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Abstract: High mobility group box 1 (HMGB1) has been demonstrated to promote the migration and
invasion of non-small cell lung cancer (NSCLC). However, the mechanism of action of HMGB1 in reg-
ulating tumor mobility remains unclear. Therefore, we aimed to investigate whether HMGB1 affects
mitochondria distribution and regulates dynamin-related protein 1 (DRP1)-mediated lamellipo-
dia/filopodia formation to promote NSCLC migration. The regulation of mitochondrial membrane
tension, dynamics, polarization, fission process, and cytoskeletal rearrangements in lung cancer cells
by HMGB1 was analyzed using confocal microscopy. The HMGB1-mediated regulation of DRP1 phos-
phorylation and colocalization was determined using immunostaining and co-immunoprecipitation
assays. The tumorigenic potential of HMGB1 was assessed in vivo and further confirmed using
NSCLC patient samples. Our results showed that HMGB1 increased the polarity and mobility of
cells (mainly by regulating the cytoskeletal system actin and microtubule dynamics and distribution),
promoted the formation of lamellipodia/filopodia, and enhanced the expression and phosphory-
lation of DRP1 in both the nucleus and cytoplasm. In addition, HMGB1 and DRP1 expressions
were positively correlated and exhibited poor prognosis and survival in patients with lung cancer.
Collectively, HMGB1 plays a key role in the formation of lamellipodia and filopodia by regulating
cytoskeleton dynamics and DRP1 expression to promote lung cancer migration.
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1. Introduction

With advancements in medical diagnosis, the survival rate of cancer patients has
improved, except for that of lung cancer, where late diagnosis is the primary reason for a
five-year survival rate of less than 5% [1]. Though low-dose computed tomography (LDCT)
screening has improved the five-year survival rate of patients with lung cancer, the usage
of LDCT is not widely promoted [2]. Advanced lung cancers have high metastatic activity
that results in distinct metastasis [3]. Therefore, in addition to the requirement of early
diagnosis, the inhibition of the metastasis and invasion of lung cancer is a critical issue in
therapy currently.

High mobility group box 1 (HMGB1) with a genetic location on the 13q12.3 chromo-
some belongs to the high mobility group box superfamily. It is a DNA-binding protein that
regulates several cellular processes, such as inflammation, cell differentiation, and tumor
cell migration [4]. In the nucleus, HMGB1 acts as a transcription factor and serves many
DNA-dependent nuclear processes, including transcription, replication, recombination, and
repair [5]. In the intracellular compartments, HMGB1 exists in endosomes [6], exosomes [7],
endoplasmic reticulum–Golgi intermediate compartments [8], and cell surfaces [3]. In the
extracellular compartments, HMGB1 mediates cell proliferation, differentiation, tissue
regeneration, inflammation/immune responses, and tumor progression [9,10]. A previ-
ous study indicated that HMGB1 plays a critical role in tumor development, epithelial–
mesenchymal transition, and the prognosis of lung cancer [11]. Furthermore, HMGB1 was
shown to increase matrix metalloproteinase-9 expression through the phosphatidylinosi-
tol 3-kinase/protein kinase B and nuclear factor kappa-light-chain-enhancer of activated
B cells signaling pathways, and it was found to promote lung cancer migration, invasion,
and metastasis [12].

Mesenchymal cell motility is characterized by a polarized distribution of actin fil-
aments. The leading-edge protrusions of migrating cells are formed by both sheet-like
lamellipodia and rod-like filopodia [13], which are composed of meshworks and bundles
of actin filaments [14]. The driving force of lamellipodia and filopodia is the barbed end
(plus end) elongation formed by the polymerization of actin filaments toward the plasma
membrane—a process that pushes the cell edge forward and is the key step in cell migra-
tion [15]. Increased filopodia formation has been indicated to promote migration [16]. The
HMGB1/receptor for advanced glycation end products (RAGE) axis facilitates neural stem
cell migration through filopodia formation [17]. In addition, abundant filopodia have been
demonstrated as a characteristic feature of invasive carcinoma cells [18]. Though these
studies have indicated that HMGB1 regulates filopodia formation and controls cancer cell
migration, the mechanism of action has not been well-investigated.

Mitochondrial trafficking has emerged as a central regulator of metastatic competence
in disparate tumors [19]. A recent study showed that cortical mitochondria supported mem-
brane lamellipodia dynamics and actin cytoskeleton remodeling, resulting in increased
cancer cell motility and invasion [20]. Cortical mitochondria produce ATP, which provides
an efficient “regional” energy source to fuel membrane–cytoskeletal dynamics to regulate
lamellipodia and filopodia formation [19]. In addition, a previous study showed that pa-
tients with highly phosphorylated dynamin-related protein 1 (DRP1) were associated with
an increased risk of tumor relapse after neoadjuvant chemoradiotherapy [21]. Furthermore,
HMGB1 induces DRP1-dependent mitochondrial dynamics via the RAGE–extracellular-
signal-regulated kinase (ERK) signaling pathway, which is critical for autophagy and
chemoresistance [21]. However, the correlation between HMGB1 and DRP1 in lung cancer
and the way that HMGB1 drives mitochondrial fission to control cell migration and mobil-



Int. J. Mol. Sci. 2021, 22, 3628 3 of 17

ity have not been explored. Therefore, in this study, we aimed to evaluate the mechanism
by which HMGB1 regulates motility and migration during lung cancer metastasis.

2. Results
2.1. HMGB1 Regulates Membrane Tension, Dynamics, Polarization, and Cytoskeletal
Rearrangements in Lung Cancer Cells

HMGB1 is a regulator of cell initiation, polarity, motility, and metastasis [22,23]. To
determine whether HMGB1 expression affects spreading and polarization in lung cancer,
human lung cancer A549 cells were infected with lentiviral vector-carrying HMGB1 (LV-
HMGB1) or transfected with small interfering (si)-HMGB1 for 48 h. The changes in cell
morphology were examined by F-actin immunostaining and imaging using confocal mi-
croscopy, followed by 3D image construction using the Imaris software. Our results showed
that in the control group, cells presented as polygon and flat shapes; they transitioned from
the non-contractile spreading phase into the contractile spreading phase and had a larger
cell surface area and lower cell membrane tension (Figure 1A). Migration was found to be
a polarized cellular process that moved from a protrusive front edge to a retracting trailing
edge. In the group with HMGB1 overexpression, cells presented with a filopodia-rich
shape and a lamellipodial shape with a high membrane area, lower membrane tension,
and higher polarity and motility (Figure 1A). Taken together, these findings indicate that
HMGB1 might play a critical role in the regulation of membrane tension, dynamics, and
polarization in lung cancer cells. The silencing of HMGB1 expression resulted in a small
cell membrane area, a high membrane tension, and non-contractile spreading. There were
two types of cell shapes: burr-shaped and round-shaped. The burr-shaped cells were
small and had serrated edges over the entire surface with a high membrane tension and
less surface area adhered to the cell matrix. The round-shaped cells revealed weak cell
substrate attachment, although they had higher membrane tension than the interphase
cells, and membrane folds were clearly visible at this stage. From the front to the rear,
actin-mediated forces sequentially promoted cell protrusion, adhesion, contraction, and
retraction. Microtubule network polarity controls the establishment and maintenance of the
spatial and temporal coordination of migration events and is therefore the key to persistent
directed migration [24]. We further examined the effects of HMGB1 in regulating lamel-
lipodia and filopodia formation in lung cancer cells by SEM analysis. Our data showed
that in the LV-HMGB1 group, cell appearance revealed a lamellipodium/filopodium shape
(Figure 1B). In addition, we further explored whether HMGB1 affected cell protrusions
and polarity through the regulation of cytoskeletal microtubules and F-actin using im-
munofluorescence staining. Our data showed that in the control group, microtubules were
distributed in the cytoplasm and showed alignment and directionality, while actin formed
bundles, stress-fibers, and actin cortexes to maintain cell morphology. In the LV-HMGB1
group, microtubules were distributed in lamellipodia and had alignment and directionality,
while actin formed filopodia and cortical actin around the cell nucleus. In the si-HMGB1
group, microtubules formed a network of evacuated patterns distributed in the cytoplasm.
In addition, actin formed a large amount of cortexes around the cell (Figure 1C). These
findings indicate that HMGB1 promotes lamellipodia and filopodia formation through the
regulation of microtubule and actin dynamics.
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Figure 1. HMGB1 regulates lung cancer cell spreading and polarization through the regulation of microtubule and actin 
dynamics. (A) A549 cells were transfected with LV-HMGB1 or small interfering (si)-HMGB1 for 48 h, and then they were 
stained with F-actin and analyzed using confocal microscopy and the Imaris software (red arrows: leading edge; blue 
arrows: stress fibers. (B) Cell morphology and polarity were examined by SEM analysis. (C) To determine the organization 
of actin and microtubule cytoskeleton in cellular protrusions and polarities, the cells were stained with F-actin (red color), 
α-tubulin (green color), and nucleus dye (blue color), and they were analyzed using confocal microscopy and the Imaris 
software. Data are representative of three independent experiments. HMGB1: high mobility group box 1; si-HMGB1: 
HMGB1 small interfering RNA; Con: control; LV-HMGB1: lentiviral vector-carrying HMGB1; DAPI: 4′,6-diamidino-2-
phenylindole. 

2.2. HMGB1 Regulates Mitochondrial Dynamics and Increases Mitochondrial Fission in Lung 
Cancer Cells 

Mitochondria exist as dynamic networks that often change size and subcellular dis-
tribution, and these dynamics are maintained by two opposing processes: fission and fu-
sion [25]. Next, we examined the regulation of mitochondrial dynamics by HMGB1. The 
mitochondrial shapes were classified into type 1 (green color, fission mitochondria, and 

Figure 1. HMGB1 regulates lung cancer cell spreading and polarization through the regulation of microtubule and actin
dynamics. (A) A549 cells were transfected with LV-HMGB1 or small interfering (si)-HMGB1 for 48 h, and then they were
stained with F-actin and analyzed using confocal microscopy and the Imaris software (red arrows: leading edge; blue arrows:
stress fibers. (B) Cell morphology and polarity were examined by SEM analysis. (C) To determine the organization of actin
and microtubule cytoskeleton in cellular protrusions and polarities, the cells were stained with F-actin (red color), α-tubulin
(green color), and nucleus dye (blue color), and they were analyzed using confocal microscopy and the Imaris software.
Data are representative of three independent experiments. HMGB1: high mobility group box 1; si-HMGB1: HMGB1 small
interfering RNA; Con: control; LV-HMGB1: lentiviral vector-carrying HMGB1; DAPI: 4′,6-diamidino-2-phenylindole.

2.2. HMGB1 Regulates Mitochondrial Dynamics and Increases Mitochondrial Fission in Lung
Cancer Cells

Mitochondria exist as dynamic networks that often change size and subcellular dis-
tribution, and these dynamics are maintained by two opposing processes: fission and
fusion [25]. Next, we examined the regulation of mitochondrial dynamics by HMGB1.
The mitochondrial shapes were classified into type 1 (green color, fission mitochondria,
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and small fragmented), type 2 (yellow color, fission mitochondrial formation, branch,
curve, and circular tubular mitochondria), type 3 (blue color, fusion mitochondria, and
large tubular), and type 4 (red color, fusion mitochondria, and large fusion aggregate; see
Figure 2A. Mitochondrial fission and small fragment formation were markedly increased in
the LV-HMGB1 group compared to other groups. Large and long mitochondria (mitochon-
drial fusion) were notably increased in the control and si-HMGB1 groups (Figure 2B,C).
Next, we examined the mitochondrial morphology by TEM analysis (Figure 2D). Our data
revealed that LV-HMGB1 increased small and branch shaped mitochondria formation.
This data indicated that HMGB1 regulated mitochondrial dynamics and increased the
fission process.
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Figure 2. Mitochondrial dynamics is regulated by HMGB1. (A) Mitochondria were stained using the mitochondria tracker
dye (red color) and nucleus dye (blue color) and analyzed using confocal microscopy and the Imaris software. Mitochondrial
shapes (highlighted in white square as an example) were classified as type 1 (small fragmented mitochondria), type 2
(branched, curve, circular, and tubular mitochondria), type 3 (large tubular mitochondria), and type 4 (aggregated and
fusion mitochondria). (B,C) A549 cells were transfected with LV-HMGB1 or si-HMGB1, respectively, for 48 h. The types of
mitochondrial shapes were classified and quantified using confocal microscopy, the Imaris software, and the Mountains 8
software. (D) TEM analysis was used to confirm mitochondrial shapes (blue arrows: large mitochondria; red arrows: small
fragmented mitochondria; green arrows: branched mitochondria).
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2.3. HMGB1 Regulates DRP-1 Phosphorylation, Mitochondrial Dynamics, and Increases
Mitochondrial Trafficking to the Leading Edge of Lung Cancer Cells

The upregulation of mitochondrial fission and the increased expression of DRP1 have
been reported to promote cancer metastasis [26]. In migrating cancer cells, mitochondria
localize at the leading edge along microtubules to meet high-energy demand and provide
necessary supply characteristics [27]. Since HMGB1 increased mitochondrial fission, we
further examined whether HMGB1 affected DRP1 expression and mitochondria shape.
Our experimental results showed that LV-HMGB1 increased the expression of phospho-
DRP1 (pDRP1) (Ser616) (Figure 3A). The essential conditions for cell migration include
cytoskeletal elements to form membrane ruff, lamellipodia and filopodia formation, and
mitochondrial trafficking. Mitochondria provides the necessary energy supply for lamel-
lipodia and filopodia formation during cancer cell migration [28]. To determine the effect of
HMGB1 on mitochondrial trafficking, A549 cells transfected with LV-HMGB1 or si-HMGB1
were stained for mitochondria, nucleus, and α-tubulin using immunocytochemistry (ICC),
and then they were analyzed using confocal microscopy and the Imaris software. LV-
HMGB1 promoted mitochondrial trafficking, and the mitochondria were distributed along
F-actin (Figure 3B) and α-microtubule (Figure 3C) to the lamellipodia leading edge and
around the nucleus. In contrast, the knockdown of HMGB1 increased mitochondria assem-
bly in the cytoplasm. The LV-HMGB1 group showed an increased amount of filopodia and
branched filopodia formation compared with other groups. To verify filopodia formation
through F-actin polymerization, the F-actin and G-actin ratios were analyzed by Western
blot (WB) (Figure 3D). Our experimental results indicated that the LV-HMGB1 group had
an increased F-actin polymerization, which contributed to filopodia formation. To investi-
gate the effect of HMGB1 on cancer cell migration, a wound healing assay was performed
(Figure 3E,F). HMGB1-mediated cell migration displacement, velocity, and motility tracks
were examined and quantified using time-lapse confocal microscopy (Figure 3G–I). Our
data showed that HMGB1 significantly increased lung cancer cell migration and motility.

2.4. HMGB1 Regulates Membrane Tension, Dynamics, Polarization, and Cytoskeletal
Rearrangements in Lung Cancer Cells

To further investigate the association between HMGB1 and DRP1 in regulating lung
cancer migration, the expression and colocalization of HMGB1 (green color) and pDRP1
(Ser616) (red color) were analyzed using an immunostaining assay (Figure 4A–C). LV-
HMGB1 increased HMGB1 expression in the cytoplasm and nucleus. It also increased
pDRP1 (Ser616) expression and colocalization with HMGB1 in the cytoplasm. HMGB1 silenc-
ing reduced HMGB1 expression in the cytoplasm and nucleus. A co-immunoprecipitation
assay was employed to confirm the colocalization between HMGB1 and DRP1 (Figure 4D).
HMGB1 inhibition increased nuclear pDRP1 (Ser616), reduced cytoplasmic pDRP1 (Ser616),
and showed colocalization. HMGB1 was shown to promote ERK-mediated mitochondrial
DRP1 phosphorylation, thus enhancing chemoresistance through RAGE in colorectal can-
cer (CRC) [21]. A previous study also indicated that the ERK2 phosphorylation of DRP1
(Ser616) promotes mitochondrial fission and MAPK-driven tumor growth [29]. Our data
also confirmed that HMGB1 overexpression increased ERK-mediated mitochondrial DRP1
phosphorylation (Figure 4E,F).
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Figure 3. HMGB1 regulates DRP1 phosphorylation and mediates mitochondrial trafficking from the
cortical cytoskeleton to the leading edge to promote cancer migration. (A) A549 cells were transfected
with LV-HMGB1 or si-HMGB1 for 48 h. Cells were stained with HMGB1 (green color), phospho-DRP1
(pDRP1) (Ser616) (red color), and nucleus dye (blue color), and they were analyzed using confocal
microscopy and the Imaris software. (B,C) Mitochondrial repositioning (mitochondria tracker dye:
red color) and F-actin/α-tubulin (green color) expression, respectively, were analyzed using confocal
microscopy and the Imaris software. (D) F-actin and G-actin expressions were analyzed by Western blot
(WB). (E,F) Cell migration was analyzed using the wound-healing assay (scale bar: 500 µm). Cells were
analyzed by time-lapse microscopy. (G) migration distance, (H) mean velocity, and (I) displacement
were determined. * p < 0.05 and ** p < 0.01 compared with the control. F: F-actin; G: G-actin.
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Figure 4. HMGB1 regulates DRP1 phosphorylation and colocalization. A549 cells were transfected with LV-HMGB1 or
si-HMGB1 for 48 h. (A) Cells were stained with HMGB1 (green color), pDRP1 (Ser616) (red color), and nucleus dye (blue
color), and they were analyzed using confocal microscopy and the Imaris software. (B,C) To validate that HMGB1 regulates
pDRP1 (Ser616) expression, confocal analysis, image construction, and quantification were done using the Imaris software.
Data are representative of three independent experiments. (D) HMGB1 colocalization with pDRP1 (Ser616) was determined
by co-immunoprecipitation. (E,F) The regulation pathway was examined by a Western blot assay. * p < 0.05 compared with
the control. Con: control. CP: cytosolic protein; NP: nucleus protein; IP: immunoprecipitation; IB: immunoblotting; IgG:
immunoglobulin G; Lamin A/C: nucleus protein internal control.

2.5. HMGB1 Promotes Tumor Growth and pDRP1 (Ser616) Expression In Vivo

To examine whether HMGB1 affected tumorigenic potential in lung cancer, A549
cells transfected with LV-HMGB1 and luciferase were subcutaneously injected into nude
mice (Figure 5A). Tumor growth was monitored using an in vivo imaging systems (IVIS)
(Figure 5B–D). HMGB1 and DRP1 expression in tumor tissues were evaluated using
qPCR (Figure 5E–H), WB (Figure 5I), and immunohistochemistry (IHC) (Figure 5J). Our
experimental results demonstrated that LV-HMGB1 enhanced tumor growth and increased
pDRP1 expression.
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Figure 5. HMGB1 promotes tumor growth and pDRP1 (Ser616) expression in vivo. (A) Schematic diagram of the exper-
imental process. Xenograft models were established using severe combined immunodeficiency (SCID) mice that were
subcutaneously inoculated with the control or HMGB1-overexpressing (LV-HMGB1) A549 cells (n = 8 mice/group). (B) Flu-
orescent labeling of cells. (C,D) Fluorescence based on the region of interest and tumor size, respectively, were measured.
(E–G) Expression of HMGB1 mRNA and protein in tumor tissues was assessed by real-time PCR, Western blotting, and an
immunohistochemistry assay, respectively. (H–J) Expression of pDRP1 (Ser616) mRNA and protein in tumor tissues was
measured by real-time qPCR, Western blotting, and an immunohistochemistry assay, respectively. * p < 0.05 compared with
the control. ROI: region of interest.
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2.6. Elevated Expression of HMGB1 and DNM1L Genes Predicts Poor Outcome in NSCLC

To confirm our results in non-small cell lung cancer (NSCLC) samples, IHC and WB
analyses demonstrated that the expression of HMGB1 and DRP1 was significantly higher in
tumor tissues than in normal lung tissues (Figure 6A,B). We also analyzed the expression of
HMGB1 and DRP1 in NSCLC using the DriverDBv3 database [30] (tumor parts (TP), tumor
recurrent (TR) tissues, and normal tissues (NT)). The high expression of HMGB1 (log-rank,
p = 0.0002) and DRP1 (log-rank, p = 0.000228) correlated with a poor survival (Figure 6C). Both
genes were highly expressed in TP and TR tissues compared with NT (HMGB1: p = 4.2 × 10−7;
DRP1: p ≤ 2.22 × 10−16) (Figure 6D). In addition, the expressions of both HMGB1 and DRP1
revealed positive correlations in lung adenocarcinoma (Pearson correlation coefficient = 0.54,
p = 5.87 × 10−11; Kendall tau = 0.506; p = 3.34 × 10−17) (Figure 6E).
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Figure 6. Elevated expression of HMGB1 and DNM1L (DRP1) genes is associated with a poor outcome in NSCLC.
(A,B) Expression of HMGB1 and pDRP1 (Ser616), respectively, in human normal or tumor tissues was examined by
immunohistochemistry (IHC) and WB. * p < 0.01 compared with the control. (C) Effects of HMGB1 and DNM1L expression
on overall survival in lung cancer patients were analyzed; the Kaplan–Meier plots were generated using a Kaplan–Meier
Plotter obtained from the DriverDBv3 database (NT, TP, and TR) (http://driverdb.tms.cmu.edu.tw/) [30]. (D) Correlations
between HMGB1 and DNM1L gene expression and 5-year overall survival rate of patients with lung cancer were obtained
using the DriverDBv3 database. (E) Correlations of HMGB1 and DNM1L expression, the Pearson’s correlation, and Kendall’s
tau coefficient tests were used to calculate the p value. NSCLC: non-small-cell lung cancer; N: normal lung tissue; T: lung
tumor tissue.

3. Discussion

The metastatic process is a multi-step phenomenon involving cancer cell transitions
with different polarized phenotypes [31]. Previous reports have shown that HMGB1 ad-
hered to fibrinogen and induced the polarization of the myelomonocytic cell line [32].
This change in shape led to F-actin enrichment at the leading edge and indicated HMGB1-
induced lamellipodium formation in endothelial [33] and inflammatory cells [32,34]. A
previous study indicated a mechanism for length-dependent microtubule depolymeriza-
tion, wherein polarized dynamic microtubules promoted cell elongation and spreading
by changing the long cell axis towards cell tips [35]. In this study, we investigated the role
of HMGB1 in phenotype transitions in lung cancer cells. Our results demonstrated that

http://driverdb.tms.cmu.edu.tw/
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HMGB1 reduced cell membrane tension and increased the membrane area and lamellipo-
dia/filopodia formation. Therefore, HMGB1 plays an important role in modulating cell
polarization and motility.

Filopodia are “finger-like” plasma membrane protrusions that are made of ≥10 tightly
bundled actin filaments [36]. These filaments are organized in a parallel manner by small
crosslinking proteins, such as fascin, and their barbed ends face the plasma membrane [15].
The polarized nature of the actin filaments allows motor proteins to actively transport
cargoes to slender protrusions [37]. The tips of the filopodia are dense and contain many
proteins, including integrins [38]. It is unknown whether the filopodia tips also function as
platforms for integrin outside–in signaling [39]. However, this is an intriguing possibility
and might underlie the important role of filopodia in cell migration. The role of HMGB1 in
filopodia formation during cancer metastasis has not been well-investigated. Understand-
ing the mechanism by which HMGB1 regulates the interplay between actin and microtubule
cytoskeleton during cancer metastasis is a critical issue. Our experimental results showed
that HMGB1 modulated microtubule reorganization, such as F-actin polymerization, to
form filopodia in the lamellipodia leading edge. Furthermore, HMGB1 regulated DRP1
phosphorylation and increased mitochondrial fission and trafficking through the actin and
tubulin cytoskeletal system to the filopodia leading edge in order to supply the energy for
cancer cell migration. To the best of our knowledge, this is the first study that explored the
role of HMGB1 in filopodia formation in terms of driving migration in lung cancer cells.
However, the study had limitations, and whether HMGB1 is a key regulator in modulating
cortical F-actin and microtubule dynamics requires further confirmatory analysis.

To achieve local ATP production, mitochondria accumulate at regions of high-energy
demand [19]. Therefore, docking and anchoring mechanisms are needed for the correct dis-
tribution of mitochondria. The roles of actin filaments and microtubules in mitochondrial
transport have been extensively studied [40]. Metastatic breast cancer cells were found
to enhance mitochondrial fission, increased DRP1 expression, and decreased mitofusin-1
expression [26]. Our experimental results also indicated that the overexpression of HMGB1
increased mitochondrial fission, promoted mitochondrial transportation to the filopo-
dia leading edge by actin filaments and microtubules, and increased cell migration and
motility. Moreover, the results of lung cancer xenograft animal model confirmed that the
overexpression of HMGB1 promotes tumor growth and increases DRP1 expression and
phosphorylation in the nucleus and cytoplasm. In lung cancer, no associated literature
has investigated the association between HMGB1 and DRP1 until now. We demonstrated
that DRP1 accumulates in the nucleus and cytoplasm in the LV-HMGB1 group. HMGB1
significantly increased the phosphorylation of DRP1 in both the nucleus and cytoplasm
and colocalized with HMGB1. However, the role of colocalization between HMGB1 and
DRP1 in lung cancer migration is still unknown and needs further investigation.

A recent study showed that HMGB1 promoted RAGE-mediated chemoresistance
through ERK-activated mitochondrial DRP1 phosphorylation in CRC [21]. Our results
also showed that HMGB1 increased ERK and DRP1 phosphorylation (Ser616). A previous
study indicated that nuclear DRP1 is mostly phosphorylated under hypoxia, whereas the
intracellular distribution of DRP1 is essential for determining the drug sensitivity of lung
adenocarcinomas, suggesting that the expression of DRP1 is associated with survival in
patients [41,42]. In addition, HMGB1 exerts autocrine or paracrine effects that activate
DRP1 and lead to tumor recurrence [21]. Our experimental results indicated that patients
with high levels of DRP1 demonstrated a significant correlation with poor five-year survival
rates and have a high risk of tumor recurrence. Using the DriverDBv3 database analysis, we
found that high expressions of HMGB1 and DRP1 were associated with a poor prognosis,
and the genes were positively correlated [30].
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4. Materials and Methods
4.1. Cell Culture

The human lung cancer cell line, A549, was obtained from Bioresource Collection and
Research Center (BCRC; Hsinchu, Taiwan), and confirmed by the short tandem repeat-PCR
profile at BCRC (D7S820: 8, 11 CSF1PO:10, 12 TH01: 8, 9.3 D13S317: 11 D16S539: 11,
12 vWA: 14 TPOX: 8, 11 amelogenin: X, Y D5S818:11). A549 cells were cultured in an
F-12K growth medium (Thermo Fisher Scientific, Waltham, MA, USA) supplemented with
5% fetal bovine serum (Invitrogen, Carlsbad, CA, USA), 100 units/mL of penicillin, and
100 pg/mL of streptomycin (Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C in a humidified
atmosphere of 95% air–5% CO2. Culture media were replaced every 4–5 days, and the cells
were subcultured 3–12 times for experiments.

4.2. Cell Migration and Motility Assays

IBIDI™ Culture Inserts (IBIDI, Martinsried, Germany) were placed into 6-well culture
dishes, and 1 × 104 cells/mL were seeded into the culture-inserts in the 35 mm µ-Dish,
which could be used as two reservoirs of the same insert [43]. After 24 h, the insert was
carefully removed to create a 0.5-mm gap, and cell migration was assessed using bright-
field microscopy at 0 and 24 h after insert removal. The migrated cells were imaged, and the
covered areas were measured using the WimScratch software program (Wimasis, Munich,
Germany). Cell motility, tracks, displacement, and speed were assessed using time-lapse
confocal microscopy (SP2; Leica, Exton, PA, USA) at various time points over a 20 h period.

4.3. qPCR

Total RNA (2 µg) was reverse-transcribed using the SuperScript First-Strand Synthesis
System (Invitrogen). In accordance with the minimum information for publication of qPCR
experiment guidelines [43], the analysis was performed using a TaqMan assay (LightCycler
FastStart DNA master SYBR green I; Roche, Basel, Switzerland). The following primers
were used: the human HMGB1 sense primer 5′-ATT CAA GGA TCC CAA TGC AC-3′ and
the antisense primer 5′-GAT TTT TGG GCG ATA CTC AGA-3′; the human DRP1 sense
primer 5′-GCG CTG ATC CCG CGT CAT-3′ and the antisense primer 5′-CCG CAC CCA
CTG TGT TGA-3′; and the human GAPDH sense primer 5′-AGC CAC ATC GCT CAG
ACA-3′ and the antisense primer 5′-GCC CAA TAC GACCAA ATC C-3′ (Genomics, New
Taipei City, Taiwan).

4.4. WB Assay

The experiments were performed as described previously [44]. The protein concen-
trations of cell and tissue lysates were measured using the Lowry assay, and 30 µg of
total protein were separated by SDS-PAGE in 7.5, 10, or 12.5% gels depending on the
molecular weight of the target. Primary antibodies against HMGB1 (1:1000; 66525-1-Ig,
Proteintech, Rosemont, IL, USA), pDRP1(Ser616) (1:500; AP0849, ABclonal, MA, USA),
pERK (1:500, #9101, Cell Signaling, Beverly, MA, USA), ERK (1:500; sc-135900, Santa Cruz
Biotechnology, CA, USA), α-tubulin (1:2000; T5168, Sigma, Louis, MO, USA), Lamin A/C
(1:1000, GTX101127, GeneTex, Irvine, CA, USA), and α-actin (1:2000, sc-137179, Santa Cruz
Biotechnology) were used.

4.5. Construction of a Human HMGB1 Lentiviral Vector and Cell Transduction

For the cloning of human HMGB1 (GENE ID:3416, GenBank), total RNA was isolated
from A549 cells, and cDNA was synthesized using Moloney murine leukemia virus reverse
transcriptase according to the manufacturer’s protocol (Invitrogen). The human HMGB1
lentiviral vector was constructed, and cell transduction was performed as described previ-
ously [12]. The recombinant clones stably expressing human HMGB1 were selected using
1 mg/mL of puromycin.
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4.6. HMGB1 Silencing

A549 cells were seeded in 6-well plates for 24 h, transfected with 20 nM of human
HMGB1 si-RNA (si-HMGB1) (AM16706, Invitrogen) using the Lipofectamine 3000 trans-
fection reagent (Invitrogen), and analyzed after 48 h.

4.7. FE-TEM

FE-TEM was performed as described previously [43]. Briefly, cells were fixed with 2.5%
glutaraldehyde for 2 h at 4 ◦C, washed, post-fixed in 1% osmium tetroxide for 2 h, dehydrated
in graded acetone, infiltrated, and embedded in epoxy resin. Ultrathin 70 nm sections were
cut using a Leica RM2165 microtome (Leica RM2165, Japan) and examined under an FE-TEM
microscope (HITACHI HT-7700, Japan) at an accelerating voltage of 80 kV.

4.8. FE-SEM

FE-SEM was performed as described previously [43]. Cultured cells were seeded on
0.17 mm-thick cover slips and fixed in 2.5% glutaraldehyde overnight at 4 ◦C, post-fixed
in 2% osmium tetroxide for 1.5 h at 4 ◦C, and dehydrated in ascending grades of alcohol
(50%, 75%, 85%, 95%, and 100%). Samples were dried using a critical point dryer (CPD 030,
Bal-TEC) for 1 h, coated in gold, and examined under FE-SEM (Hitachi-8010, Japan) at an
accelerating voltage of 10–25 KV.

4.9. Measurement of F-Actin/G-Actin Ratio

The ratio of F-actin to G-actin was determined using the G-actin/F-actin in vivo assay
kit (BK037, Cytoskeleton, Denver, Colorado) according to the manufacturer’s instructions.
Briefly, 100 µg of protein from A549 cells were homogenized in lysis and an F-actin
stabilization buffer and centrifuged at 2000 rpm for 5 min to remove unbroken cells. F-
actin was separated from G-actin by centrifugation at 100,000× g for 60 min at 37 ◦C. The
F-actin-containing pellet was resuspended in an F-actin depolymerizing buffer at a volume
equivalent to the G-actin-containing supernatant volume. The resuspended F-actin pellet
was kept on ice for 60 min and gently mixed every 15 min to dissociate F-actin. Proteins in
equivalent volumes (20 µL) of supernatant and pellet were separated by SDS-PAGE and
subjected to immunoblot analysis using an anti-pan actin antibody supplied in the kit. The
F/G actin ratio was quantified using the ImageJ software (NIH, MD, USA).

4.10. Tumorigenic Potential of HMGB1-Overexpressing A549 Lung Cancer Cells

Animal studies were performed as described previously [44]. Male (6–8-week-old)
severe combined immunodeficiency (SCID) mice purchased from BioLasco Company
(Taipei, Taiwan) were housed in a special pathogen-free room with a 12-h light/12-h dark
cycle and 40–70% humidity at 19–25 ◦C, and they had free access to a standard rodent diet
and water ad libitum. Before inoculation, cells were infected with lentiviruses carrying
luciferase. Mice (n = 8 per group) were subcutaneously inoculated in the flanks with 0.1 mL
of PBS containing 1 × 107 of the control or HMGB1-expressing A549 cells and monitored
for bioluminescence intensity during tumor growth twice a week for 25 days using the
IVIS (Xenogen, Alameda, CA, USA). Tumor volume was calculated as V (mm3) = length
(L, mm) × width (W, mm2) × 0.5. The protocol for the animal study was approved by the
Department Center for Biotechnology (DCB) Institutional Animal Care and Use Committee
(Approval No:102050) (Taipei, Taiwan).

4.11. Tumor Sample Collection and DriverDBv3 Database Analysis

NSCLC samples and corresponding normal tissues were collected from 48 non-
selected patients who underwent surgical resections at the Division of Thoracic Surgery,
Department of Surgery, Kaohsiung Medical University Hospital from 2004 to 2007. Lung
tumors were classified by histological type, grade, and stage according to the World Health
Organization standards [45]. Informed consent was obtained from patients to participate in
the study. The study was approved by the Ethical Review Board for Research (KMUH-IRB-
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940292 and KMUH-IRB-950276) in Kaohsiung Medical University Hospital, Taiwan. The ef-
fects of HMGB1 and DRP1 (dynamin 1-like (DNM1L)) expression levels on overall survival
in patients with lung cancer were analyzed; the Kaplan–Meier plots were generated with
the aid of a Kaplan–Meier Plotter using the DriverDBv3 database (tumor parts (TP), tumor
recurrent (TR) tissues, and normal tissues (NT)) (http://driverdb.tms.cmu.edu.tw/) [30].
The correlation of gene expression was analyzed using Pearson’s correlation and Kendall’s
tau tests.

4.12. IHC Analysis

For the protein expression analysis of HMGB1 and DRP1, 5 µm-thick paraffin tissue
sections or cultured cells were incubated in a blocking buffer (0.5% bovine serum albumin
and 0.05% Tween 20 in PBS) for 1 h at room temperature (RT). Then, the sections or
cells were incubated with primary antibodies against HMGB1 (1:200) and DRP1 (1:100)
for 1 h, stained, and visualized using a fluorescence detection system (Ventana Medical
Systems, Invitrogen). Samples were counterstained with 4′,6-diamidino-2-phenylindole
(DAPI; Invitrogen) to visualize cell nuclei. After washing, sections were mounted in
VECTASHIELD mounting medium (Invitrogen) and examined under a confocal laser
microscope (Leica, Miami, FL, USA).

4.13. ICC Analysis

ICC was performed as described previously [44]. Briefly, cells were cultured on glass
coverslips, washed with cold PBS, and fixed with 4% paraformaldehyde in PBS at 4 ◦C for
15 min. After blocking, cells were incubated with the primary antibodies against HMGB1
(1:200), pDRP1 (1:100), α-tubulin (1:500), or F-actin (1:500; AB205, Abcam, Cambridge,
MA, USA) overnight at 4 ◦C, rinsed with PBS, and incubated with rhodamine-conjugated
secondary antibodies for 1 h at RT; cell nuclei were stained with DAPI. After washing
with PBS, cells were mounted in a VECTASHIELD mounting medium and analyzed
using an Olympus FV1000 confocal laser scanning microscope (Center Valley, PA, USA)
and the Imaris software (OXFORD instruments, Concord, MA, USA) for confocal image
3D reconstruction.

4.14. Co-Immunoprecipitation Assay

The assay was performed as described previously [46]. To determine the protein–
protein interactions between HMGB1 and DRP1, cells were harvested using an immuno-
precipitation lysis buffer (GeneTex). Total proteins (500 µg) were purified by incubation
with protein A/G agarose beads (50 µL/tube), under rotating conditions, for 1 h at 4 ◦C,
and washed. The supernatants were collected and incubated with 2 µg of anti-HMGB1
and anti-DRP1 antibodies for 4 h. Protein A/G agarose beads (50 µL/tube) were added
to each tube, followed by overnight incubation at 4 ◦C. The supernatants were removed
by centrifuging at 12,000× g for 10 min and disrupted by boiling in 1% SDS. The immune
complexes were analyzed by immunoblotting with anti-HMGB1 and anti-DRP1 antibodies.

4.15. Statistical Analyses

The data are presented as means± SEM and were statistically analyzed by the analysis
of variance and Dennett’s test using SigmaStat version 3.5 (Systat Software Inc., San José,
CA, USA). A p value > 0.05 was considered to be statistically significant.

5. Conclusions

In summary, we demonstrated the significant role of HMGB1 in regulating lung can-
cer migration. Our study showed that HMGB1 increased lung cancer cell spreading and
polarization, regulated microtubule and actin dynamics to cell protrusions, and promoted
lamellipodia and filopodia formation. Consequently, HMGB1 increased DRP1 expression,
phosphorylation, and colocalization. In addition, DRP1 phosphorylation mediated mito-
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chondrial fission and trafficking to the lamellipodia and filopodia leading edge by actin
and microtubule cytoskeleton to supply energy for lung cancer migration.
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