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Abstract: AKT, is a serine/threonine protein kinase comprising three isoforms—namely: AKT1,
AKT2 and AKT3, whose inhibitors have been recognized as promising therapeutic targets for various
human disorders, especially cancer. In this work, we report a systematic evaluation of multi-target
Quantitative Structure-Activity Relationship (mt-QSAR) models to probe AKT’ inhibitory activity,
based on different feature selection algorithms and machine learning tools. The best predictive linear
and non-linear mt-QSAR models were found by the genetic algorithm-based linear discriminant
analysis (GA-LDA) and gradient boosting (Xgboost) techniques, respectively, using a dataset contain-
ing 5523 inhibitors of the AKT isoforms assayed under various experimental conditions. The linear
model highlighted the key structural attributes responsible for higher inhibitory activity whereas
the non-linear model displayed an overall accuracy higher than 90%. Both these predictive models,
generated through internal and external validation methods, were then used for screening the Asinex
kinase inhibitor library to identify the most potential virtual hits as pan-AKT inhibitors. The virtual
hits identified were then filtered by stepwise analyses based on reverse pharmacophore-mapping
based prediction. Finally, results of molecular dynamics simulations were used to estimate the
theoretical binding affinity of the selected virtual hits towards the three isoforms of enzyme AKT.
Our computational findings thus provide important guidelines to facilitate the discovery of novel
AKT inhibitors.

Keywords: AKT inhibitors; multi-target QSAR models; pharmacophore-based mapping; molecular
docking; molecular dynamics simulations

1. Introduction

AKT, also known as protein kinase B (PKB), is a serine/threonine-specific protein
kinase that belongs to the AGC family of kinases. Three closely related isoforms of AKT
occur in mammals, namely: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ) [1,2]. All
these AKT isoforms have a common structure comprised of three domains, i.e., a pleckstrin
homology (PH) domain at the N terminus that binds to phosphatidylinositol-3-kinase
(PI3K), a catalytic kinase domain with an ATP-binding site and a hydrophobic motif (HM)
at the C-terminus [3]. A high degree of sequence homology is observed at the catalytic
domain of AKT isoforms though the other two domains vary to a certain extent. AKT1
and AKT2 are expressed ubiquitously whereas AKT3 is found primarily in the brain,
kidney, and heart. Being a key enzyme of the PI3K cascade, AKT plays a crucial role
in the regulation of diverse cellular functions. Some major functions of AKT include
cell proliferation, cell cycle progression, cell survival and inhibition of apoptosis through
inactivation of more than 20 pro-apoptotic proteins [1,4–6]. AKT signaling is regularly
impaired in several types of cancers and increased AKT activity has been detected in a
number of aggressive malignancies. Therefore, these enzymes are considered as promising
targets for the development of novel anticancer agents [7–9]. However, the scope of
AKT inhibitors action is not just limited to the treatment of malignant diseases. Recent
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investigations suggested that AKT inhibitors might also be applied in the treatment of
neurological diseases, diabetes, obesity, cardiovascular diseases, idiopathic pulmonary
fibrosis, inflammatory and autoimmune diseases [6,10,11]. Multiple attempts have so
far been made to develop AKT inhibitors as anticancer agents. GSK690693 was the first
clinically tested AKT inhibitor that was followed by AZD5363, ipatasertib, afuresertib,
uprosertib, MK-2206, etc. [12]. Currently, at least seven AKT inhibitors are in different
stages of clinical trials [13]. Most of these clinically tested agents bind to the catalytic
domain of the enzymes, and therefore these simultaneously inhibit all three isoforms of the
AKT (i.e., they are pan-AKT-inhibitors). However, allosteric inhibitors were also developed
in order to obtain more selectivity towards one or more AKT isoforms [14]. As an example,
BAY1125976 is an allosteric inhibitor with higher specificity towards AKT1 and AKT2
isoforms. However, the advantage of isoform specific AKT inhibitors against pan-AKT
inhibitors are yet to be established clinically [13,15].

Nevertheless, it has already been confirmed that bioactivity against all three isoforms
should be taken into consideration while developing novel AKT inhibitors.

Machine learning-based (ML) tools have thus far been proved to be an extremely
useful strategy for the design and discovery of therapeutically active agents [16–18]. In
particular, these have been frequently employed in Quantitative Structure–Activity Rela-
tionships (QSAR) modeling to find structural requirements for higher active molecules
and/or to predict activity of novel hit molecules [19–21]. ML tools have also been applied
in multi-target QSAR (mt-QSAR) modeling for jointly predicting the bioactivity of com-
pounds optimized under multiple biological targets and assay conditions [16,20,22–26].
Recently, we have launched the software code QSAR-Co for easy tackling of multi-target
classification-based QSAR modeling efforts [22]. In QSAR-Co (available in https://sites.
google.com/view/qsar-co (accessed on 8 February 2021)), linear mt-QSAR models are
developed by the genetic algorithm based linear discriminant analysis (GA-LDA) whereas
non-linear models are generated by the random forest (RF) technique. With the desire to
extend its functionalities that can further help in understanding the scope and reliability of
computational modeling-guided approaches, we examined here various feature selection
algorithms and machine learning tools to build reliable mt-QSAR models for probing the in-
hibitory action of AKT enzyme isoforms. The best predictive linear and non-linear models
were then used to screen a focused kinase library to obtain the most potential virtual hits
that were further investigated by structure-based methods, such as pharmacophore-based
prediction, docking and molecular dynamics (MD) simulation techniques. Even though
several computational modeling works targeting AKT inhibitors have been reported so far,
these were always focused only on one subtype of AKT pertaining to one experimental
assay condition [27–33]. To the best of our knowledge, the current work is the first one to
report multi-target computational modeling-guided discovery of inhibitors for all three
AKT isoforms assayed under multiple experimental assay conditions.

2. Results and Discussion

2.1. Dataset Collection and Preparation

Dataset compounds were collected from the ChEMBL database (https://www.ebi.
ac.uk/chembl/ (accessed on 1 June 2020)). Details of the dataset can be found in Sup-
plementary Materials (SM1.xlsx). Each of these compounds has been tested against at
least one of the three isoforms of AKT (i.e., AKT1, AKT2 and AKT3, BAO label: Single
protein) and the corresponding activity evaluated according to either half-maximal in-
hibitory concentration (IC50) or binding affinity (Ki). Moreover, at least one of two assay
techniques has been applied, i.e., either a binding assay (B) or a functional assay (F). After
removal of duplicate data-points, a dataset containing 5523 samples was used for mod-
eling the inhibitory activity, in which the latter was converted into a binary categorical
response variable, IAi(cj), with values +1 (active) and −1 (inactive). Samples with IC50/Ki
values ≤ 500 nM were considered as active [IAi(cj) = +1], otherwise they were considered
as inactive [IAi(cj) = −1] [20,34]. Further, we adopted the Box-Jenkins moving average
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approach for handling the mt-QSAR modeling. Details of this computational modeling
approach have been thoroughly discussed over the past and so we limit ourselves here to
a brief outline [16,22,25,35]. According to the Box-Jenkins moving average approach, the
input structural descriptors (Di) of each compound are converted to deviation descriptors
(∆(Di)cj based on the experimental conditions cj (or ontology) these have been tested
for. As referred to above, three different experimental elements are considered here for
mt-QSAR modeling, i.e., the biological target (bt: AKT1, AKT2, or AKT3), measure of effect
(me: IC50 or Ki), and assay type (at: B or F). The final deviation descriptors ∆(Di)cj not only
encode structural aspects of the compounds but also information related to the experimen-
tal conditions under which these have been assayed (i.e., cj) [22,36,37]. Details regarding
the calculation of input descriptors (Di), data curation and dataset division schemes, as
well as model development strategies are discussed in the Materials and Methods section.
The mt-QSAR model development strategy is outlined in Figure 1.

Figure 1. Flowchart showing the multi-target Quantitative Structure-Activity Relationships (mt-QSAR) work performed in
the current work.

2.2. Linear Interpretable Mt-QSAR Models

The dataset was first randomly divided into a training set containing 3867 data points
(70% of the data) and a validation set containing 1656 data-points (30% of the data) using
the random division technique of QSAR-Co tool [22]. A total of 5305 input descriptors
(Di) were calculated for the training set by employing the alvaDesc tool [38], and these
descriptors were subsequently converted to 15,915 deviation descriptors with the help of
QSAR-Co tool [22]. It must be noted here that all models were set up solely on the basis of
the training set, which was further split into a sub-training set containing 2707 data points
(70% of the training set) and a test set containing 1160 data points (30% of the training set)
by applying the random division technique of QSAR-Co tool [22] for models’ development
purposes. The predictivity of the built models was finally tested with the validation set.
Therefore, the difference between the test set and validation set is that the test set datapoints
participated in the calculation of deviation descriptors but datapoints of the validation set
had no role on that.

Then, 2881 descriptors were identified to have an intercorrelation greater than 0.999
with other descriptors and after removing these descriptors the remaining 13,034 descrip-
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tors were considered for development of the linear models. However, the intercorrelations
among the selected descriptors of the final models were critically examined.

Three different feature selection techniques, namely: genetic algorithm (GA), forward
stepwise (FS) and sequential forward selection (SFS), were used one-by-one for the develop-
ment of linear interpretable models. For each of the following linear discriminant analysis
(LDA) models—i.e., GA-LDA, FS-LDA and SFS-LDA, a maximum of ten descriptors was
allowed. The best linear models derived from the sub-training set, with descriptors se-
lected by these feature selection techniques, are depicted in Table 1 along with the LDA
statistical parameters.

As seen, the low Wilk’s lambda (λ) values and high chi-square (χ2), squared Ma-
halanobis distance (D2) and F values are indicative of the statistical significance of all
three models developed. Among these models, the FS-LDA model is found to have the
lowest λ value. Significantly, the goodness-of-fit of GA-LDA is very similar to that of
the FS-LDA model. The degree of collinearity among the selected variables was also
inspected, and the resultant cross-correlation matrices can be found in the Supplementary
Materials (Tables S1–S3). The highest Pearson correlation coefficients (r) observed between
two independent variables were 0.838, 0.614 and 0.742 for the GA-LDA, FS-LDA and
SFS-LDA models, respectively. It must be pointed out here that we discarded all models
generated with highly intercorrelated independent variables (r ≥ 0.85). That was the case,
for example, of two initial SFS-LDA models that had to be discarded and then re-generated
after removing one of the descriptors with r > 0.85.

The next step was to verify the uniqueness of the derived models, which can easily be
done by applying the Y-based randomization technique [39]. In our previous works [16,20],
the Y-based randomization was performed only by scrambling the response variable but
here, we slightly modified this technique and named the new technique as Yc randomiza-
tion. Generally, the Y-based randomization allows one to check if the linear model was
not developed by chance. In conventional computational-guided modeling, the response
variable is randomly shuffled n times to generate n number of randomized models, the
statistical parameters of which are then compared to that of the original model [22,40].
However, in the Box-Jenkins based mt-QSAR, the experimental elements (cj) participate
also in the calculation of the final deviation descriptors. Therefore, these experimental
elements should be randomized along with the response variables to assess the robustness
of the models. In order to fulfil such criteria, both the responses IAi

(
cj
)

and elements cj
were shuffled 100 times to generate 100 different randomized datasets along with their
deviation descriptors. The models developed subsequently using the same feature selection
techniques were evaluated by computing the corresponding λ (λr) values. The average
of the latter values (λrm) was then compared with the λ values obtained for the original
models. The λrm values obtained for the GA-LDA, FS-LDA and SFS-LDA randomized
models (0.994, 0.996 and 0.992, respectively) were found to be much higher than the λ val-
ues obtained for the original models (0.414, 0.408 and 0.507, respectively), thus confirming
the unique nature of the later models.
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Table 1. Goodness-of-fit of the linear models produced by different feature selection algorithms.

Method Model λ χ2 D2 p F (10,2696)

GA-LDA

IAi

(
cj

)
= +1.766∆[VE1_Dz(Z)]bt

+ 1.399∆(Mor32m)bt
+ 0.173∆(L2m)bt

−0.464∆(C − 032)me
− 0.280∆(F02[N − O])me

− 0.004∆(Wi_D/Dt)me

+1.186∆(nRNH2)at
+ 0.768∆(Mor27m)at

+ 0.549∆(Mor21u)at
−0.323∆(nArNHR)at

+ 1.532

0.414 2381.34 5.89 <10−16 374.53

FS-LDA

IAi

(
cj

)
= +2.043∆(C − 030)bt

+ 0.953∆(nCt)bt
+ 0.309∆(L2m)bt

+ 0.013∆(D/Dtr05)bt

−0.589∆(CATS3D_18_DL)bt
− 0.460∆(CATS3D_10_PL)bt

+1.016∆(nPyridines)me
+ 0.481∆(CATS3D_07_DA)me

− 0.007∆[(T(N..O)]me

−3.545∆(nRHNH2)at
+ 2.545

0.408 2420.04 6.156 <10−16 391.07

SFS-LDA

IAi

(
cj

)
= +0.954∆(F08[N − S])bt

+ 0.851∆(Mor31u)bt
− 1.081∆(CATS2D_02_DD)bt

−3.280∆(B03[S − Br])bt
+ 2.494∆(nRNH2)me

+ 0.177∆(H − 05)me

+0.567∆(F07[N − Cl])at
+ 0.099∆(SsNH2)at

+ 0.005∆[T(N..N)]at
−1.419∆(CATS2D_06_DD)at

+ 1.543

0.507 1831.98 4.120 <10−16 261.77
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Let us now check the overall predictive ability of these linear models. To do so,
statistical parameters such as the sensitivity, specificity, F-measure, accuracy and the
Matthews correlation coefficient [41,42] values were carefully examined not only for the
sub-training subset but also, to infer their external predictivity, firstly for the test set
(n = 1160) and finally for the validation set (n = 1656). As seen in Table 2, all models display
a high predictivity against the sub-training, test and validation sets. The overall predictivity
of the GA-LDA model however supersedes that of both FS-LDA and SFS-LDA models,
judging from the obtained accuracy values for such sets (88.2%, 89.6%, 88.2%, respectively).
Interestingly, the overall predictivity of SFS-LDA model is similar to that of the GA-LDA
model. Even though FS-LDA model had the highest goodness-of-fit (lowest λ value), it
afforded a lower overall predictive power compared to that of the other two models.

Table 2. Overall performance of the final linear models.

Classification a GA-LDA FS-LDA SFS-LDA

Sub-Training Test Validation Sub-Training Test Validation Sub-Training Test Validation

NDTotal
b 2707 1160 1656 2707 1160 1656 2707 1160 1656

NDactive
b 1027 459 620 1027 459 620 1027 459 620

CCDactive
c 916 413 553 901 399 541 905 409 546

Sensitivity (%) 89.2 90.0 88.6 87.4 88.6 88.5 88.2 89.9 88.7
NDinactive

b 1680 701 1036 1680 701 1036 1680 1680 1036
CCDinactive

c 1472 626 918 1468 621 917 1481 630 919
Specificity (%) 87.6 89.3 89.2 87.7 86.9 87.3 88.1 89.1 88.1

F-measure 0.852 0.872 0.857 0.842 0.851 0.845 0.849 0.871 0.851
Accuracy (%) 88.2 89.6 88.8 87.5 87.9 88.0 88.1 89.6 88.5

MCC d 0.756 0.785 0.767 0.741 0.75 0.749 0.753 0.784 0.758
a LDA classification statistical parameters. b ND: Number of datapoints. c Correctly classified datapoints. d Matthews correlation coefficient.

Another way of confirming the classification ability of any LDA model is by means of
the receiver operating characteristics (ROC) curve [43]. Figure 2 shows the ROC plots for
the GA-LDA and SFS-LDA models. One can see that both these models are not random,
but truly statistically significant classifiers, since the area under the ROC curves (ROC AUC
scores calculated with Scikit-learn [44]) for all the sets are statistically higher (>0.88) than
that of a random classifier model (ROC AUC score = 0.5).
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To sum up, it can be inferred that the GA-LDA is the best linear model considering
its goodness-of-fit as well as internal and external predictive ability. Moreover, when the
sub-training set of GA-LDA model was subjected to a 10-fold cross-validation, an accuracy
of 87.99% and MCC value of 0.752 were obtained indicating high internal predictivity of
this model.
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Yet, to establish the overall reliability of any mt-QSAR model, one should also access
its applicability domain (AD). When the GA-LDA model was examined by means of the
standardization-based AD approach [45], 64 data-points of the sub-training set, 20 data-
points of test set and 49 data-points of the validation set are found to be possible structural
outliers, meaning that for those predictions might not be reliable.

Further approval of this GA-LDA classification model should only be carried out after
verifying if a consensus modeling approach might not yield a new model with higher
predictivity. To accomplish this, the predicted response variables from three different LDA
models were collected and the outcomes occurring more frequently were regarded as the
consensus predicted activities. By comparing results from both models (Table 3), it was
observed that the predictive power of the consensus LDA model is particularly similar
but not higher than that of the original GA-LDA model. Therefore, the GA-LDA model is
to be considered as the best linear interpretable model for the current dataset. However,
considering the performance of the other LDA models, one can reach to the conclusion
that the feature selection algorithms used here may simultaneously be applied for future
mt-QSAR modeling of other datasets.

Table 3. Predictive ability by different LDA models.

Classification a GA-LDA Model Consensus LDA Model

Sub-Training Test Validation Sub-Training Test Validation

NDTotal 2707 1160 1656 2707 1160 1656
NDactive 1027 459 620 1027 459 620

CCDactive 916 413 553 902 406 541
Sensitivity (%) 89.19 89.98 88.61 87.83 88.45 87.26

NDinactive 1680 701 1036 1680 701 1036
CCDinactive 1472 626 918 1486 633 927

Specificity (%) 87.62 89.30 89.19 88.45 90.30 89.48
F-measure 0.852 0.872 0.857 0.850 0.870 0.852

Accuracy (%) 88.21 89.57 88.83 88.22 89.57 88.65
MCC 0.756 0.785 0.767 0.754 0.783 0.760

a LDA classification statistical parameters (For information see footnotes on Table 1).

2.3. Interpretation of Molecular Descriptors

Undeniably, one of the primary advantages of linear models is the possibility of
identifying the most crucial structural and physicochemical factors responsible for the
higher activity of the compounds [46]. A description of all the descriptors appearing in
the three linear models is given in Table 4. However, considering the higher statistical
quality of both the GA-LDA and SFS-LDA models, our discussion will focus mainly on the
descriptors appearing in these models. Since the relative contributions of the descriptors
can only be understood by analyzing the absolute values of their standardized coefficients,
these are shown in Figure 3 for the GA-LDA and SFS-LDA models.
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Table 4. Deviation descriptors of the mt-QSAR LDA models and their respective definitions.

Model Deviation
Descriptors cj Core Descriptor Description Descriptor Type a

GA-LDA

∆[VE_1Dz(Z)]bt

biological
target VE1_Dz(Z)

Coefficient sum of the last
eigenvector (absolute

values) from Barysz matrix
weighted by atomic number

2D matrix-based

∆(Mor32m)bt

biological
target Mor32m Signal 32/weighted by mass 3D-MoRSE

∆(L2m)bt

biological
target L2m 2nd component

size/weighted by mass WHIM directional

∆(C − 032)me

measure of
effect C−032 X–CX–X Atom-centered

fragments

∆(F02[N − O])me

measure of
effect F02[N−O] Frequency of N−O at

topological distance 2 2D Atom Pairs

∆(Wi_D/Dt)me

measure of
effect Wi_D/Dt Wiener-like index from

distance/detour matrix 2D matrix-based

∆(nRNH2)at
assay type nRNH2 Number of primary amines

(aliphatic)
Functional group

counts

∆(nArNHR)at
assay type nArNHR Number of secondary

amines (aromatic)
Functional group

counts
∆(Mor27m)at

assay type Mor27m Signal 27/weighted by mass 3D-MoRSE
∆(Mor21u)at

assay type Mor21u Signal 21/unweighted 3D-MoRSE

FS-LDA

∆(D/Dtr05)bt

biological
target D/Dtr05 Distance/detour ring index

of order 5 Ring

∆(C − 030)bt

biological
target C−030 X–CH–X Atom-centered

fragments

∆(nCt)bt

biological
target nCt Number of total tertiary

C(sp3)
Functional group

counts

∆(L2m)bt

biological
target L2m 2nd component

size/weighted by mass WHIM directional

∆(CATS3D_18_DL)bt

biological
target CATS3D_18_DL

Donor-Lipophilic BIN 18
(18–19 Å)

3D-CATS

∆(CATS3D_10_PL)bt

biological
target CATS3D_10_PL

Positive-Lipophilic BIN 10
(10–11 Å)

3D-CATS

∆(nPyridines)me

measure of
effect nPyridines Number of Pyridines Functional group

counts

∆[T(N..O)]me

measure of
effect T(N..O) Sum of topological distances

between N..O 2D Atom Pairs

∆(CATS3D_07_DA)me

measure of
effect CATS3D_07_DA

Donor-Acceptor BIN 7
(7–8 Å)

3D-CATS

∆(nRNH2)at
assay type nRNH2 Number of primary amines

(aliphatic)
Functional group

counts

SFS-LDA

∆(F08[N − S])bt

biological
target F08[N−S] Frequency of N−S at

topological distance 8 2D Atom Pairs

∆(B03[S − Br])bt

biological
target B03[S−Br] Presence/absence of S−Br

at topological distance 3 2D Atom Pairs

∆(Mor31u)bt

biological
target Mor31u Signal 31/unweighted 3D-MoRSE

∆(CATS2D_02_DD)bt

biological
target CATS2D_02_DD Donor-Donor at lag 2 2D-CATS

∆(H − 052)me

measure of
effect H−052 H attached to C0(sp3) with

1X attached to next C
Atom-centered

fragments

∆(nRNH2)me

measure of
effect nRNH2 Number of primary amines

(aliphatic)
Functional group

counts

∆(CATS2D_02_DD)bt
assay type T(N..N) Sum of topological distances

between N..N 2D Atom Pairs

∆(F07[N − Cl])at
assay type F07[N−Cl] Frequency of N-Cl at

topological distance 7 2D Atom Pairs

∆(SsNH2)at
assay type SsNH2 Sum of sNH2 E-states Atom-type E-state

indices
∆(CATS2D_06_DD)at

assay type CATS2D_06_DD Donor-Donor at lag 6 2D-CATS
a MoRSE: Molecular Representation of Structures based on Electronic diffraction; WHIM: Weighted Holistic Invariant Molecular [47]; CATS:
Chemically Advanced Template Search [48].
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Firstly, it is noteworthy that all the experimental elements considered in this work
(i.e., at, me, and bt) consistently appeared in the final LDA models demonstrating their
importance (Table 4). To set up the models, 30 distinct categories of descriptors (available in
alvaDesc [38]) were considered but only 10 persisted. The latter pertained more frequently
to 2D atom pairs (pairs of atoms at a given topological distance) and functional group
counts descriptors, as well as to atom-centered fragments [49]. Importantly, these three
categories of descriptors are easily interpretable. Nevertheless, 3D descriptors, such as
3D-Morse (3D-Molecular Representation of Structures based on Electronic diffraction) [50],
WHIM (Weighted Holistic Invariant Molecular) [47], and CATS3D (Chemically Advanced
Template Search 3D) [48], also appeared in the final models.

As can be seen in Figure 3, the three most important descriptors of the GA-LDA model
pertain to two topological indices (i.e., the graph-based descriptors ∆[VE_1Dz(Z)]bt

and
∆(Wi_D/Dt)me

) and one constitutional descriptor (∆(nRNH2)at
: counts of the number of

primary amines). Other contributing descriptors of the model are geometrical descriptors
either weighted by atomic masses or unweighted, these obviously containing information
about the whole 3D-molecular structure of the compounds [47,49]. Interestingly, similar to
the number of aliphatic amines, the number of aromatic amines (∆(nArNHR)at

) is found
also to be important in the GA-LDA model for triggering a higher biological activity, both
being dependent on the experimental element assay type (at). Except one 3D-MoRSE
descriptor, all SFS-LDA descriptors are found as 2D descriptors. For instance, its most
significant descriptor is ∆(nRNH2)me

, which along with the ∆(nRNH2)at
descriptor of

GA-LDA (which also appears in the FS-LDA model), reiterates the importance of aliphatic
primary amines for achieving high activity against the AKT enzyme isoforms. Other
important descriptors in this model are the frequency of atom pairs at particular topo-
logical distances, e.g., between two nitrogen atoms or sulfur and bromine atoms of the
compounds [49]. Two mentions also are the two CATS2D descriptors [48] of the SFS-LDA
model, i.e., descriptors ∆(CATS2D_02_DD)bt

and ∆(CATS2D_06_DD)at
, which embody a

potential pharmacophore point on pairs of atoms. Both these involve two hydrogen bond
donor groups (DD) in the compounds located at different topological distances.

Overall, it may thus be concluded that the presence as well as topological orientation
of primary amines, amides and hydrogen bond donor groups in the molecules play crucial
roles in promoting activity against the AKT isoforms. The topological distance between
two nitrogen atoms, nitrogen and chlorine atoms, nitrogen and oxygen atoms, as well
as sulfur and bromine atoms in the compounds appear to be the key factors for a higher
AKT inhibition. At the same time, the importance of carbon atoms (e.g., ∆(C − 032)me

and
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∆(H − 052)me
), topological graph-based descriptors and geometrical descriptors (partic-

ularly 3D-MoRSE ones) is revealed. All these descriptors are found to be significant in
ascertaining the biological activity of the compounds against AKT enzymes.

2.4. Non-Linear Predictive Mt-QSAR Models

Herein, descriptors with variances less than 0.001 and inter-correlations higher than
0.95 were removed, leaving 3342 deviation descriptors for setting up various non-linear
mt-QSAR models, based on the ML tools: Xgboost [51], (RF) [52], kNN [53], RBF-SVC [54],
MLP [55], DT [56], and NB [57]. Since the statistical quality of the resultant non-linear
models substantially depends on the ML parameter settings [58], the latter were optimized
by hyperparameter tuning [59]. A 10-fold cross-validation (CV) grid search scheme was
employed to optimize the parameters and to achieve the best possible model based upon
the sub-training set.

Table 5 shows the parameter values that were optimized through hyperparameter
tuning as well as the final optimized values of these parameters for each of the machine
learning tools applied. Furthermore, Table 5 also depicts the 10-fold CV accuracies obtained
when the machine learning tools with optimized parameter values were fitted with the
sub-training set.

Table 5. Hyper-parameters values explored in the machine learning tools applied for development of the non-linear
mt-QSAR models.

Method Parameters
Tuned

Parameters
Selected

10-Fold CV
Accuracy (%) a

RF

Bootstrap: True/False False
Criterion: Gini, Entropy, Gini

Maximum depth: 10, 30, 50, 70, 90, 100, None 90
Maximum features: Auto, Sqrt Sqrt 91.02
Minimum samples leaf: 1, 2, 4 1

Minimum samples split: 2, 5, 10 5
Number of estimators: 50, 100, 200,500 200

kNN
Number of neighbors: 1–31 20

Weight options: Uniform, Distance Distance 79.20
Algorithms: Auto, Ball tree, kd_tree, brute Auto

Xgboost

Minimum child weight: 1,5,10 1
Gamma: 0, 0.5, 1, 1.5, 2, 5 0
Sum sample: 0.6, 0.8, 1.0 0.8 91.54

Number of estimators: 50, 100, 200,300 100
Maximum depth: 3, 4, 5 5

RBF-SVC
C: 0.1, 1, 10, 100, 1000 1 62.30

Gamma: 1, 0.1, 0.01, 0.001 1

MLP

Hidden layer sizes:(50,50,50), (50,100,50), (100,) (100,)
Activation: Identity, Logistic, Tanh, Relu Relu

Solver: SGD, Adam Adam 82.97
Alpha: 0.0001, 0.001, 0.01,1 0.0001

Learning rate: Constant, Adaptive, Inverse scaling Adaptive

DT

Criterion: Gini, EntropyMaximum depth:
10,30,50,70,90,100, NoneMaximum features: Auto,

SqrtMinimum samples leaf: 1,2,4Minimum samples
split: 2–50

Entropy100Sqrt113 84.33

NB Alpha: 1,0.5,0.1Fit prior: True, False 0.1True 69.40
a The cross-validation accuracy was estimated only on the sub-training set.



Int. J. Mol. Sci. 2021, 22, 3944 11 of 23

It is evident that the classification ability of these machine learning tools varies to a
considerable extent, but those achieving the better ones are the DT, RF and Xgboost tools.
In fact, the MLP model demonstrates moderate internal predictivity, and the classifica-
tions produced by kNN, SVC and NB suggest an extremely poor internal predictivity of
these tools.

The RF and Xgboost tools produced a 10-fold CV accuracy on the sub-training set
of 91.02% and 91.54%, respectively, indicating that both resultant models display high
and almost similar internal predictivity. These two models were then chosen to further
investigate their external predictivity on the test and validation sets. Table 6 shows the
overall predictivity of the RF and Xgboost models, whereas their ROC plots are displayed
in Figure S1 of the Supplementary Materials.

Table 6. Overall predictivity of the RF and Xgboost non-linear models.

Classification a
RF Xgboost

Sub-Training
(10-CV) Test Validation Sub-Training

(10-CV) Test Validation

NDTotal 2707 1160 1656 2707 1160 1656
NDactive 1027 459 620 1027 459 620

CCDactive 919 417 573 932 422 578
Sensitivity (%) 89.48 92.58 93.53 90.75 91.87 93.24

NDinactive 1680 701 1036 1680 701 1036
CCDinactive 1545 649 969 1546 644 966

Specificity (%) 91.96 90.85 92.42 92.02 91.94 93.23
F-measure 0.883 0.899 0.909 0.891 0.900 0.912

Accuracy (%) 91.02 91.90 93.11 91.54 91.90 93.24
MCC 0.810 0.831 0.854 0.822 0.832 0.857

a Non-linear classification statistical parameters (For information see footnotes on Table 1).

As expected, the internal and external predictivities of the RF and Xgboost based
non-linear models are noticeably higher than those of the linear models (see Tables 2 and 3).
On the basis of their overall predictivity (cf. accuracy values and MCC scores for all sets in
Table 6), the Xgboost model stands for the best non-linear model.

One aspect that warrants explicit attention is to inspect how the two best-derived
models (i.e., GA-LDA and Xgboost) manage to classify the datapoints pertaining to dif-
ferent experimental elements cj (Table 7). In general, the datasets applied in mt-QSAR
computational modeling encompass a large variation in the number of data-points vis-à-
vis the various experimental elements. As expected, the same situation happens in the
current dataset. Still, the non-linear Xgboost model is unaffected by that since it affords
high accuracies irrespectively of the experimental element or validation set. The GA-LDA
model, with less overall predictivity than the Xgboost model, shows also high accuracies in
case of the test set. Nevertheless, it reaches low accuracy values against some experimental
conditions (e.g., for cj = 4 and 7). Yet, if both these models are considered simultaneously,
there is apparently a greater chance of finding more accurate predictions.
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Table 7. The predictive accuracies of GA-LDA and Xgboost models with respect to the different experimental elements cj.

cj me at bt

Test Set External Validation Set

NSample
a Xgboost GA-LDA NSample

a Xgboost GA-LDA

# Incorrect b % Accuracy # Incorrect b % Accuracy # Incorrect b % Accuracy # Incorrect b % Accuracy

1 IC50 B AKT 509 80 84.28 95 81.34 707 95 86.56 142 79.92

9 Ki F AKT2 163 2 98.77 2 98.77 238 0 100.00 5 97.90
10 Ki F AKT3 148 1 99.32 3 97.97 236 2 99.15 2 99.15
8 Ki F AKT 156 3 98.08 2 98.72 203 1 99.51 2 99.01
2 IC50 B AKT2 121 2 98.35 14 88.43 167 8 95.21 23 86.23
3 IC50 B AKT3 35 4 88.57 4 88.57 53 2 96.23 3 94.34
5 Ki B AKT 17 2 88.24 1 94.12 27 2 92.59 3 88.89
6 Ki B AKT2 4 0 100.00 0 100.00 12 1 91.67 1 91.67
4 IC50 F AKT 4 0 100.00 0 100.00 9 1 88.89 3 66.67
7 Ki B AKT3 3 0 100.00 0 100.00 4 0 100.00 1 75.00

a Number of data samples. b Number of data samples (#) incorrectly predicted by the model.
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2.5. Virtual Screening

In order to describe how the developed mt-QSAR models perform on identifying
virtual hits, we employed the GA-LDA and Xgboost models for screening the focused
library Asinex kinase (http://www.asinex.com/focus_kinases/, accessed on 17 August
2020), which comprises 6538 compounds. Details about this dataset can be found in
Supplementary Materials (SM2.xlsx). Similarly, the descriptors of all such compounds were
calculated by the alvaDesc tool [38]. In the modeling dataset used here, we found 10 unique
experimental elements cj depending on the me, at and bt conditions (cf. Table 7). Each
compound of the Asinex kinase inhibitor library was also assigned to those conditions, and
a virtual dataset containing 65,380 samples was then prepared. Afterwards, the deviation
descriptors of each of these samples were calculated using the QSAR-Co tool [22]. Initially
the GA-LDA model was used for screening this virtual dataset, and 28 compounds were
predicted as active (IAi(cj) = +1) against at least 7 out of 10 experimental elements. The
predictivity of these 28 compounds was then tested with the best non-linear model (i.e.,
the Xgboost model) and seven compounds were predicted to be active against at least
6 experimental elements cj. These seven compounds (Figure 4) are thus to be considered
as the most potential virtual hits according to the current computational multi-target
modeling. Note that, for screening the dataset, we mainly relied on the linear model since
it is likely to be less susceptible to overfitting than the non-linear model.

Table 8 displays the number of experimental conditions pertaining to each virtual
hit picked by the GA-LDA and Xgboost models, whereas details of these experimental
conditions are provided in Supplementary Materials (Table S4). It is observed that each of
these virtual hits are predicted to be active against all three AKT isoforms in one or more
experimental assay conditions (defined by the combinations of at and bt).
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Figure 4. Structures of the most potential virtual hits obtained with the GA-LDA and Xgboost models.

Table 8. Number of experimental conditions pertaining to the most potential virtual hits gathered by the GA-LDA and
Xgboost models.

Compound No of Experimental Conditions (GA-LDA) No of Experimental Conditions (Xgboost)

Asn0019 10 6
Asn0021 10 6
Asn0022 10 6
Asn2706 7 6
Asn5093 8 6
Asn5283 7 6
Asn6236 7 6

http://www.asinex.com/focus_kinases/
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2.6. Pharmacophore Based Biological Target Identification

After identifying seven virtual hits from multi-target computational-guided model-
ing, we have decided to implement a filtering scheme based on reverse pharmacophore
mapping. The latter will allow pre-filtering such hits that best fulfil simple geometric and
chemical functionality requirements to trigger a biological response, before embarking on
more computationally demanding approaches. For this, each of these virtual hits were in-
vestigated with the PharmMapper webserver (http://www.lilab-ecust.cn/pharmmapper/
index.html, accessed on 4 January 2021)) [60,61] to identify their possible human macro-
molecular targets. The results of PharmMapeer based predictions are outlined in Table 9.
Details about the fitting of the virtual hits with the obtained structure-based pharma-
cophores are provided in the Supplementary Materials (Figures S2 and S3).

Interestingly, except Asn5283 and Asn2706, all virtual hits are mapped with the
structure-based pharmacophores coming from both human AKT1 (PDB ID: 3CQU) and
human AKT2 (PDB ID: 2UW9). Note that the PharmMapper predictions are based on
the protein structures available in the Protein Data Bank (PDB) and so far, no complete
structure of AKT3 is available. Therefore, these results mean that multiple AKT isoforms
may be possible biological targets for these five virtual hits, which are Asn0019, Asn0021,
Asn0022, Asn5093 and Asn6236. Furthermore, all these five virtual hits are fitted with
structure-based pharmacophores generated at the catalytic sites of these enzyme isoforms.
We randomly selected five Asinex kinase inhibitor library compounds (names and struc-
tures are provided in SM2.xlsx of Supplementary Materials) that were predicted to be
inactive in the QSAR based virtual screening and none of these compounds was mapped
with structure-based pharmacophores pertaining to both AKT1 and AKT2. Based upon
the current pharmacophore analysis, we removed Asn5283 and Asn2706, and decide to
further investigate the remaining six virtual hits by other more complicated structure-based
analysis techniques.

Table 9. Fitting of the virtual hits to the structure-based pharmacophores predicted by the PharmMapper webserver.

Compound PDB ID Target Name Feature Type a No of Features Fit Score

Asn0019 3CQU AKT1 2H,A,D 4 2.925
Asn0019 2UW9 AKT2 3H,P,A,D 6 3.078
Asn0021 3CQU AKT1 2H,A,D 4 2.274
Asn0021 2UW9 AKT2 3H,P,A,D 6 3.385
Asn0022 3CQU AKT1 2H,A,D 4 2.724
Asn0022 2UW9 AKT2 3H,P,A,D 6 3.000
Asn5093 3CQU AKT1 2H,A,D 4 2.637
Asn5093 2UW9 AKT2 3H,P,A,D 6 3.135
Asn6236 3CQU AKT1 2H,A,D 4 3.126
Asn6236 2WU9 AKT2 3H,P,A,D 6 2.955

a A: Acceptor, D: Donor, H: Hydrophobic, P: Positive ionizable.

2.7. Structure-Based Prediction of the Virtual Hits

Even though pharmacophore mapping insinuated that selected virtual hits may inter-
act with multiple AKT enzyme isoforms, considering high flexibilities of kinase enzymes, it
may not be able to predict the stabilities ligand-receptor complexes. Therefore, we decided
to go a step forward and carry out molecular dynamics (MD) simulations to understand
the dynamic behavior of the virtual hits within the AKT enzyme isoforms. The five virtual
hits predicted by both the mt-QSAR modeling and the pharmacophore-based mapping
(PharmMapper) were initially docked into the isoforms AKT1 (PDB ID:4GV1) and AKT2
(PDB ID: 1O6K), as well as into an AKT3 homology model. For this, two molecular docking
tools were employed, namely: (a) Autodock Vina [62] and (b) Autodock 4.2 [63]. The
homology modeling of AKT3 was carried out using the SWISS-MODEL webserver (swiss-
model.expasy.org) [64,65]. Details about the procedures of homology modeling used as
well as the validation of the model are described in the Materials and Methods section.

http://www.lilab-ecust.cn/pharmmapper/index.html
http://www.lilab-ecust.cn/pharmmapper/index.html
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Since multiple binding sites exist in these AKT enzyme isoforms, we initially con-
ducted a blind docking experiment for the virtual hits with the help of Autodock Vina.
To do so, a grid box of 100 Å × 100 Å × 100 Å dimensions was centered on each of such
macromolecules. The blind docking (performed with an exhaustiveness of 45) indicated
that all the virtual hits may preferably bind to the catalytic domain of the enzyme isoforms.
Thereafter, an Autodock based docking was performed for all the virtual hits by setting a
grid box of 50 Å × 50 Å × 50 Å dimensions, with a grid spacing of 0.375 Å, centered on
the catalytic residue of Asp292, Asp293, and Asp289 for AKT1, AKT2, and AKT3, respec-
tively. The pan-AKT inhibitor GSK690693 was employed as a reference compound in this
Autodock docking experiment. The results of both docking experiments performed with
Autodock Vina and Autodock 4.2 are provided in Table S5 of Supplementary Materials.

These MD simulations were carried out with docked (Autodock-based) complexes of
these compounds for 50 ns. The docked complexes of some selected virtual hits (i.e., the
starting ligand-protein complexes used in the MD simulations) are provided in the Supple-
mentary Materials. The root-mean-square-deviation (RMSD) plots of the backbone atoms
of the receptor-ligand complexes, ligand RMSD plots, the root-mean-square-fluctuation
(RMSF) plots of these protein structures, and the radius of gyration’ plots are presented
in the Supplementary Materials (Figures S4–S6). A close look at these plots reveals an
adequate dynamic stability as well as compactness of the ligand-macromolecule complexes.
However, our major goal was to estimate the binding free energies of these ligand-protein
complexes, which was computed by the molecular mechanics-generalized Born surface
area (MM-GBSA) approach.

As observed from the results in Table 10, Asn0019 depicts maximum theoretical
binding energy values against three different enzyme isoforms of AKT among five virtual
hits. The theoretical binding free energy values of Asn0019 against AKT2 and AKT3
enzymes were comparable to those of the reference compound GSK690693. Even though
Asn5093 depicted slightly increased theoretical ∆Gbind values against AKT1 and AKT2 as
compared to Asn0019 (as well as Asn0021 and Asn0022), its binding energy was found to
be reduced against AKT3 enzyme. The Asn0019 may be projected as the most promising
virtual hits based on its average theoretical ∆Gbind value.

Table 10. Calculated binding free energies (∆Gbind in kcal/mol) for the AKT1, ATK2, and ATK3
bound ligands.

Compound AKT1 AKT2 AKT3

Asn0019 −32.54 −27.61 −43.61
Asn0021 −25.81 −29.03 −39.04
Asn0022 −27.75 −23.56 −37.29
Asn5093 −36.34 −29.44 −22.67
Asn6236 −18.08 −19.72 −26.82

GSK690693 −46.88 −29.78 −43.17

Per residue decomposition analysis of Asn0019 was performed to understand the
binding interactions of this virtual hit against X-ray crystal structures AKT isoforms (i.e.,
AKT1 and AKT2). Total energy values obtained from important binding site residues
are depicted in Figure 5. It is observed that interactions of Asn0019 with Leu156/158,
Val164/166, Ala177/179, Lys179/181, Tyr229/231, Ala230/232, Glu278/279, Asn279/280,
Met281/282, Thr291/292 and Phe438/439 of AKT1 and AKT2 enzymes may play crucial
roles in determining the binding affinities of this molecule in these proteins.
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3. Materials and Methods

3.1. Descriptor Calculation

The SMILES structures of the compounds were converted to 2D structures using the
MarvinView software (https://docs.chemaxon.com/display/docs/MarvinView, accessed
on 6 July 2020). Such structures were subsequently standardized by the ChemAxon
Standardizer tool using the following options: strip salts, aromatize, clean 3D, tautomerize,
neutralize and add explicit hydrogens [66]. The initial descriptors were calculated by
alvaDesc tool (https://www.alvascience.com/alvadesc/, accessed on 6 July 2020) [38]
in the OCHEM web-platform [67]. Geometry optimizations of the compounds were
performed with the Corina software [68] under OCHEM [67]. Calculation of the deviation
descriptors (∆(Di)cj) from the initial descriptors (Di) and experimental elements (cj) were
carried out using the QSAR-Co tool [22].

3.2. Development of Linear Interpretable Models

The linear models were based on linear discriminant analysis (LDA) models and
three different feature selection algorithms, i.e., (a) genetic algorithm (GA), (b) forward
stepwise (FS), and (c) sequential forward selection (SFS). For the first one, the resultant
GA-LDA model was set up with the help of the QSAR-Co tool [22]. Details of the GA
selection procedure have been extensively reported in the past [69]. Briefly, GA is based on
the evolution of a population of randomly generated models. Firstly, parent models are
chosen, and these are then subjected to random “cross-over” and ”mutation” processes
to produce child models, which are then used to check their fitness scores. The new
generated models with the highest fitness scores are then forwarded to a next iteration. The
algorithm terminates either when the maximum number of allowed population models is
reached or when no improvement regarding the fitness score is observed for the subsequent
10 population generations. The parameters employed here for setting up the GA-LDA
model with QSAR-Co were: (i) total number of iterations/generations: 100, (ii) equation
length: 10 (fixed), (iii) mutation probability: 0.3, (iv) initial number of equations generated:
100, and (v) number of equations selected in each generation: 30. Forward stepwise (FS)
is a very popular feature selection algorithm in which the independent descriptors are
included in the model stepwise depending on a specific statistical parameter. In this work,
the FS-LDA model was set up with a python program where the features are selected and
included in the model stepwise by the corresponding p-values of the Fischer statistic [69].
Initially, criteria for the forward selection (i.e., p-value to enter) as well as for the backward
elimination (p-value to remove) have to be set. The descriptor with the lowest p-value
is first included and subsequently other descriptors are included in the model based on
their p-values only if the criterion for forward selection is met. However, if the p-value of a
descriptor included in the model is found to be greater than the ”p-value to remove”, it
is eliminated from the model. In the current work, both p-values to enter and to remove

https://docs.chemaxon.com/display/docs/MarvinView
https://www.alvascience.com/alvadesc/


Int. J. Mol. Sci. 2021, 22, 3944 17 of 23

were fixed at 0.05. The final LDA models were developed and were subsequently validated
using the LinearDiscriminantAnalysis function of Scikit-learn [44]. The python code used
for FS-LDA model development is provided in the Supplementary Materials (file SM1.py).
The last feature selection algorithm is based on a sequential forward selection which adds
features into an empty set until the performance of the model is not improved either by
addition of another feature or by reaching the maximum allowed number of features [70].
Similar to FS, this procedure is also a greedy search algorithm where the best subsets of
descriptors are selected stepwise and the model performance is justified by the user-specific
statistical measure. In this work, the python based SequentialFeatureSelector algorithm
of the “mlxtend” library (http://rasbt.github.io/mlxtend/, accessed on 27 July 2020) was
applied to setup the resultant SFS-LDA model. The parameters used for that purpose were:
(i) maximum number of features: 10, (ii) forward: True, (iii) floating: True, (iv) scoring:
accuracy, and (v) cross-validation (cv) = 0. Thereby, accuracy was employed as the user-
specific statistical measure for feature selection, in contrast to FS where the p-value was
used, and no cross-validation was performed during feature selection.

Several diagnostic statistical indices were employed for assessing our model equations,
in terms of the criteria goodness-of-fit and goodness-of-prediction. Measures of goodness-
of-fit of the LDA models based on the sub-training set were estimated by standard indices
such as the Wilks’ lambda (λ) [71], chi-squared (χ2), the square of Mahalanobis distance
(D2), the Fisher’s statistic index (F), and the corresponding p-value (p) [41]. Measures of
goodness-of-prediction for both linear and non-linear models were estimated by computing
the following statistical measures for the sub-training, test and external validation sets:
sensitivity—correct classification of the active cases, specificity—correct classification of in-
active cases, accuracy—overall correct classification, F-measure, and Matthews correlation
coefficient (MCC) [41,42].

3.3. Non-Linear Model Development

Seven different machine learning techniques were used for setting up the non-linear
models, namely: (a) gradient boost classifier (Xgboost) [51], (b) Random Forests (RF) [52],
(c) k-Nearest Neighbors (kNN) [53], (d) Radial Basis Function based Support Vector Clas-
sifier (RBF-SVC) [54], (e) Multilayer Perceptron (MLP) neural-networks [55], (f) Decision
Trees (DT) [56], and (g) Bernoulli Naïve Bayes (NB) [57]. The python 2 based Xgboost
(version 1.0.0) algorithm (https://xgboost.readthedocs.io/en/latest/, accessed on 26 Octo-
ber 2020) was used for developing the Xgboost models. Regarding the RF ML, that was
implemented with the help of the QSAR-Co tool [22], using the following parameters:
(i) each bag size: 100, (ii) maximum depth: 0 (unlimited), (iii) number of randomly chosen
features: 0 [i.e., n = int(log2(#Predictors) + 1)], and (iv) number of iterations: 100.

All other machine learning techniques were applied by resorting to the respective
Scikit-learn machine learning packages [44]. The model development parameters for
each of these techniques were determined by hyperparameter tuning as implemented
in GridSearchCV of Scikit-learn [58]. During hyperparameter optimization, a 10-fold
cross-validation (10-fold CV) was performed with the sub-training set to identify the best
model estimators. The 10-fold CV accuracies obtained from the different machine learning
techniques were compared to find the highly predictive classifiers. Finally, the external
predictivity of these classifiers were estimated with the test and the validation sets.

3.4. PharmMapper Based Prediction of Biological Targets

The freely-accessed PharmMapper (version 2017) web server (http://www.lilab-ecust.
cn/pharmmapper/, accessed on 4 January 2021) searches for the best mapping poses of
the given molecules against structure-based pharmacophore models generated with all
targets of PharmTargetDB [60,61]. PharmMapper applies a large database of receptor-based
pharmacophores (>7000 pharmacophore models based on 1627 drug targets, 459 of which
are human protein targets.) to find possible macromolecular targets for the input ligands.
It implements Cavity (version 1.1) program in order to identify the binding sites on the
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surface of a protein structure and to rank these subsequently as per their druggability scores.
The receptor-based pharmacophore modelling was then performed using Pocket (version
4.0) program for extracting the pharmacophore features within these druggable cavities.

In this work, the virtual hits obtained from multi-target QSAR computational model-
ing were subjected to PharmMapper based predictions of biological targets. A maximum
number of 1000 conformers were generated during the search of pharmacophore fitting on
human biological targets and the top 200 targets based on the fit scores were analyzed.

3.5. Homology Modeling

The homology model of AKT3 was set up with the help of the SWISS-MODEL web-
server [64,65]. The FASTA sequence of human AKT3 was retrieved from Uniprot (Uniprot
ID: Q9Y243) and we used the sequence 141–479 for homology modeling. The FASTA
sequence was uploaded to the SWISS-MODEL server to search for templates and then,
ranging from 50 templates to 10 templates were selected for generating the model on
the basis of higher GMQE values and also on their diversity. Each of the homology
models was analyzed by the ‘structural assessment’ option available in this webserver.
Among these models, one model developed with the template of 6CCY.1.A (sequence
identity: 83.18%) was found to have the lowest MolProbity value (=1.02), calculated from
http://molprobity.biochem.duke.edu/, accessed on 11 January 2021). This model, which
showed a Qualitative Model Energy Analysis (QMEAN) value of −1.84, was selected for
further structural modifications. From the low MolProbity value, it is ensured that the
homology model is of good structural quality, however, the model showed some compli-
cations mainly due to its Clashscore (all atoms) of 0.37, the presence of 5 Ramachandran
outliers, as well as the presence of 26 bad angles. Therefore, the UCSF Chimera soft-
ware [72] was utilized for structural modifications of this homology model. The latter
included step-by-step loop refinement, rotamer adjustment and structural minimization
of the selected residues. Then, for each modification step, the quality of the model was
checked in the Molprobilty webserver (http://molprobity.biochem.duke.edu/, accessed
on 11 January 2021) [64]. Ultimately, the modified homology model was found to have
an even lower Molprobilty score of 0.87, indicating that the initially developed model
was clear structurally improved. In this final model, the Clashscore (all atoms) reduced
to zero and the number of outliers to one, as well as the number of bad angles lowered
to two. The final model also depicted an improved Global Model Quality Estimation
(GMQE) value of −1.61. Alignment of Q9Y243 with 6CCY.1.A, validation parameters as
well as Ramachandran plots of the final homology model are shown in the Supplementary
Materials (Figures S7 and S8).

3.6. Molecular Docking

The docking experiments with the X-ray crystal structures and homology model were
performed with Autodock Vina (version 1.1.2., The Scripps Research Institute, La Jolla,
CA, USA) [62] and Autodock 4.2 (The Scripps Research Institute, La Jolla, CA, USA) [63].
During preparation of the macromolecules, water molecules and the peptide substrate
obtained from the PDB were removed. Other necessary details about the methodology
followed on such docking experiments are the same as described earlier [20].

3.7. Molecular Dynamics Simulations

All MD simulations were carried out using the software package AMBER 12 [73,74].
Initially, the protonation states of the amino acid residues of each protein were fixed
at pH = 7.0. These protonation states were attained by the PDB2PQR server (http://
server.poissonboltzmann.org/pdb2pqr, accessed on 12 January 2021), using the AMBER
forcefield and output naming scheme [75]. The ff99SB and general AMBER forcefield
(GAFF) were applied for describing the protein-inhibitor and inhibitor-solvent interactions,
respectively [76,77]. The optimization of ligands was carried out with the help of Leap
in Antechamber, by performing MD simulations of the hydrated complexes centered in
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a cubic box of edge length of 8 Å, and applying the forcefields GAFF, ff99SB, and TIP3P
for water molecules [78]. Subsequently, the negative charges of the complex systems were
neutralized. The SHAKE algorithm was used to constrain all bonds related to hydrogen
atoms, whereas the Partial Mesh Ewald (PME) method was employed to handle long range
electrostatic forces (using a cutoff of 12 Å). Energy minimization of the complexes was
performed in two stages. In the first stage, only the ions and water molecules were allowed
to relax during 1000 steps of the steepest descent method and during 1000 steps of the
conjugate gradient algorithm using a restrained force of 500 kcal/mol on the solute. In the
second stage, the whole system was relaxed during 5000 minimization steps, i.e., 2500 steps
of steepest decent minimization followed by 2500 of conjugated gradient. The minimized
systems were then gradually heated up from 0 to 300 K (50 K in each step) with a weak
harmonic restraint of 10 kcal/mol to keep the solute fixed for 200 ps. Subsequently, a 2-ns
equilibration on the NpT ensemble was performed, with pressure kept fixed at 1 bar and
temperature at 300 K. Finally, the 50-ns MD simulations without restrictions were run
with constant temperature (T = 300 K) and constant pressure (p = 1 bar). After completion
of such simulations, various post-dynamic analyses were carried out with PTRAJ and
CPPTRAJ implemented in the AMBER package [79]. The graphs were plotted using the
QTGRACE tool (https://sourceforge.net/projects/qtgrace/files/, accessed on 1 February
2021). Molecular Mechanics Generalized Born Surface Area (MM-GBSA) based binding
free energies of the ligands were calculated using MMPBSA.py program in AMBER [80,81].
One hundred snapshots were taken from the last 10 ns of MD trajectory.

The binding energy calculation is represented as the following equation:

∆G = ∆Eele + ∆EvdW + ∆Gpol + ∆Gnonpolar − T∆S (1)

∆Eele and ∆EvdW are electrostatic and van der Waals interactions between the ligands
and the proteins (in gas phase), respectively. The polar solvation free energy (∆Gpol)
accounts for the polar interactions with the solvent molecules whereas the ∆Gnonpolar
term represents non-polar solvation free energy, which is obtained from the equation
∆Gnonpolar = γSASA+ β. The the solvent accessible surface area is represented by the term
SASA. The surface tension proportionality constant (γ) and the free energy of nonpolar
solvation of a point solute (β), were set to 0.00542 kcal mol−1 Å−2 and 0 kcal mol−1,
respectively. The entropic contribution (T∆S) is not calculated because apart from being
computationally expensive (especially for large macromolecular complexes), it has been
reported to be less accurate [80,81].

The energy contributions of the close contact amino acid residues into the total binding
free energies were computed using MM-GBSA per residue free energy decomposition
method with Amber 12 MM-GBSA module [73,74,82,83]. All energy components (van der
Waals, electrostatic, polar solvation, and nonpolar solvation contributions) were calculated
using 200 snapshots extracted from the last 10 ns MD trajectories.

4. Conclusions

The latest advances in machine learning tools, coupled with the availability of ever-
larger data sets, brought about a fresh wave for faster and less complicated computational-
guided drug discovery efforts [84–86]. In this work, we could assemble a large dataset
containing 5523 inhibitors of the three AKT isoforms, assayed under a variety of experimen-
tal conditions. With the desire to build reliable predictive multi-target QSAR classification
models for probing the inhibitory activity from such data, we examined the use of various
machine learning tools along with several feature selection algorithms. Considering that
machine learning is a powerful mean for finding drug like leads [18], the best linear and
non-linear mt-QSAR models were finally used for screening a focused kinase library to
identify virtual hits as potential pan-AKT inhibitors. The results obtained were finally
post-processed by structure-based approaches.

With regard to the mt-QSAR modeling, the combination of LDA with feature selection
algorithms such as FS, SFS, or GA was found to produce classification models exhibiting
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very good accuracy (>87%), as well as internal and external predictivity. Nevertheless, the
GA feature selection algorithm yielded the best predictive linear model, even though in a
not so straightforward and less time-consuming way as the other two algorithms. More
significantly, these linear models aided us in understanding the most crucial structural
and/or physicochemical properties required for higher AKT inhibition. At the same time,
the classification ability of the seven different ML-based mt-QSAR models were found
to vary to a considerable extent. The Xgboost technique produced the most predictive
non-linear mt-QSAR model (accuracy > 90%), but its overall predictivity was similar to
that of the RF model. This leads us to suppose that tree-based modeling techniques are
superior to other machine learning ones for multi-target computational modeling. Yet,
more investigations are needed to confirm that supposition.

To judge how the best linear and nonlinear mt-QSAR models perform on identifying
virtual hits with activity against AKT inhibitors, we used them to screen the Asinex
kinase inhibitor library. The obtained virtual hits were further evaluated by structure-
based pharmacophore modeling, molecular docking and MD simulations studies. Worth
mentioning here that in case of multi-target modeling, structure-based approaches become
more problematic when one or more biological targets are not sufficiently characterized.
Indeed, this was the case for the AKT3 isoform, the X-ray crystal structure of which is yet to
be reported, and thereby a reliable homology model had to be derived. The pharmacophore-
mapping target-identification search led to results reinforcing the former mt-QSAR based
predictions. Further, the results obtained in the following MD simulations allowed us to
put forward Asn0019 as the most potent virtual hit for the inhibition of all AKT isoforms.

To conclude, the information gathered and the derived mt-QSAR computational
models provide important guidelines for the discovery of novel AKT inhibitors. What is
more, such models are not limited only to pan-inhibitors but can also be applied to identify
inhibitors that have selectivity towards one or two AKT isoforms.

Supplementary Materials: The following are available online https://www.mdpi.com/article/10.3
390/ijms22083944/s1, Table S1: Degree of collinearity among the variables of the GA-LDA model;
Table S2: Degree of collinearity among the variables of the FS-LDA model; Table S3: Degree of
collinearity among the variables of the SFS-LDA model; Figure S1: ROC curves for the two best non-
linear models (Xgboost–ROC-AUC score (test): 0.919, ROC-AUC score (validation): 0.932, and RF–
AUROC: ROC-AUC score (test): 0.917, ROC-AUC score (validation): 0.930); Table S4: Experimental
conditions under which the virtual hits were predicted to be active; Table S5: Molecular docking
results with binding energy values (in kcal/mol) of the virtual hits; Figure S2: Fitting of virtual hits
to the structure-based pharmacophores of AKT1 (PDB: 3CQU) and AKT2 (PDB: 2UW9) enzymes;
Figure S3: Fitting of virtual hits to the structure-based pharmacophores of AKT1 (PDB: 3CQU) and
AKT2 (PDB: 2UW9) enzymes.; Figure S4: Protein backbone RMSD, ligand RMSD, RMSF and radius
of gyration plots for the AKT1 complexes.; Figure S5: Protein backbone RMSD, ligand RMSD, RMSF
and radius of gyration plots for the AKT2 complexes; Figure S6: Protein backbone RMSD, ligand
RMSD, RMSF and radius of gyration plots for the AKT3 complexes; Figure S7: (A) Alignment of the
AKT3 target sequence with potential template; (B) Z-score estimation of the AKT3 homology model;
(C) Local QMEAN estimates after manual refinement; (D) AKT3 homology model built using the
Swiss-Model server and the 6CCy.1.A template 3D structure; Figure S8: Ramachandran plots for the
homology model of AKT3 enzyme. Starting_protein_ligand_complexes.zip: PDB files containing the
complexes of virtual hits with the enzymes, used in the MD simulations.
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