.; Jones, A.M.E. Identification of regulatory and cargo proteins of endosomal and
secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol. Cell Proteom. 2015, 14, 1796–1813. [CrossRef] [PubMed]

59. Shi, H.; Quintero, F.J.; Pardo, J.M.; Zhu, J.-K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+

transport in plants. Plant Cell 2002, 14, 465. [CrossRef]
60. Oh, D.-H.; Lee, S.Y.; Bressan, R.A.; Yun, D.-J.; Bohnert, H.J. Intracellular consequences of SOS1 deficiency during salt stress. J. Exp.

Bot. 2010, 61, 1205–1213. [CrossRef]
61. Undurraga, S.F.; Santos, M.P.; Paez-Valencia, J.; Yang, H.; Hepler, P.K.; Facanha, A.R.; Hirschi, K.D.; Gaxiola, R.A. Arabidopsis

sodium dependent and independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent. Plant Sci. 2012, 183,
96–105. [CrossRef]

http://doi.org/10.1016/j.compbiolchem.2008.03.002
http://doi.org/10.1093/nar/gkw1041
http://www.ncbi.nlm.nih.gov/pubmed/27899614
http://doi.org/10.1093/bioinformatics/btu550
http://www.ncbi.nlm.nih.gov/pubmed/25150248
http://doi.org/10.1016/j.febslet.2008.07.061
http://www.ncbi.nlm.nih.gov/pubmed/18703057
http://doi.org/10.1093/jxb/erv054
http://doi.org/10.1104/pp.102.010421
http://doi.org/10.1074/jbc.M112.351643
http://doi.org/10.1111/j.1365-313X.2006.02887.x
http://doi.org/10.1073/pnas.0909222107
http://doi.org/10.1111/j.1365-313X.2004.02125.x
http://doi.org/10.1016/S0168-9452(00)00261-2
http://doi.org/10.1093/jxb/err183
http://www.ncbi.nlm.nih.gov/pubmed/21642237
http://doi.org/10.1111/pce.12620
http://doi.org/10.1104/pp.15.00260
http://doi.org/10.1074/jbc.M109.084046
http://www.ncbi.nlm.nih.gov/pubmed/20498364
http://doi.org/10.1199/tab.0161
http://www.ncbi.nlm.nih.gov/pubmed/23505340
http://doi.org/10.1104/pp.105.065532
http://www.ncbi.nlm.nih.gov/pubmed/16219920
http://doi.org/10.1073/pnas.0913035107
http://www.ncbi.nlm.nih.gov/pubmed/20133698
http://doi.org/10.1104/pp.111.193151
http://doi.org/10.1111/j.1365-313X.2004.02282.x
http://doi.org/10.1105/tpc.105.037978
http://doi.org/10.1111/j.1365-313X.2004.02283.x
http://doi.org/10.1074/mcp.M115.050286
http://www.ncbi.nlm.nih.gov/pubmed/25900983
http://doi.org/10.1105/tpc.010371
http://doi.org/10.1093/jxb/erp391
http://doi.org/10.1016/j.plantsci.2011.11.011


Int. J. Mol. Sci. 2021, 22, 5020 35 of 35

62. Nühse, T.S.; Stensballe, A.; Jensen, O.N.; Peck, S.C. Phosphoproteomics of the Arabidopsis plasma membrane and a new
phosphorylation site database. Plant Cell 2004, 16, 2394. [CrossRef] [PubMed]

63. Jaquinod, M.; Villiers, F.; Kieffer-Jaquinod, S.; Hugouvieux, V.; Bruley, C.; Garin, J.; Bourguignon, J. A Proteomics dissection of
Arabidopsis thaliana vacuoles isolated from cell culture. Mol. Cell Proteom. 2007, 6, 394. [CrossRef]

64. Whiteman, S.A.; Serazetdinova, L.; Jones, A.M.; Sanders, D.; Rathjen, J.; Peck, S.C.; Maathuis, F.J. Identification of novel proteins
and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics 2008, 8, 3536–3547.
[CrossRef]

65. Ping, H.A.; Kraft, L.M.; Chen, W.; Nilles, A.E.; Lackner, L.L. Num1 anchors mitochondria to the plasma membrane via two
domains with different lipid binding specificities. J. Cell Biol. 2016, 213, 513–524. [CrossRef] [PubMed]

66. Staehelin, L.A. Chloroplast structure and supramolecular organization of photosynthetic membranes. In Photosynthesis III: Photo-
synthetic Membranes and Light Harvesting Systems; Staehelin, L.A., Arntzen, C.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1986.

67. Barber, J. Membrane surface charges and potentials in relation to photosynthesis. Biochim. Biophys. Acta BBA Rev. Bioenergy 1980,
594, 253–308. [CrossRef]

68. Hanke, G.; Mulo, P. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 2013, 36, 1071–1084.
[CrossRef]

69. Kubota-Kawai, H.; Mutoh, R.; Shinmura, K.; Setif, P.; Nowaczyk, M.M.; Rogner, M.; Ikegami, T.; Tanaka, H.; Kurisu, G. X-ray
structure of an asymmetrical trimeric ferredoxin-photosystem I complex. Nat. Plants 2018, 4, 218–224. [CrossRef] [PubMed]

70. Joyard, J.; Ferro, M.; Masselon, C.; Seigneurin-Berny, D.; Salvi, D.; Garin, J.; Rolland, N. Chloroplast proteomics highlights the
subcellular compartmentation of lipid metabolism. Prog. Lipid Res. 2010, 49, 128–158. [CrossRef] [PubMed]

71. Kobayashi, K.; Kondo, M.; Fukuda, H.; Nishimura, M.; Ohta, H. Galactolipid synthesis in chloroplast inner envelope is essential
for proper thylakoid biogenesis, photosynthesis, and embryogenesis. Proc. Natl. Acad. Sci. USA 2007, 104, 17216–17221.
[CrossRef] [PubMed]

72. Li-Beisson, Y.; Beisson, F.; Riekhof, W. Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J. 2015, 82, 504–522. [CrossRef]
73. Kobayashi, K. Role of membrane glycerolipids in photosynthesis, thylakoid biogenesis and chloroplast development. J. Plant Res.

2016, 129, 565–580. [CrossRef]
74. Hölzl, G.; Dörmann, P. Chloroplast lipids and their biosynthesis. Annu. Rev. Plant Biol. 2019, 70, 51–81. [CrossRef]
75. Andersson, M.X.; Dörmann, P. Chloroplast Membrane Lipid Biosynthesis and Transport. In The Chloroplast Plant Cell Monographs;

Sandelius, A.S., Aronsson, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 13.
76. Andersson, M.X.; Kjellberg, J.M.; Sandelius, A.S. Chloroplast biogenesis. Regulation of lipid transport to the thylakoid in

chloroplasts isolated from expanding and fully expanded leaves of pea. Plant Physiol. 2001, 127, 184–193. [CrossRef]
77. Yoshida, K.; Ohnishi, M.; Fukao, Y.; Okazaki, Y.; Fujiwara, M.; Song, C.; Nakanishi, Y.; Saito, K.; Shimmen, T.; Suzaki, T.; et al.

Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: Local distribution of vacuolar
membrane proteins. Plant Cell Physiol. 2013, 54, 1571–1584. [CrossRef] [PubMed]

78. Mitra, S.K.; Walters, B.T.; Clouse, S.D.; Goshe, M.B. An efficient organic solvent based extraction method for the proteomic
analysis of Arabidopsis plasma membranes. J. Proteome Res. 2009, 8, 2752–2767. [CrossRef] [PubMed]

79. Browse, J.; Warwick, N.; Somerville, C.R.; Slack, C.R. Fluxes through the prokaryotic and eukaryotic pathways of lipid synthesis
in the ‘16:3′ plant Arabidopsis thaliana. Biochem. J. 1986, 235, 25–31. [CrossRef]

80. Zargar, S.M.; Kurata, R.; Inaba, S.; Oikawa, A.; Fukui, R.; Ogata, Y.; Agrawal, G.K.; Rakwal, R.; Fukao, Y. Quantitative proteomics
of Arabidopsis shoot microsomal proteins reveals a cross-talk between excess zinc and iron deficiency. Proteomics 2015, 15,
1196–1201. [CrossRef] [PubMed]

81. Benschop, J.J.; Mohammed, S.; O’Flaherty, M.; Heck, A.J.; Slijper, M.; Menke, F.L. Quantitative phosphoproteomics of early elicitor
signaling in Arabidopsis. Mol. Cell Proteom. 2007, 6, 1198–1214. [CrossRef]

82. Kunst, L.; Samuels, A.L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 2003, 42, 51–80. [CrossRef]
83. Joubès, J.; Raffaele, S.; Bourdenx, B.; Garcia, C.; Laroche-Traineau, J.; Moreau, P.; Domergue, F.; Lessire, R. The VLCFA elongase

gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling. Plant Mol. Biol. 2008, 67,
547–566. [CrossRef]

84. Okazaki, K.; Miyagishima, S.Y.; Wada, H. Phosphatidylinositol 4-phosphate negatively regulates chloroplast division in Arabidop-
sis. Plant Cell 2015, 27, 663–674. [CrossRef] [PubMed]

85. Tang, W.H.; Shilov, I.V.; Seymour, S.L. Nonlinear fitting method for determining local false discovery rates from decoy database
searches. J. Proteome Res. 2008, 7, 3661–3667. [CrossRef] [PubMed]

86. Shilov, I.V.; Seymour, S.L.; Patel, A.A.; Loboda, A.; Tang, W.H.; Keating, S.P.; Hunter, C.L.; Nuwaysir, L.M.; Schaeffer, D.A. The
Paragon Algorithm, a next generation search engine that uses sequence temperature balues and feature probabilities to identify
peptides from tandem mass spectra. Mol. Cell Proteomics 2007, 6, 1638–1655. [CrossRef] [PubMed]

87. Yim, W.C.; Cushman, J.C. Caryophyllales genomes provide insights into the evolution of Crassulacean acid metabolism (CAM)
and halophytism. In Proceedings of the 26th Plant and Animal Genome Conference, San Diego, CA, USA, 12–17 January 2018.

http://doi.org/10.1105/tpc.104.023150
http://www.ncbi.nlm.nih.gov/pubmed/15308754
http://doi.org/10.1074/mcp.M600250-MCP200
http://doi.org/10.1002/pmic.200701104
http://doi.org/10.1083/jcb.201511021
http://www.ncbi.nlm.nih.gov/pubmed/27241910
http://doi.org/10.1016/0304-4173(80)90003-8
http://doi.org/10.1111/pce.12046
http://doi.org/10.1038/s41477-018-0130-0
http://www.ncbi.nlm.nih.gov/pubmed/29610537
http://doi.org/10.1016/j.plipres.2009.10.003
http://www.ncbi.nlm.nih.gov/pubmed/19879895
http://doi.org/10.1073/pnas.0704680104
http://www.ncbi.nlm.nih.gov/pubmed/17940034
http://doi.org/10.1111/tpj.12787
http://doi.org/10.1007/s10265-016-0827-y
http://doi.org/10.1146/annurev-arplant-050718-100202
http://doi.org/10.1104/pp.127.1.184
http://doi.org/10.1093/pcp/pct107
http://www.ncbi.nlm.nih.gov/pubmed/23903016
http://doi.org/10.1021/pr801044y
http://www.ncbi.nlm.nih.gov/pubmed/19334764
http://doi.org/10.1042/bj2350025
http://doi.org/10.1002/pmic.201400467
http://www.ncbi.nlm.nih.gov/pubmed/25641898
http://doi.org/10.1074/mcp.M600429-MCP200
http://doi.org/10.1016/S0163-7827(02)00045-0
http://doi.org/10.1007/s11103-008-9339-z
http://doi.org/10.1105/tpc.115.136234
http://www.ncbi.nlm.nih.gov/pubmed/25736058
http://doi.org/10.1021/pr070492f
http://www.ncbi.nlm.nih.gov/pubmed/18700793
http://doi.org/10.1074/mcp.T600050-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/17533153

	Introduction 
	Results 
	M. crystallinum Membrane Proteome 
	Functional Annotation and Subcellular Localization 
	FFE Profile of Representative Subcellular Membrane Markers 
	FFE Profiles of Lipid Metabolism-Related Proteins 

	Discussion 
	V-ATPase VHA Subunit Localization 
	Proteins with Unexpected FFE Profiles 
	A Snapshot of the Components of Electrochemical Reactions 
	Subcellular Mapping of Lipid Metabolism 

	Materials and Methods 
	M. crystallinum Plant Material 
	Microsomal Membrane Extraction 
	Free Flow Electrophoresis (FFE) 
	TCA Precipitation and Trypsin Digestion of Membrane Proteins 
	Information-Dependent Acquisition (IDA) 
	Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) 
	Ion Library Generation 
	Peptide and Protein Quantification 
	Trans Membrane Domain, Functional Annotation and Subcellular Localisation 

	Conclusions and Perspectives 
	References

