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1. Introduction

The renin–angiotensin–aldosterone system (RAAS) ranks among the most challenging
puzzles in cardiovascular medicine. It participates in the principal homeostatic mechanisms
such as regulation of vascular tone, circulating volume, organ perfusion, blood clotting,
cardiomyocyte growth and collagen matrix turnover [1,2]. The RAAS is a well-established
player in the acute stress reaction, with renin occupying the eminent position. Its crucial
role is underscored by a variety of triggering stimuli such as renal hypoperfusion due to
hypotension, renal artery narrowing or sympathetic system-induced vasoconstriction or
reduced sodium chloride (NaCl) load near the macula densa—all issues triggering renin
production via different but interdependent routes. This guarantees that the RAAS is “a
friend in need—a friend indeed”. On the other hand, if chronically activated, increased
angiotensin II (Ang II) and aldosterone levels in the circulation and tissues result in ox-
idative overload and chronic inflammation followed by endothelium dysfunction, energy
imbalance and fibrocyte proliferation. The results of these processes are the undesirable re-
modeling of the heart, kidney, brain and vessels. Inappropriate RAAS stimulation is consid-
ered to underlie a number of pathologic conditions including hypertension, atherosclerosis
complications, heart and kidney failure, mental disturbances and inflammatory damage
including acute respiratory distress syndrome (ARDS). Besides Ang II and aldosterone,
the RAAS involves a bulk of other biologically active molecules involved in a number of
physiological and pathological processes, whose role remains to be elucidated [3–7].

2. History of the RAAS: A Continuously Evolving Concept

The story of the RAAS is a thriller in three acts, unfolding over three centuries, with-
out seeming to be coming to an end. At the beginning, the classical substances renin,
angiotensin II and aldosterone were described as the principal mechanisms controlling
circulating blood volume and blood pressure. In 1898, the physiologists Tigerstedt and
Bergman documented that a renal cortex extract, which they called renin, independently
exerted a long-lasting pressor effect on the sympathetic system [8]. This principal finding,
however, failed to arouse the desired interest until the 1930s, when the Goldblatt group
described hypertension development via the clamp-induced constriction of renal arter-
ies [9], which was adopted as “Goldblatt hypertension”. Renin was considered to be an
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enzyme producing a pressor substance, initially called angiotonin, or hypertensin, and
later angiotensin [10]. Ang II-mediated blood pressure control was disclosed to reside in
aldosterone-dependent [11] or aldosterone-independent direct sodium-retaining actions
in the renal distal tubuli [12]. Furthermore, Ang II was indicated to reduce renal blood
flow while simultaneously maintaining the glomerular filtration rate via more pronounced
vasoconstriction of the efferent compared to the afferent glomerular arterioles [12]. In the
following years, besides hemodynamic regulation, Ang II and aldosterone were shown
to exert some phenotypic alterations in terms of parenchymal and interstitial cell growth
and proliferation in target organs either via a direct trophic effect or by their hemodynamic
actions [13].

A second landmark development occurred in the early 1990s, when Dzau suggested [14]
that the RAAS can operate as both an endocrine and autocrine/paracrine (local, tissue)
system, while tissue angiotensin concentration may even exceed its plasma levels. It was
suggested that the circulating RAAS carries out the short-term hemodynamic effects, while
the tissue RAAS exerts, especially, cellular hypertrophy or hyperplasia in a number of target
organs, leading to a structural rebuilding of the vascular wall, heart, kidney or brain [14].
More recently, experiments on transgenic animal models have revealed that in most tissues,
the RAAS amplifies the actions of circulating Ang II [15]. Although disputes over whether
the entire RAAS cascade, including tissue renin production, or just its downstream parts
are present in particular tissues have never been settled, the local RAAS was shown to
have significant implications for the pathophysiology of cardiovascular alterations [15].

Third, a non-classical pathway opposing the effects of Ang II has been emerging in the
past thirty years. The discovery of Ang 1-7 in 1988 [16] started a new era of RAAS investi-
gations, covering the discovery of angiotensin-converting enzyme 2 (ACE2), angiotensin II
type 2 (AT2), Mas and Mas-related G-protein coupled receptor D (MrgD) receptors and
several novel peptides [17]. The principal finding in 2003 that ACE2 serves as the entrance
receptor for the severe acute respiratory syndrome coronavirus (SARS-CoV) [18] launched
an exciting race to learn about the relationship between RAAS, coronavirus infections
and acute lung injury development. Most recently, with the current SARS-CoV-2 pan-
demic, the important role of the RAAS in the evolution of the infection and its subsequent
complications has re-emerged.

3. Therapeutic Interventions with the RAAS

In order for the RAAS to serve as a reliable friend, a dynamic equilibrium must be
established. Too much support or help at an inappropriate time can spoil any friendship.
In clinical trials, heart failure (HF) patients with the highest level of renin had the worst
prognosis. In the early 1990s, Pfeffer and Braunwald and colleagues revealed that blocking
the RAAS with the angiotensin-converting enzyme inhibitor (ACEI) captopril not only
reduced blood pressure but also attenuated left ventricular remodeling and improved
survival in patients with a failing heart after myocardial infarction [19]. Although the
20% mortality reduction was encouraging, it also gave space to address the 80% residual
mortality. Angiotensin II type 1 receptor (AT1R) blockers (ARBs) attenuating not the
formation but the effect of Ang II aroused new hopes for hindering the effect of non-
ACE-mediated tissue Ang II formation and shifting Ang II molecules to interact with
the angiotensin II type 2 receptors (AT2Rs) mediating the desirable vasodilative, anti-
proliferative and anti-inflammatory actions. However, the results of the ELITE II trial and
several other trials failed to fulfill these expectations, exerting an equal end-point benefit
compared to ACEIs in HF patients [20]. The supposed additional benefit of ARBs was
presumably counterbalanced by the shortage of the potentially desirable effect of decreased
bradykinin splitting in the case of ACEI, with downstream beneficial actions of nitric oxide
and prostacyclin [20].

For many decades, aldosterone was a Cinderella in the hierarchy of the RAAS, suppos-
edly being the effector molecule participating only in volume regulation via sodium and
water reabsorption in the kidney distal tubuli; in addition, ACEI/ARB were believed to
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also block aldosterone production. The disclosure of aldosterone’s pronounced profibrotic
and pro-inflammatory effects in various tissues and the knowledge that, in the chronic
course, aldosterone escapes the influence of the RAAS blockade attracted the interest
of cardiologists. The aldosterone receptor blocker spironolactone impressively reduced
mortality when added to the established therapy in patients with severe heart failure [21].
In line with these data, the idea of pronounced RAAS blocking by the combination of
ACEI with ARB or the direct renin inhibitor aliskiren was investigated in a number of
prospective trials. However, in the ALTITUDE trial, aliskiren on top of ACEI or ARB in
patients with type 2 diabetes and renal impairment increased hard cardiovascular and
renal end-points [22], and in the ONTARGET trial, the ACE inhibitor + ARB combination
did not show any additional benefit over monotherapy but was associated with more
side effects [23]. Since no additional benefit of dual inhibition compared to monotherapy
was observed while more side effects occurred, antihypertensive treatment combinations
blocking two steps within the RAAS should be avoided [24]. Yet, the situation might be
somehow different in patients with heart failure. The CHARM study results on the ACEI +
ARB combination and the results of spironolactone addition on top of ACE inhibition in
HF patients suggest that dual RAAS inhibition might be an option for a selected group of
cardiovascular patients [25].

4. COVID-19–RAAS Interactions and Therapeutic Implications

One of the most discussed issues currently is the role of the RAAS in the process of
SARS-CoV-2 infection and its complications, including ARDS development. SARS-COV-2,
a member of the Coronaviridae family, binds by its spike (S) protein to the cell surface
and enters cells via a cell membrane-bound carboxypeptidase angiotensin-converting
enzyme 2 (ACE2), expressed in the lungs, heart, vasculature, bowels or kidney [26,27]. The
physiological role of ACE2 is to convert Ang I to Ang 1-9 and Ang II to Ang 1-7. Compared
to the classical ACE/Ang II/AT1 route, which gives rise to vasoconstriction, hypertrophic
growth and fibrosis, coagulation, oxidative stress and inflammation, the ACE2/Ang1-
9/Ang1-7/Mas pathway is perceived as a protective way opposing the deleterious action
of Ang II by promoting vasodilation and natriuresis, and inhibiting inflammation or fibrosis.
This cascade acts via Ang 1-7 binding to the Mas receptor, Ang 1-9 interaction with the AT2
receptor or, when metabolized in an alternative breakdown pathway, via alamandine and
MrgD receptor [17,28].

SARS-CoV-2 disrupts the fragile balance between the protective and deleterious
RAAS pathways. The endocytosis of the SARS-CoV-2/ACE2 complex and the sheddase
tumor necrosis factor-α-converting enzyme (ADAM17)-induced cleavage downregulates
membrane-bound ACE2 (mACE2) and increases soluble ACE2 (sACE2) [28]. Reduced
ACE2 activity results in elevated plasma Ang II levels in COVID-19 patients [29]. In
relation to these findings, concerns have emerged regarding the safety of ACEI/ARB
usage during the COVID-19 pandemic. In line with experimental data indicating that
RAAS inhibitors upregulate the expression of ACE2, concerns were raised that ACEI/ARB
could accelerate and aggravate SARS-CoV-2 infection, and therefore, RAAS inhibitors
should not be used during the COVID-19 pandemic [30]. On the other hand, a quite
opposite view has emerged suggesting that RAAS inhibition might exert protective effects
against COVID-19. First, ACEI/ARB reduces the Ang II-mediated pro-inflammatory ef-
fects. Second, RAAS inhibition can potentially stimulate the ACE2-mediated formation
of Ang 1-7 (from Ang II in the case of ARB) or Ang 1-9 (from Ang I by ACEI) with their
anti-inflammatory actions [31]. Third, ACEI treatment increases the levels of N-acetyl-
seryl-aspartyl-lysil-proline (Ac-SDKP), which is an alternative substrate for ACE. It is a
ubiquitous molecule generated from the N-terminal sequence of thymosin ß4, exerting
anti-inflammatory and anti-proliferative effects (Figure 1) [32]. Given the evidence-based
mortality and morbidity benefit of ARB/ACEI treatment in cardiovascular pathologies,
cardiologic societies have unanimously recommended against ceasing RAAS inhibitor
therapy during the COVID-19 pandemic [27,31]. Indeed, a meta-analysis of seven trials
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with 16,624 COVID-19 patients revealed that ACEI/ARB usage was not associated with
heightened sensitivity or with deterioration of prognosis in the population with a COVID-
19 diagnosis [33]. Several prospective clinical studies are currently investigating whether
RAAS inhibition is safe and even beneficial in SARS-CoV-2 infection [33].

Figure 1. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) interactions with the renin–
angiotensin–aldosterone system (RAAS). SARS-CoV-2 binds with membrane ACE2, reducing its
membrane expression (by internalization or shedding) and resulting in attenuated formation of
angiotensin 1-9, angiotensin 1-7 or alamandine; this results in reduced stimulation of AT2R, Mas
and Mrg receptors and their protective cardiovascular and anti-inflammatory actions. On the other
hand, downregulated Ang II conversion to Ang 1-7 enhances the bioavailability of Ang II, Ang
A and aldosterone, with subsequent stimulation of AT1R and MR resulting in pro-proliferative
and pro-inflammatory actions. Both the reduced ACE2/Ang 1-7/Mas/AT2/MrgD protective path-
way and the stimulated ACE/Ang II/AT1 deleterious route accelerate inflammation and ARDS
development. Furthermore, Ang II is degraded to its active splitting products Ang III and Ang
IV by the aminopeptidases A and M. While Ang III can support the action of Ang II via AT1R,
Ang IV increases pro-inflammatory genes via interaction with the AT4 receptor. In addition, down-
regulation of ACE2 may enhance the bioavailability of bradykinin and its proinflammatory effect
and the potentially protective N-acetyl-seryl-aspartyl-lysil-proline (Ac-SDKP) is downregulated
via ACE. ACE—angiotensin-converting enzyme; ACE2—angiotensin-converting enzyme 2; MR—
mineralocorticoid receptor; BK—bradykinin; DABK—des-Arg9-bradykinin; B1, B2—bradykinin
receptors; APA—aminopeptidase A; APM—aminopeptidase M; AT1, AT2 and AT4—angiotensin
receptor type 1, 2 and 4, respectively; MrgD—Mas-related G-protein coupled receptor D; Mas—
Mas receptor, ARDS—acute respiratory distress syndrome, the stimulatory or inhibitory impacts of
SARS-CoV2-induced ACE2 inhibition.

5. COVID-19 and the RAAS: Potential Approaches and Perspectives

The uncertainty in predicting the outcomes of RAAS modulation in COVID-19 is
caused by the simultaneous modulation of various protective or deleterious RAAS path-
ways by the virus. Ang II may not only be converted to Ang 1-7 by ACE2 but also to
angiotensin A (Ang A), positioned at the cross-road between the deleterious and the pro-
tective branches of the RAAS. Ang A can either display a similar action as Ang II via AT1R
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or be converted to alamandine by ACE2. Alamandine, which can also originate from Ang
1-7 by decarboxylation of its aspartate residue, exerts presumably protective effects such as
vasorelaxation, endothelial protection and fibrotic remodeling curbing effects via the MrgD
receptor [34]. Similarly, Ang 1-7 itself, arising either from Ang II or from Ang 1-9, could not
only act via Mas receptor but also interact with MrgD or AT2R (Ang II type 2 receptor), both
of which exert anti-inflammatory, anti-remodeling and hemodynamic protection [2,35]. Of
importance, there is a positive feedback interplay between Mas/MrgD and AT2R-mediated
routes reinforcing each other; e.g., AT2R stimulation leads to increased Mas and ACE2
expression, and Mas activation supports ACE2 and AT2R expression. This cross-talking
of mutual support of protective pathways helps to maintain the balance with the Ang
II/AT1R deleterious route [35]. Additionally, both ACE and ACE2 cleave bradykinin,
and SARS-CoV-2-induced downregulation of ACE2 or treatment with ACEI can limit
bradykinin degradation, increasing its bioavailability and pro-inflammatory effects [36,37].
It is also worth noting that Ang II is degraded to Ang III and IV by aminopeptidase A
and M. Both these angiotensins are biologically active. While Ang III enhances the action
of Ang II via AT1R, Ang IV activates the NFkB pathway and increases pro-inflammatory
genes via the interaction with AT4 receptors [2,38].

Various therapeutic approaches aim to target different levels of the RAAS cascade to
attenuate potentially deleterious pathways or stimulate protective ones. However, these
interactions are mostly more complex than expected, and the net effect is difficult to predict
at the current level of knowledge. Apart from RAAS inhibition, there are several future
prospects for RAAS-based therapies in COVID-19. First, Mas receptor stimulation via
inhibition of Ang 1-7 degradation or enhancement of its endogenous production by recom-
binant ACE2 is being studied in clinical trials in COVID-19 patients [35,39,40]. Second,
ACE2 is assumed not only to exert anti-inflammatory actions due to Ang II conversion
to Ang 1-7; sACE2 maintains its catalytic activity but loses its virus internalization capa-
bility, thus serving as a potential decoy for virus particles, preventing their binding to
mACE2 and cellular invasion [26,28]. Third, enhancement of the bioavailability of ala-
mandine by ACE2-induced angiotensin A conversion or its external delivery might be
another clue for its anti-inflammatory and anti-remodeling effects [32]. Fourth, the dual
neprilysin/AT1 inhibitor sacubitril/valsartan increases atrial natriuretic peptide avail-
ability with anti-inflammatory action along with the blockade of the toxic Ang II effects,
potentially attenuating the threat of an excessive immune response in COVID-19 [41]. Fifth,
spironolactone downregulates the TIMPRSS2 protease, which is necessary for spike protein
processing by SARS-CoV-2 in the host cell. Spironolactone also inhibits furin, which pro-
motes the virus cell entrance and pulmonary inflammation. The anti-inflammatory effect
of spironolactone along with its antifibrotic action should also be considered in the struggle
against COVID-19 with pulmonary and cardiovascular damage [42]. Sixth, AT2R agonists,
such as compound 21 (C21), could compensate the reduced ACE2/Ang 1-7/Mas signaling
and provide compensatory attenuation of the inflammatory storm, endothelial damage
and clot formation in the lungs, heart and brain by stimulating AT2 or Mas receptor [35].

Moreover, it seems that the timing of the therapy could be of significant value. In
the early phase of pulmonary infection, stimulation of the Ang II pathway recruits in-
flammatory cells, boosting the defense mechanisms against any infection. However, in
the later phase, the relative dominance of the ACE2/Ang 1-7/Mas pathway is desirable
to quieten inflammation and prevent excessive damage from the overactivated immune
system. If the enhanced activity of the ACE/Ang II/AT1R axis persists in the later phases
of infection, the originally defensive process can result in excessive inflammation, cytokinin
storm and increased capillary permeability with pulmonary edema manifested as ARDS,
possibly followed by fibrotic lung remodeling [6,43]. Thus, it does not seem unreasonable
to suppose that the benefit of a therapy modifying the multifaceted RAAS system could be
achieved by focusing on a particular period of the SARS-CoV-2 damaging process.
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6. Conclusions

Taken together, the renin–angiotensin–aldosterone system is a phylogenetically evolved,
powerful and well-armed ally for difficult situations. As a sheer friend, it is always ready
to fight against every enemy. However, in all wars, both armies suffer. Experience shows
that sometimes, more can be achieved by diplomacy than by force. An approach based on
a balance between dominance and friendship can help to win not just a particular battle
but the entire war.
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ACE angiotensin-converting enzyme
ACEI angiotensin-converting enzyme inhibitor
ACE2 angiotensin-converting enzyme 2
ADAM17 tumor necrosis factor-α-converting enzyme (TACE)
Ac-SDKP N-acetyl-seryl-aspartyl-lysyl-proline
Ang 1-7 angiotensin-(1-7)
Ang 1-9 angiotensin-(1-9)
Ang II angiotensin II;
Ang III angiotensin III
Ang IV angiotensin IV
APA aminopeptidase A
APM aminopeptidase M
ARB angiotensin II type 1 receptor blocker
ARDS acute respiratory distress syndrome
AT1R angiotensin II type 1 receptor
AT2R angiotensin II type 2 receptor
C21 compound 21
COVID-19 coronavirus disease 2019
DABK des-Arg9-bradykinin
Mas receptor Mas
mACE2 membrane-bound angiotensin-converting enzyme 2
sACE2 soluble angiotensin-converting enzyme 2
MrgD Mas-related G-protein coupled receptor member D
RAAS renin–angiotensin–aldosterone system
rhACE2 recombinant human angiotensin-converting enzyme 2
SARS-CoV severe acute respiratory syndrome coronavirus
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
TNFα tumor necrosis factor α
TMPRSS2 transmembrane protease serine 2
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