
 International Journal of 

Molecular Sciences

Article

Early-Life Development of the Bifidobacterial Community in
the Infant Gut

Silvia Saturio 1,2, Alicja M. Nogacka 1,2 , Marta Suárez 3,4, Nuria Fernández 2,5, Laura Mantecón 3,4 ,
Leonardo Mancabelli 6, Christian Milani 6 , Marco Ventura 6, Clara G. de los Reyes-Gavilán 1,2 ,
Gonzalo Solís 3,4 , Silvia Arboleya 1,2,* and Miguel Gueimonde 1,2,*

����������
�������

Citation: Saturio, S.; Nogacka, A.M.;

Suárez, M.; Fernández, N.; Mantecón,

L.; Mancabelli, L.; Milani, C.; Ventura,

M.; de los Reyes-Gavilán, C.G.; Solís,

G.; et al. Early-Life Development of

the Bifidobacterial Community in the

Infant Gut. Int. J. Mol. Sci. 2021, 22,

3382. https://doi.org/10.3390/

ijms22073382

Academic Editor: Georg A. Sprenger

Received: 8 February 2021

Accepted: 22 March 2021

Published: 25 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain;
Silvia.Saturio@ipla.csic.es (S.S.); alicja.nogacka@ipla.csic.es (A.M.N.);
greyes_gavilan@ipla.csic.es (C.G.d.l.R.-G.)

2 Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA),
33011 Oviedo, Spain; nuriajmhd@gmail.com

3 Pediatrics Service, Hospital Universitario Central de Asturias, SESPA, 33011 Oviedo, Spain;
msr1070@hotmail.com (M.S.); laura_mantecon@hotmail.com (L.M.); gsolis@telefonica.net (G.S.)

4 Pediatrics Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA),
33011 Oviedo, Spain

5 Pediatrics Service, Hospital de Cabueñes, SESPA, 33203 Gijón, Spain
6 Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability,

University of Parma, 43121 Parma, Italy; leonardo.mancabelli@unipr.it (L.M.);
christian.milani@unipr.it (C.M.); marco.ventura@unipr.it (M.V.)

* Correspondence: silvia.arboleya@ipla.csic.es (S.A.); mgueimonde@ipla.csic.es (M.G.);
Tel.: +34-985-892-131 (S.A. & M.G.)

Abstract: The establishment of the gut microbiota poses implications for short and long-term health.
Bifidobacterium is an important taxon in early life, being one of the most abundant genera in the
infant intestinal microbiota and carrying out key functions for maintaining host-homeostasis. Recent
metagenomic studies have shown that different factors, such as gestational age, delivery mode, or
feeding habits, affect the gut microbiota establishment at high phylogenetic levels. However, their
impact on the specific bifidobacterial populations is not yet well understood. Here we studied the
impact of these factors on the different Bifidobacterium species and subspecies at both the quantitative
and qualitative levels. Fecal samples were taken from 85 neonates at 2, 10, 30, 90 days of life, and
the relative proportions of the different bifidobacterial populations were assessed by 16S rRNA–23S
rRNA internal transcribed spacer (ITS) region sequencing. Absolute levels of the main species
were determined by q-PCR. Our results showed that the bifidobacterial population establishment
is affected by gestational age, delivery mode, and infant feeding, as it is evidenced by qualitative
and quantitative changes. These data underline the need for understanding the impact of perinatal
factors on the gut microbiota also at low taxonomic levels, especially in the case of relevant microbial
populations such as Bifidobacterium. The data obtained provide indications for the selection of
the species best suited for the development of bifidobacteria-based products for different groups
of neonates and will help to develop rational strategies for favoring a healthy early microbiota
development when this process is challenged.

Keywords: Bifidobacterium; infant; microbiota; gut; preterm; delivery mode; feeding

1. Introduction

The gastrointestinal tract is home to the intestinal microbiota that constitutes a very
rich and complex microbial ecosystem. In human adults, this microbiota is dominated
by the phyla Firmicutes and Bacteroidetes. However, during early life, the microbiota is
mainly constituted by Actinobacteria and Proteobacteria, becoming more diverse later
on with the rise of Firmicutes and Bacteroidetes. The establishment of this microbiota
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starts at birth when a massive exposure to microbes begins, making possible the extensive
colonization of the newborn [1]. This process of early microbiota establishment plays a
critical role in the promotion of the immune and physiological homeostasis, strengthening
of intestinal barrier function, and, therefore, the health of the infant. There is accumulating
evidence showing that early life microbiota establishment is a key determinant for later
health [2–9]. In humans, early-life microbiota alterations have been linked to higher risks of
disease in later life [10–13]. These underline the importance of understanding this process
and suggest that any alteration may have implications for immediate and long-term health.

The colonization of the neonatal gut starts with the establishment of facultative anaer-
obic and aerotolerant microbial populations that, by reducing the environment together
with the antioxidant systems of the newborn, allow the progressive establishment of strict
anaerobes mainly from the genera Bifidobacterium and Bacteroides [1]. After these initial
colonization steps, in the case of healthy full-term breast-fed infants, the microbiota will
soon become dominated by Actinobacteria, mainly from the genus Bifidobacterium, with
relatively high levels of Proteobacteria as well [1]. Bifidobacteria harbor different saccha-
rolytic capabilities, allowing these microorganisms to metabolize carbohydrates, either
from the diet or those of host origin [14–16]. Among the latter, the ability of some species
of bifidobacteria to metabolize human milk oligosaccharides is an important characteristic
that contributes to their dominant role on the breast-fed infant microbiota [17,18]. More-
over, bifidobacteria are considered beneficial microorganisms, and reduced levels have
been often associated with disease [19,20]. This seems to be especially true in the case of
infants where reduced levels of Bifidobacterium have been related to different conditions,
such as allergic diseases or obesity [10–12]. Moreover, not just the alteration on the total
Bifidobacterium numbers but also on the profile of species present have been reported to be
of relevance [20,21]. Interestingly, some species such as Bifidobacterium 14 or Bifidobacterium
catenulatum are more abundant in adults. Other species, including Bifidobacterium bifidum
or Bifidobacterium breve, are more numerous in infants, with Bifidobacterium longum being
the species most widely present across life [22].

During the last years, we have learned that the intestinal colonization process depends
on several factors, both of genetic and environmental origin. The impact of many of these
factors on the global microbiota composition has been studied. Today we know that differ-
ent early-life factors, including gestational age at birth, mode of delivery, feeding habits,
etc., affect the process of establishment of the intestinal microbiota in the newborn [1,23].
Some of these factors, such as cesarean section (CS) delivery, are associated with increased
disease risk [24]. Most of the available data relies on the use of 16S rRNA gene-based
sequencing, which provides an overview of the global microbiota composition, and has
demonstrated delayed colonization by bifidobacteria in preterm babies or after CS, among
others [23,25,26]. However, this technique does not provide detailed information at low
taxonomic levels, such as species and subspecies. Therefore, our understanding of the
impact of early life factors upon the establishment of relevant intestinal populations, such
as the bifidobacterial community, remains limited. Most of the quantitative information
available regarding the bifidobacterial species composition in infancy comes from PCR
and hybridization-based techniques [27–30], with very limited data available regarding the
very early stages of life. To overcome these limitations, other methodological approaches
should be used. In this regard, the Internally Transcribed Spacer (ITS) sequence, the region
between the 16S rRNA and the 23S rRNA genes within the rRNA locus, has demonstrated
to be an applicable marker for Bifidobacterium species, and an ITS-based protocol (ITS-
Bifidobacterium profiling) has been developed to this end [31]. This ITS-based protocol has
been used to track the vertical transmission of bifidobacteria [32,33] or the effect of donor
versus own-mother milk on the bifidobacterial community in premature babies [34]. In
this context, we hypothesized that, as occurs with the global microbiota composition, the
pattern of establishment of the bifidobacterial populations in the neonate is affected by
perinatal factors such as prematurity, delivery mode, or infant feeding mode.
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In this study, we aimed at determining the pattern of establishment of the intestinal
bifidobacterial population in early life. To this end, we took advantage of the above-
mentioned ITS-Bifidobacterium profiling and of qPCR for specific bifidobacterial species for
assessing the bifidobacterial microbiota composition in newborns during the first three
months of life. We evaluated the impact of prematurity, CS, and feeding regime upon the
Bifidobacterium population development.

2. Results
2.1. Bifidobacterium Community Development in Newborns

Several Bifidobacterium species were already detected from the second day of life, and
the levels of the different species changed over time. B. longum and B. breve were the species
showing higher occurrence on the second day of life (97.5% and 96.5 %, respectively) being
detected in 99% of the babies at three months of age (Supplementary Table S1). These
two species were also the ones found to be present at higher relative proportions and
showing higher absolute levels (Figure 1 and Supplementary Figure S1). The detection
rates for B. bifidum ranged from 79% of babies at two days of age and 89% at three months.
Other than these general observations, clear differences in the bifidobacterial community
composition and levels were observed among different infant groups, as is depicted below.
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Figure 1. Impact of prematurity. Average relative proportions, with regard to total bifidobacteria (100%), of the dominant
Bifidobacterium species/subspecies (based on the sequencing of the internal intranscribed spacer (ITS)-region between the
16S and 23S rRNA genes) during the first three months of life in full-term (green line) and preterm (red line) newborns.
* Indicates statistically significant differences (p < 0.05) at the corresponding sampling times (two, 10, 30, or 90 days of age).

2.2. Bifidobacterium Species Composition Is Affected by Prematurity

Preterm delivery was found to have an effect, at both qualitative and quantitative
levels, on the development of the bifidobacterial population in the newborn during the
first months of life. Preterm infants presented an increased number of coexisting species,
with an average of 19 ± 9 (mean ± sd) different species/subspecies found in contrast to
the 12 ± 6 species/subspecies co-occurring, on average, in term babies. These figures re-
mained stable during the three months of the study, with the differences reaching statistical
significance (p < 0.05) at the four-time points analyzed (two, 10, 30, and 90 days of age)
(data not shown). In addition, the relative proportions of the dominant bifidobacterial
species were clearly different between both groups of infants. Full-term babies harbored
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higher early life proportions of B. longum and B. bifidum and lower of B. breve, Bifidobac-
terium pseudolongum, Bifidobacterium asteroides, and Bifidobacterium animalis subsp. lactis,
among others (Figure 1, Supplementary Table S2). These observations were further con-
firmed when the absolute levels of B. longum, B. bifidum, B. catenulatum, Bifidobacterium
dentium, B. adolescentis, and B. breve, were determined by qPCR (Supplementary Figure S1).
Counts of total bifidobacteria also showed that premature babies harbored lower total
Bifidobacterium levels.

Interestingly, whereas in full-term babies, B. longum subsp. longum was the dominant
bifidobacteria during the whole duration of the study, in preterm infants, this microorgan-
ism dominated initially (two and 10 days of age), but the dominance switched towards
B. breve at later time points (30 and 90 days of age) (Figure 2), as was also confirmed by
qPCR (Supplementary Figure S1).
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90 days of age in full-term and preterm babies. The scale goes from blue (low relative frequency) to red (high relative
frequency). Species/subspecies representing less than 1% were excluded from the analysis.

The large differences existing between these two groups of infants precluded us from
combining them, and, therefore, they were considered as two independent groups for any
further analyses.

2.3. Mode of Delivery Affects the Bifidobacterial Population Establishment in Early-Life

The diversity of bifidobacteria, measured as the number of species simultaneously
co-occurring in the infant, was not affected by the type of delivery either in full-term or in
preterm newborns at any of the analyzed time points (p > 0.05). The mean values ranged
from 11 to 13, depending on the sampling time, in vaginally delivered full-term babies
and from 12 to 14 in CS delivered ones. In preterm infants, the mean values of species per
sample moved between 21–22 during the first three months of life in vaginally-delivered
babies and from 16 to 19 in CS premature infants.
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In full-term newborns, the delivery mode was found to affect the establishment of
the bifidobacterial community. Among the dominant Bifidobacterium species/subspecies,
CS-delivery led to an initial reduction in the relative proportions of B. longum subsp.
longum, B. bifidum, or Bifidobacterium pseudocatenulatum, but increased those of B. adolescentis,
B. animalis subsp. lactis, B. dentium, or B. longum subsp. infantis (Figure 3), without detecting
statistically significant differences for any of the minority species (Supplementary Table S3).
After three months, some of these differences, such as those observed for B. longum, seemed
to be reduced. The qPCR analyses confirmed some of the previous findings, with higher
levels of B. longum (p < 0.05) in CS-babies at three months of age (Supplementary Figure S2).
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Figure 3. Impact of delivery mode. Average relative proportions, with regard to total bifidobacteria (100%), of the dominant
Bifidobacterium species/subspecies (based on ITS-sequencing) during the first three months of life in full-term babies
delivered vaginally (green line) or by cesarean section (CS) (red line). * Indicates statistically significant differences (p < 0.05)
at the corresponding sampling time (two, 10, 30, or 90 days of age).

In preterm newborns, the delivery mode did not show any major effect on the bifi-
dobacterial community. The only statistically significant (p < 0.05) difference observed
among the dominant species was a reduced proportion of B. bifidum at an early age (two
days) in CS babies. Some differences were also observed for some of the minority species
(Supplementary Table S4).

2.4. Impact of the Feeding Mode on the Bifidobacterial Population in Early-Life

In order to ascertain the effect of feeding type on the establishment of the bifidobacte-
rial population and to avoid the impact of potentially confounding factors such as delivery
mode, we decided to focus this analysis on full-term vaginally delivered infants (34 out of
the 43 full-term infants included in the study). Preterm infants were not included since
the categorization of these infants according to feeding mode resulted in uneven groups
and difficulties for a straightforward classification, since most babies received nutritional
enrichment, mixed feeding, etc., during the course of the study, which could hamper the
strength of the conclusions.

As with regard to the results obtained for the full-term vaginally delivered babies,
no differences in the number of detected Bifidobacterium species were observed between
exclusively breast-fed and formula/mix-fed groups (ranging between 12 and 14, depending
on the sampling time). In this group, exclusive breast-feeding was found to promote
higher relative proportions of B. longum subsp. longum, and B. longum subsp. infantis
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slightly (0.05 < p < 0.1) during the first three months of life, and B. bifidum at the end of this
period. On the contrary, formula/mix feeding promoted B. adolescentis, B. pseudocatenulatum,
and B. dentium during the first days of life and B. breve, B. catenulatum and B. animalis
subsp. lactis after three months (Figure 4, Supplementary Figure S3). These data were
confirmed when the absolute levels of these bifidobacterial species were determined by
qPCR (Supplementary Figure S4). The levels of B. adolescentis were higher (p < 0.05) during
the first month of life, and those of B. catenulatum and B. animalis were higher at three
months of age (p < 0.05) in formula/mix fed babies compared to exclusively breast-fed ones.
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Figure 4. Average relative proportions, with regard to total bifidobacteria (100%), of the dominant Bifidobacterium
species/subspecies during the first three months of life in exclusively breast-fed full-term vaginally delivered (green
line) and formula/mixed-fed full-term vaginally delivered babies (red line).

3. Discussion

During the last decade, we have started to understand the critical role of the early mi-
crobiota for the later health of individuals [5,35]. However, our knowledge about the early
microbiota composition at low taxonomic levels is still limited. This is especially relevant
for some microorganisms, such as the Bifidobacterium genus, since these microorganisms
are dominant during early life and have often been linked to a healthy status [16].

Several studies have reported the effect of gestational age and preterm delivery, on the
development of the microbiota, at a general level by using 16S rRNA gene-based sequenc-
ing [36–40]. Although some studies have reported low levels or no bifidobacteria in the
infants’ gut [41,42], this has been linked to potential methodological biases or geographical
differences [43], whilst most of the studies have found Bifidobacterium among the dominant
microbial genera in infants. However, limited information is still available at the bifidobac-
terial community level. In general, the dominant bifidobacterial species identified in the
present study are in good agreement with those previously indicated as dominant within
this genus [31,44]. Here, we observed a clearly different pattern, at both qualitative and
quantitative levels, for the development of the Bifidobacterium population in preterm when
compared with full-term newborns. The higher number of bifidobacterial species found
in premature with respect to full-term babies along the studied period results intriguing
since previous studies reported a reduced global microbiota diversity in preterm babies
or the lack of diversity differences between terms and preterms [45,46]. This contrasts
with the situation in adults where increased microbiota diversity is generally considered
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beneficial and associated with reduced disease risk [47]. However, our findings are in good
agreement with other studies in which high bifidobacteria diversity has been reported in
situations where the scenario for the gut microbiota development is not ideal [34].

Our data suggest that the differences in the dominant bifidobacterial species/subspecies
between full-term and preterm babies do not lie in the very early days but rather become
larger at slightly later stages. At early time points, B. longum was the dominant species, in
both preterm and full-term groups and remains so in full-term babies. However, in preterm
babies between 10 and 30 days of life, there was a switch to B. breve becoming the dominant
species. Although the reason for this is not understood, it suggests that differences in the
management of both groups of infants, home versus hospital environment, medicalization,
etc., may partly account for the observed differences. Indeed, the levels of the genus
Bifidobacterium have been one of the microbiota characteristics more deeply affected by
prematurity in different previous studies [25,38,40]. Our results extend these observations
to the levels of specific Bifidobacterium species and to the global bifidobacterial community.
In accordance with our results, other authors have demonstrated higher absolute levels of
B. longum in full-term than in preterm babies during the first months of life, as is the case
for one-month-old Brazilian infants [48].

Delivery mode is another of the perinatal factors known to affect the general profile
of the microbiota [49,50], and in this regard, our data indicate that the bifidobacterial
community is not an exception, and it is also affected by this factor. This holds true
for full-term infants where the differences observed between vaginally and CS-delivered
babies were of relevance; this is in good agreement with previous studies, based on other
techniques, that also observed an impact of delivery mode on intestinal bifidobacteria.
In agreement with our observations, Yang et al. [44], using a sequencing strategy based
on the groEl gene, found that six-week-old CS-delivered full-term infants had higher
proportions of B. longum subsp. infantis and B. animalis subsp. lactis than their vaginally-
delivered counterparts. Interestingly, this does not seem to be the case for B. longum subsp.
longum, whose relative proportions, according to our results, were higher in vaginally
delivered babies during the first month of life and lowered later on. In this regard, qPCR-
based studies have often reported higher levels of B. longum in vaginally delivered full-term
babies [30,48]. It has to be taken into account that qPCR renders absolute quantitative
values and often quantifies the different subspecies of B. longum together, which may
explain the differences observed when comparing with sequencing data. The results
obtained by us regarding other species such as B. bifidum or B. pseudocatenulatum also
confirm those previously obtained by qPCR in other studies [30]. Moreover, Backhed and
coworkers [50], using shotgun metagenomic analyses, found that CS-delivered babies, in
agreement with our results, harbored lower proportions of B. longum or B. catenulatum
and higher of B. animalis subsp. lactis. However, these authors reported reduced levels of
B. adolescentis in these CS-delivered babies, whereas we found the opposite effect.

The differences due to delivery mode observed in full-term babies do not seem to
be present in preterm babies since only minor differences related to delivery mode were
found in our cohort by ITS-sequencing and by qPCR. Similarly, Grzeskowiak and cowork-
ers [48], using qPCR, only observed an increase in the levels of B. animalis subsp. lactis in
CS-delivered preterm babies without differences among the species analyzed. This is very
likely due to the several factors affecting the microbiota development in preterm babies,
from prematurity itself to medicalization, management in a hospital environment, etc.
In this context, in preterm infants, the contribution of the delivery mode to the estab-
lishment of the bifidobacterial microbiota seems to be lower in comparison with those
other factors.

Moreover, the mode of delivery did not affect the number of species of bifidobacteria
present, not in full-term neither in preterm infants. This is in agreement with previous
studies evidencing the lack of effect of delivery mode upon the total microbiota diversity
in the sort and the long term [44,51].
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As with regard to the feeding mode, our data suggest a moderate effect of this factor on
the bifidobacterial microbiota of vaginally delivered full-term babies. This was in contrast
with the high impact of feeding habits reported by some authors on the global microbiota
composition or on the Bifidobacterium species [27,50,52], whereas some other studies have
also reported limited effects of the feeding habit on the microbiota. These differences among
studies may be partly due to the difficulties for the classification of the feeding habit, since
in some cases, like in this study, exclusively breast-fed babies were compared with non-
exclusively breast-fed babies, whereas other studies consider infants breast-fed, although
not exclusively, in comparison with those receiving exclusively formula. In accordance
with a previous report [30], we observed reduced levels of B. adolescentis or B. dentium in
exclusively breast-fed newborns. On the contrary, we found increased levels of B. longum
in these infants, although this has not been observed in other studies [30,44]. However, it is
important to take into account that in the present work, the number of infants not being
exclusively breast-fed was low (n = 10), with most of them being in mixed feeding, which
does not allow accounting for the actual amount of formula/breast-milk received.

To sum up, this study underlines the process of development of the bifidobacterial
microbiota in the newborn during the first months of life and the factors driving it.

4. Materials and Methods
4.1. Volunteers and Sampling

The study was approved by the Regional Ethical Committee of Asturias Public Health
Service (SESPA), and informed written consent was obtained from each infant’s parents.
The study included 85 healthy neonates (Table 1), not receiving pro- or pre-biotics during
the sampling time, born at the Central University Hospital of Asturias (Northern Spain).

Table 1. Basal characteristics of the infant groups included in this study.

Full-Term Babies (n = 43) Preterm Babies (n = 42)

Weeks of gestation
(mean ± sd) 39 ± 2 31 ± 2

Gender
(n females) 22 18

Delivery mode
(n vaginal deliveries) 34 18

Feeding at 2, 10, 30 and 90 days
(n exclusive breast-feding) 27, 27, 26, and 25 41, 40, 21, and 13

Fecal samples were collected at 2 (between 24 and 48 h of life), 10, 30, and 90 days of
age. The sample was taken in a sterile container and immediately frozen at −20 ◦C until
delivery to the laboratory for further analyses.

4.2. Faecal DNA Extraction

For DNA extraction, the fecal samples were allowed to thaw at room temperature
(20–22 ◦C). Then 1 g of sample was weighed, diluted 1:10 in sterile PBS solution, homoge-
nized in a LabBlender 400 stomacher (Seward Medical, London, UK) at full speed for 3 min,
centrifuged, and the bacterial pellet obtained was used for DNA extraction as previously
described [25]. Extracted DNA was kept frozen at −70 ◦C until analysis.

4.3. ITS Sequence-Based Bifidobacterial Microbiota Analysis

Fecal bifidobacterial population profiling was carried out by ITS-Bifidobacterium se-
quencing as previously described [31]. In brief, the bifidobacterial ITS region was amplified
by using the primer pairs Probio_bif_uni and Probio_bif_rev; the amplicons were subjected
to next-generation sequencing and sequences filtered and annotated using an improved
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bifidobacterial ITS database and a custom bioinformatics script, as described by Milani and
collaborators [31].

4.4. Analyses of Faecal Bifidobacterial Levels by qPCR

The levels of total Bifidobacterium as well as those of the species B. bifidum, B. breve,
B. catenulatum, B. dentium, B. longum, B. angulatum, B. animalis subsp. lactis, and B. adolescen-
tis were determined by qPCR using the methods described elsewhere [25,34].

4.5. Statistical Analyses

Results were analyzed using the SPSS software version 26 (SPSS Inc., Chicago, IL,
USA). The normality of the qPCR data, at each sampling point, was checked using the
Kolmogorov–Smirnov test. Some of the bacterial groups showed non-normal distribution,
and therefore, differences in bacterial levels and abundances between groups of infants were
analyzed using non-parametric tests (Mann–Whitney U-test). Heatmaps were obtained
by using the relative abundance data of the bifidobacterial species, filtered by a minimum
presence ≥ 1, by using ClustVis [53].
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7/22/7/3382/s1, Figure S1: Fecal levels of the dominant Bifidobacterium species and total bifidobac-
teria in full-term and preterm babies during the first three months of life as determined by qPCR.
Figure S2: Fecal levels of the dominant Bifidobacterium species and total bifidobacteria in vaginally
delivered and CS-delivered full-term babies during the first three months of life as determined
by qPCR. Figure S3: Heat map showing the relative proportions of the different Bifidobacterium
species/subspecies at two, 10, 30, and 90 days of age in exclusively breast-fed or formula/mixed
fed vaginally delivered full-term babies. Figure S4: Fecal levels of the dominant Bifidobacterium
species and total bifidobacteria in vaginally delivered full-term babies being exclusively breast-fed or
under formula/mixed-feeding, during the first three months of life as determined by qPCR. Table S1:
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