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Abstract: Enhancers are short genomic regions exerting tissue-specific regulatory roles, usually for
remote coding regions. Enhancers are observed in both prokaryotic and eukaryotic genomes, and
their detections facilitate a better understanding of the transcriptional regulation mechanism. The
accurate detection and transcriptional regulation strength evaluation of the enhancers remain a
major bioinformatics challenge. Most of the current studies utilized the statistical features of short
fixed-length nucleotide sequences. This study introduces the location information of each k-mer
(SeqPose) into the encoding strategy of a DNA sequence and employs the attention mechanism in the
two-layer bi-directional long-short term memory (BD-LSTM) model (spEnhancer) for the enhancer
detection problem. The first layer of the delivered classifier discriminates between enhancers and
non-enhancers, and the second layer evaluates the transcriptional regulation strength of the detected
enhancer. The SeqPose-encoded features are selected by the Chi-squared test, and 45 positions are
removed from further analysis. The existing studies may focus on selecting the statistical DNA
sequence descriptors with large contributions to the prediction models. This study does not utilize
these statistical DNA sequence descriptors. Then the word vector of the SeqPose-encoded features is
obtained by using the word embedding layer. This study hypothesizes that different word vector
features may contribute differently to the enhancer detection model, and assigns different weights to
these word vectors through the attention mechanism in the BD-LSTM model. The previous study
generously provided the training and independent test datasets, and the proposed spEnhancer is
compared with the three existing state-of-the-art studies using the same experimental procedure.
The leave-one-out validation data on the training dataset shows that the proposed spEnhancer
achieves similar detection performances as the three existing studies. While spEnhancer achieves
the best overall performance metric MCC for both of the two binary classification problems on the
independent test dataset. The experimental data shows that the strategy of removing redundant
positions (SeqPose) may help improve the DNA sequence-based prediction models. spEnhancer
may serve well as a complementary model to the existing studies, especially for the novel query
enhancers that are not included in the training dataset.

Keywords: two-layer classification model; position-coding; feature selection; text vectorization;
attention mechanism
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1. Introduction

The innovative technologies and comprehensive biological investigations show that
the non-coding genomic regions are not functionally inactive as previously hypothesized
and play essential roles in transcriptional regulations [1]. An enhancer is a small genomic
region that binds to transcription factors and exerts its regulatory roles to the target
genes [2,3]. Enhancers are different from promoters that are always upstream to the target
genes and may even reside in the introns [4]. The burst frequency of a target gene may
be significantly increased by enhancers [5]. Therefore, the functional investigation of
enhancers will improve our understanding of the transcription regulation mechanism [6].

Enhancers may be detected through in vivo animal experiments. Heintzman and Ren
identified novel enhancers through the binding affinities to the transcription factors like
P300 [7]. Boyle et al. detected enhancers by investigating the DNasel hypersensitivity [8].
However, the wet-lab experiments are time-consuming and labor-intensive, and many
enhancers cannot be detected in this way due to their condition-specific activities [9].

Various machine learning methods are proposed for the enhancer detection and
evaluation problem. Firipi et al. proposed the artificial neural network-based algorithm
CSI-ANN to efficiently extract the enhancers’ sequence features and accurately detect
novel ones [10]. The tool EnhancerFinder combined multiple learning kernels based on
the evolutionary conservation patterns, sequence motifs, and cell type-specific functional
information for the detection, and genomic distribution characterization of enhancers [3]. A
random forest (RF) model was trained using the chromatin status to construct the enhancer
maps in multiple cell types [11]. Deep learning is another powerful tool to detect enhancers,
and the tool EnhancedDBN achieved the enhancer detection task using a deep belief
network (DBN) [12].

The strength type is another important feature of enhancers. Liu et al. utilized the
pseudo-k-set nucleotide composition (PseKNC) algorithm [13] as the sequence features
and proposed a two-layer classifier iEnhancer-2L for both the enhancer detection and
the enhancer strength type determination [14]. Jia et al. utilized a two-step wrapper
feature selection algorithm to find the best features from the useful information of bot
bi-profile Bayes and PseKNC, and their model EnhancerPred by 0.01 and 0.12 in the
metric Matthews Correlation Coefficient (MCC) for the two layers of iEnhancer-2L [15].
Nguyen et al. combined the one-hot-encoding of and the statistical k-mer descriptors
neighboring to each nucleotide, and trained convolutional neural network (CNN) models
for the enhancer detection problem (iEnhancer-ECNN) [16]. Their ensembled models
demonstrated much improved prediction performance on the independent test dataset.
Both the ensembled prediction models and the CNN classifiers are notorious for the high
computational requirements. This might be the reason that the leave-one-out validation
was not carried out.

This study proposes a novel position-specific encoding algorithm (SeqPose) of nu-
cleotide sequences and selects a subset of the SeqPose features to build the two-layer en-
hancer classification model. The first layer separates the enhancers from the non-enhancers,
and the second layer determines whether an enhancer is strong or weak. The experimental
data shows that the position-specific patterns contribute useful information to the accurate
enhancer detection and strength evaluation problem.

There are two major contributions of this study. Firstly, the DNA sequence encoding
strategy in this study utilizes the location information of each k-mer. In this paper, a
novel sequence preprocessing strategy (SeqPose) is proposed. We map the original DNA
sequences into numerical sequences by using the encoding rules (SeqPoseDict), and then
select the redundant positions with low correlation with sample label by using the Chi-
squared test, and remove them from the sequences altogether. In this study, we look at the
different positions of the encoded sequence as features, trying to find unimportant positions
and delete them from the sample, which was ignored by most of the existing studies.
The correlations between different positions in a DNA sequence also shows phenotype
associations. This is different from the previous position-specific encoding strategy of DNA
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sequences, which calculates the one-hot encoding of and the other statistical descriptors
neighboring to the nucleotide A/C/G/T in each position and formulates these engineered
features in the same orders of their corresponding nucleotides [16].

Secondly, the attention mechanism is widely used in the deep learning-based text
classification studies, and this study hypothesizes that the attention mechanism might
be able to highlight the nucleotide ‘words’ with large contributions to the enhancer pre-
diction models. Our experimental data in the following sections demonstrates that the
proposed SeqPose features achieves similar leave-one-out validation and independent test
performances compared with the existing studies. The feature selection strategy and the
attention mechanism ensure that the training and prediction of the proposed prediction
models may be completed within reasonable time and have the potential to be deployed to
the situations with limited computing power.

2. Results and Discussion

This section evaluates the parameters of the proposed model spEnhancer, and then
compares spEnhancer with the existing studies on the same datasets. In the first three
subsections, we divide 10% of the 2968 training DNA sequences into test sets, then 10%
of the remaining data sets into verification sets, and the rest were all used as training
sets for training models. All experiments in this study the random number seed 75. The
results of the first layer structure of the model on the test set are used as the criteria for
parameter selection.

2.1. Evaluating the Length of K-mers

It is anticipated that different length of k-mers makes different SeqPose features and
may have large impacts on the final prediction models. This section investigates the binary
classification between enhancers and non-enhancers. The three parameters are initially set
as pBatchSize = 100, pLSTMSize = 128, and pDropoutRatio = 0.2.

The enhancer detection model of 7-mers achieves the worst prediction accuracy (Acc),
as shown in Table 1. The data suggests that the model of 6-mers performed reasonably well
on the metric specificity (Sp), but its sensitivity (Sn) is only 0.6338, which is at least 0.0775
worse than the models using the other k-mers. Therefore, 6-mers are excluded from further
evaluation. The data suggests that the model using 2-mers performed the best Acc = 0.8047
in Table 1. The following sections focus on the models using 2-mers.

Table 1. Performance comparison of different k-mers on the test dataset. The performance of
individual k-mer setting.

k-mer Acc Sn Sp MCC AUC

1-mer 0.7811 0.7183 0.8387 0.5319 0.8783
2-mer 0.8047 0.7254 0.8774 0.5673 0.8781
3-mer 0.7912 0.7042 0.8710 0.5383 0.8693
4-mer 0.8013 0.7113 0.8839 0.5554 0.8717
5-mer 0.7677 0.7887 0.7484 0.5534 0.8637
6-mer 0.7778 0.6338 0.9097 0.4870 0.8652
7-mer 0.7306 0.6972 0.7613 0.4498 0.8322

2.2. Selecting the Best SeqPose Features

We hypothesize that some of the SeqPose features had no contributions to the clas-
sification problem in this study. We use the Chi2 measurement to evaluate the features
and calculate the prediction performances of the binary classification problem between
enhancers and non-enhancers on the test dataset after removing some features, as shown
in Figure 1.
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Figure 1. Performance evaluation of the models using the 2-mer SeqPose features after filtering out some redundant features.

The vertical axis gives the values of the five performance metrics, including Sn, Sp, MCC, AUC, and Acc. The horizontal axis

is the number of features removed from the 2-mer SeqPose features, i.e., “—5” means that the five features with the largest

p-values are removed from the list of all 2-mer SeqPose features. The feature removal is carried out in two steps, i.e., (a) five

features are removed in each iteration; and then (b) one feature is removed in each iteration from the list of features “—45".

Firstly, we carry out a procedure of coarse-grain feature selection, through removing
five features with the largest p-value measurement in each iteration, as shown in Figure 1a.
There are 398 2-mer SeqPose features constructed from each 200-bp nucleotide sequences.
The best classification accuracy is Acc = 0.8249 after removing 45 features (“—45"). At
the same time, the classification model based on the feature list also obtains the best
parameter-independent metric AUC = 0.8986.

Secondly, we carry out a fine-grain feature selection procedure by removing one
feature in each iteration, as shown in Figure 1b. The experimental data suggests that the
classification model with 45 removed features is not improved with more features being
removed. The experimental data of Table 1 and Figure 1 show that 45 of the SeqPose
features do not contribute to the enhancer prediction models. The best prediction model in
Table 1 was substantially improved for Acc (from 0.8047 to 0.8249), MCC (from 0.5673 to
0.5936), and AUC (from 0.8781 to 0.8986). Therefore, the removal of the redundant positions
in the SeqPose encoding features may improve the DNA sequence-based prediction models
like the enhancer predictions. The following section will use the 2-mer SeqPose features
after the removal of those 45 position-specific features.

2.3. Symbolic Interpretation of SeqPoseDict

This section demonstrates through experimental comparison that SeqPoseDict is only
used to convert DNA sequences into computer-recognizable numerical representations,
and its selection will not have a decisive impact on the final experimental results (see
Table 2). We sequentially: (1) use all data sets to construct SeqPoseDict, see Resl; (2) use
95% of all data sets to construct SeqPoseDict, see Res2; (3) use 90% of all data sets to
construct SeqPoseDict, see Res3; (4) use 85% of all data sets to construct SeqPoseDict, see
Res4; (5) use 80% of all data sets to construct SeqPoseDict, see Res5.

Table 2. Performance of different SeqPoseDict on the same test set. The first row gives the values
of the five performance metrics—including Sn, Sp, MCC, AUC, and Acc. The first column is

different SeqPoseDict.
Acc Sn Sp MCC AUC
Res1 0.7946 0.6620 0.9161 0.5221 0.8827
Res2 0.7912 0.8028 0.7806 0.5951 0.8797
Res3 0.8114 0.7394 0.8774 0.8774 0.8920
Res4 0.7845 0.8099 0.7613 0.5905 0.8827

Res5 0.7845 0.8380 0.7355 0.6100 0.8885
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The data shows that under the framework proposed in this paper, the size of SeqPose-
Dict does not have a decisive influence on the prediction effect of the model. It can be seen
that when the data set used to construct SeqPoseDict fluctuates within 20%, the range of
the Acc indicator does not exceed 0.03, which is within the acceptable range.

2.4. Optimizing the Best Choices of the Three Parameters

The three parameters pLSTMSize, pDropoutRatio, and pBatchSize are optimized
through eight-fold cross-validation, as shown in Table 3. The overall prediction accuracy
Acc is used as a parameter selection goal for the binary classification problem between
enhancers and non-enhancers.

Table 3. Performance of different hyperparameters on the test dataset. ‘Upper left corner”: When
pBatchSize = 16, traverse the collection of pDropoutRatio and pLSTMSize. ‘Upper right corner”:
When pBatchSize = 32, traverse the collection of pDropoutRatio and pLSTMSize. ‘Middle left: When
pBatchSize = 64, traverse the collection of pDropoutRatio and pLSTMSize Collection. ‘Middle right’:
When pBatchSize = 128, traverse the collections of pDropoutRatio and pLSTMSize. ‘Lower left
corner’: When pBatchSize = 256, traverse the collections of pDropoutRatio and pLSTMSize. ‘Bottom
right corner”: When pBatchSize = 512, traverse the collections of pDropoutRatio and pLSTMSize. In
each subgraph, the first row gives the values of the five prediction performance metrics—i.e., Sn, Sp,
MCC, Acc, and AUC. The first column gives the values of each pair pLSTMSize and pDropoutRatio,
separated by a comma.

Sn Sp MCC Acc AUC Sn Sp MCC Acc AUC
64,01 07180 0.8219 0.5161 0.7692 0.8441 64,01 0.7057 0.8429 0.5173 0.7729 0.8476
64,02 0.7489 0.8032 0.5384 0.7759 0.8496 64,02 0.7468 0.7993 0.5327 0.7729 0.8471
64,03 07135 0.8395 0.5224 0.7773 0.8516 64,03 0.7301 0.7895 0.5061 0.7571 0.8484
64,04 0.7309 0.8207 0.5307 0.7756 0.8504 64,04 0.7145 0.8317 0.5172 0.7712 0.8508
64,0.5 0.7408 0.7976 0.5252 0.7685 0.8475 64,0.5 0.7001 0.8597 0.5205 0.7800 0.8430
64,0.6 0.7393 0.8102 0.5307 0.7743 0.8485 64,0.6 0.7242 0.8075 0.5129 0.7652 0.8519
64,0.7 07319 0.8286 0.5366 0.7810 0.8514 64,0.7 0.7263 0.8254 0.5282 0.7756 0.8478
128,0.1 0.6746 0.8602 0.4908 0.7662 0.8427 128,01 0.7295 0.8147 0.5250 0.7729 0.8433
128,0.2 0.7256 0.7758 0.4894 0.7507 0.8347 128,0.2 0.6743 0.8589 0.4970 0.7642 0.8459
128,03 0.6919 0.8426 0.4983 0.7665 0.8441 128,0.3 0.6894 0.8304 0.4946 0.7642 0.8361
128,04 0.6854 0.8534 0.5019 0.7709 0.8479 128,04 0.7620 0.7570 0.5219 0.7571 0.8418
128,0.5 0.6947 0.8337 0.4982 0.7638 0.8438 128,0.5 0.7322 0.7987 0.5187 0.7655 0.8452
128,0.6 0.7289 0.8028 0.5154 0.7655 0.8441 128,0.6 0.7539 0.7820 0.5302 0.7682 0.8384
128,0.7 0.6866 0.8509 0.4990 0.7672 0.8373 128,0.7 0.7255 0.7894 0.5015 0.7551 0.8416
192,0.1 0.6969 0.7745 0.4674 0.7385 0.8364 192,01 0.6825 0.8220 0.4753 0.7520 0.8276
192,0.2 0.6868 0.8228 0.4821 0.7537 0.8291 192,0.2 0.6480 0.8739 0.4752 0.7618 0.8364
192,0.3 0.7047 0.8098 0.4913 0.7574 0.8357 192,0.3 0.7250 0.8237 0.5255 0.7756 0.8467
192,04 0.6406 0.8555 0.4547 0.7470 0.8329 192,0.4 0.6430 0.8482 0.4576 0.7439 0.8352
192,0.5 0.6286 0.8500 0.4427 0.7358 0.8146 192,0.5 0.6854 0.8527 0.5000 0.7692 0.8484
192,0.6 0.7567 0.7800 0.5312 0.7695 0.8420 192,0.6 0.7468 0.7604 0.5105 0.7564 0.8383
192,0.7 0.7089 0.8322 0.5186 0.7746 0.8438 192,0.7 0.7373 0.7608 0.4924 0.7456 0.8377

Sn Sp MCC Acc AUC Sn Sp MCC Acc AUC
64,01 07199 0.8250 0.5185 0.7709 0.8497 64,01 0.7152 0.8372 0.5233 0.7773 0.8527
64,02 0.7377 0.8393 0.5509 0.7877 0.8567 64,02 0.7191 0.8276 0.51838 0.7729 0.8507
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Table 3. Cont.

Sn

Sp

MCC

Acc

AUC

Sn

Sp

MCC

Acc

AUC

64,0.3

0.7427

0.8106

0.5358

0.7756

0.8521

64,0.3

0.6868

0.8618

0.5074

0.7732

0.8530

64,0.4

0.6896

0.8444

0.4987

0.7665

0.8464

64,0.4

0.6722

0.8288

0.4664

0.7483

0.8316

64,0.5

0.7403

0.8361

0.5521

0.7884

0.8506

64,0.5

0.7152

0.8233

0.5133

0.7689

0.8428

64,0.6

0.6898

0.8411

0.4968

0.7631

0.8507

64,0.6

0.6995

0.8154

0.4874

0.7577

0.8401

64,0.7

0.7265

0.8049

0.5136

0.7642

0.8486

64,0.7

0.7136

0.8191

0.5081

0.7665

0.8497

128,0.1

0.6909

0.8390

0.4946

0.7648

0.8340

128,0.1

0.6920

0.8464

0.5029

0.7709

0.8466

128,0.2

0.7260

0.8166

0.5238

0.7722

0.8479

128,0.2

0.6973

0.8428

0.5080

0.7692

0.8469

128,0.3

0.6754

0.8299

0.4764

0.7544

0.8393

128,0.3

0.6719

0.8415

0.4755

0.7547

0.8447

128,0.4

0.6765

0.8409

0.4863

0.7540

0.8443

128,0.4

0.6916

0.8168

0.4858

0.7534

0.8444

128,0.5

0.7060

0.8300

0.5075

0.7675

0.8470

128,0.5

0.6994

0.8343

0.5048

0.7668

0.8392

128,0.6

0.6852

0.8611

0.5064

0.7732

0.8459

128,0.6

0.7085

0.8366

0.5152

0.7712

0.8498

128,0.7

0.6918

0.8507

0.5091

0.7702

0.8430

128,0.7

0.6962

0.8189

0.4929

0.7598

0.8518

192,0.1

0.6767

0.8462

0.4860

0.7631

0.8378

192,0.1

0.6529

0.8787

0.4824

0.7679

0.8488

192,0.2

0.6848

0.8393

0.4939

0.7618

0.8480

192,0.2

0.6793

(0.8445

0.4884

0.7625

0.8345

192,0.3

0.6654

0.8538

0.4768

0.7584

0.8283

192,0.3

0.7350

0.8156

0.5325

0.7749

0.8528

192,0.4

0.6989

0.8349

0.5050

0.7658

0.8437

192,0.4

0.6592

0.8623

0.4781

0.7594

0.8444

192,0.5

0.6812

0.8499

0.4933

0.7638

0.8472

192,0.5

0.6046

0.8926

0.4439

0.7480

0.8441

192,0.6

0.6801

0.8374

0.4836

0.7574

0.8313

192,0.6

0.7090

0.7949

0.4944

0.7480

0.8405

192,0.7

0.7044

0.8305

0.5065

0.7665

0.8422

192,0.7

0.7177

0.8210

0.5145

0.7675

0.8467

Sn

Sp

MCC

Acc

AUC

Sn

Sp

MCC

Acc

AUC

64,0.1

0.6857

0.8343

0.4910

0.7598

0.8363

64,0.1

0.6857

0.7948

0.4581

0.7433

0.8242

64,0.2

0.6979

0.8412

0.5052

0.7702

0.8410

64,0.2

0.6514

0.8488

0.4591

0.7483

0.8217

64,0.3

0.6923

0.8483

0.5027

0.7706

0.8422

64,0.3

0.6614

0.8005

0.4319

0.7338

0.8102

64,0.4

0.6840

0.8524

0.4975

0.7682

0.8436

64,0.4

0.6781

0.7835

0.4398

0.7315

0.8109

64,0.5

0.7304

0.8148

0.5252

0.7736

0.8460

64,0.5

0.6705

0.8206

0.4593

0.7456

0.8203

64,0.6

0.7113

0.8147

0.5040

0.7618

0.8433

64,0.6

0.6490

0.7762

0.3986

0.7113

0.8037

64,0.7

0.7132

0.8421

0.5245

0.7746

0.8538

64,0.7

0.6253

0.8211

0.4091

0.7217

0.8011

128,0.1

0.6982

0.8451

0.5123

0.7702

0.8494

128,0.1

0.6601

0.8469

0.4701

0.7534

0.8383

128,0.2

0.7124

0.8149

0.5069

0.7675

0.8423

128,0.2

0.6412

0.8730

0.4655

0.7564

0.8237

128,0.3

0.6600

0.8739

0.4869

0.7689

0.8400

128,0.3

0.6770

0.8292

0.4736

0.7527

0.8303

128,0.4

0.6407
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0.7036
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0.6680

0.8668
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The set of pLSTMSize is {64, 128, 192}; the set of pDropoutRatio is {0.1,0.2,0.3,04,0.5,0.6,0.7};
the set of pBatchSize is {16, 32, 64, 128,256,512}. Every time we take out a set of hyperpa-
rameters from these three sets as training parameters, until we get all possible combinations,
compare their evaluation indicators on the same test set (See Table 3). The data shows
that when the hyperparameter combination is pLSTMSize = 64, pBatchSize = 64, and
pDropoutRatio = 0.5, the model training effect is the best (Acc = 0.7884, AUC = 0.8506).
Therefore, the following sections are conducted on the basis of this set of hyperparameters.

2.5. Comparing spEnhancer with the Existing Models

This section compares the experimental results of the proposed spEnhancer models
with the existing models, as shown in Tables 4 and 5. The parameters of spEnhancer models
are set by the optimization procedure in the above sections. The SeqPose encoding features
use 2-mers. The 45 redundant positions are removed according to the above sections.
The parameters pLSTMSize, pBatchSize, and pDropoutRatio are set as 64, 64, and 0.5,
respectively. The random seed is set to 75. The SeqPoseDict is calculated based on the
training dataset. The threshold of the prediction probability uses the default value 0.5.

Table 4. Comparison of the results of the leave-one-out method on the training dataset between
spEnhancer and the three existing methods.

Methods Acc Sn Sp MCC AUC

" spEnhancer 0.7793 0.7082 0.8504 0.5227 0.8468
enhancers iEnhancer-EL 0.7803 0.7567 0.8039 0.5613 0.8547
V; iEnhancer-2L 0.7689 0.7809 0.7588 0.5400 0.8500
non-enhancers  phhancerPred 0.7318 0.7257 0.7379 0.4636 0.8082
strong spEnhancer 0.6413 0.8503 0.3052 0.2105 0.6148
enhancers iEnhancer-EL 0.6503 0.6900 0.6105 0.3149 0.6957
Vs iEnhancer-2L 0.6193 0.6221 0.6182 0.2400 0.6600

weak enhancers EnhancerPred 0.6206 0.6267 0.6146 0.2413 0.6601

Table 5. Comparison of results between spEnhancer and the three existing methods on the indepen-
dent test dataset.

Methods Acc Sn Sp MCC AUC
spEnhancer 0.7725 0.8300 0.7150 0.5793 0.8235

h iEnhancer-
enhancers ECNN 0.7690 0.7850 0.7520 0.5370 0.8320

\'E

non-enhancers iEnhancer-EL 0.7475 0.7100 0.7850 0.4964 0.8173

iEnhancer-2L 0.7300 0.7100 0.7500 0.4604 0.8062
EnhancerPred 0.7400 0.7350 0.7450 0.4800 0.8013

spEnhancer 0.6200 0.9100 0.3300 0.3703 0.6253

strong iEnhancer-
enhancers ECNN 0.6780 0.7910 0.7480 0.3680 0.7480
vs iEnhancer-EL 0.6100 0.5400 0.6800 0.2222 0.6801
weak enhancers iEnhancer-2L 0.6050 0.4700 0.7400 0.2181 0.6678
EnhancerPred 0.5500 0.4500 0.6500 0.1021 0.5790

The performance metrics Sn and Sp measure a binary classification model from
different aspects, and one metric may be increased at the cost of the other one [17,18]. The
overall prediction performance metrics Acc and MCC may be used for a fair comparison of
two classification models [14]. Leave-one-out validation tends to give optimistic results for
a classification model and the model generalization on future samples is usually evaluated
by the prediction performances on independent datasets that are not involved in the model
training process. The same independent dataset is publicly available and used in this
study [14].
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Table 4 shows that the proposed method spEnhancer achieves similar prediction
performances for both of the two binary classification problem using the leave-one-out
validation. The spEnhancer model achieves Acc = 0.7793 for the classification problem
between enhancers and non-enhancers, which is 0.001 smaller than the best accuracy of the
iEnhancer-EL model. Due to the difference in experimental equipment and the influence of
the randomness of the parameters, we consider the difference in accuracy to be negligible
and acceptable. The spEnhancer model achieved the second-best accuracy Acc = 0.6413,
which is slightly smaller than the best model iEnhancer-EL’s Acc = 0.6503.

Table 5 gives the comparative results between the proposed spEnhancer and the four
existing state-of-the-art models on the independent test dataset. The prediction perfor-
mances of the four existing state-of-the-art studies are also retrieved from the previous
study. The prediction accuracy on the independent dataset is supposed to represent how
well a prediction model may achieve on the future query nucleotide sequences.

The proposed spEnhancer models and another algorithm iEnhancer-ECNN achieve
the best two prediction accuracies and MCC on both enhancer detection problems, as
shown in Table 5. The spEnhancer model achieves the best prediction Acc = 0.7725 and
MCC = 0.5793 for the first layer of the enhancer detection problem, suggesting that spEn-
hancer may accurately separate enhancers from non-enhancers even on novel query se-
quences. For the second layer of the enhancer detection problem, spEnhancer achieves Acc
= 0.6200, which is slightly worse than the Acc = 0.6780 of the iEnhancer-ECNN model [16].
However, spEnhancer outperforms iEnhancer-ECNN in MCC by an improvement of 0.0023.

The previously best model iEnhancer-ECNN achieves a better strong/weak enhancer
prediction accuracy than the proposed spEnhancer with a sacrifice in the training and
prediction time. The iEnhancer-ECNN integrates the prediction results of five convolutional
neural networks, each of which is trained by 20 epochs [16]. While this study completes
the training of the proposed spEnhancer within six epochs. This might be the reason that
the iEnhancer-ECNN model does not provide the leave-one-out validation results.

Therefore, the overall prediction performances of spEnhancer are better than or com-
parable to the four state-of-the-art models. This suggests that spEnhancer may serve well
as a complementary model to the existing enhancer detection studies.

2.6. Evaluating the Three-Class Classification Model

The BD-LSTM algorithm may also handle the three-class classification problem. The
above sections formulate the enhancer detection problem as a two-layer setting for a
consistent comparison with the network structure of Liu et al. [17]. This section collects the
three classes of samples and directly trains a three-class BD-LSTM prediction model with
the same parameter values for the enhancer detection problem. The model training is on
the training dataset and the performance is calculated using the independent test dataset.
The three-class BD-LSTM model achieves 0.6402 in the overall prediction accuracy, while
the binary classification BD-LSTM model achieves Acc = 0.7725 for separating enhancers
from non-enhancers, as shown in Table 5. However, the three-class BD-LSTM model
outperforms the binary classification model between strong and weak enhancers.

Therefore, the setting of the two-layer model delivers similar prediction performances
as the three-class classification model. In order to carry out a direct comparison with the
existing studies, the two-layer model is recommended.

2.7. Evaluating Different Word Vector Dimensions

The dimension size of the word vectors may affect the prediction performances, and
this study evaluates different dimensions of the word vectors, as shown in Table 6. Eight
values are evaluated for the dimension of the word vector, i.e., 12, 24, 48, 96, 192, 394, 768,
and 1536. The values 48, 768, and 1536 achieve the best three Acc and MCC for the binary
classification problem between enhancers and non-enhancers. The values 48, 96, 394, and
768 achieve the best four Acc for separating the strong enhancers from the weak ones, but
the best MCC = 0.3703 is achieved by the dimension of word vector 768. At the same time, it
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can be seen that although the Acc with vector dimension equal to 1546 reached the optimal
when classifying the enhancers and non-enhancers, the result was only 0.0039 higher than
that of the Acc with dimension of 768. However, when classifying strong enhancers and
weak enhancers, the Acc with a vector dimension of 768 was higher than the Acc with a
vector of 1536, which was 0.04, which was a significant improvement. Therefore, this study
sets 768 as the dimension of the word vector.

Table 6. Comparison of the spEnhancer model performances using different dimensions of word
vectors on the independent test dataset. The first column gives the binary classification problem.
The column “WV” is the dimension of the word vector. The other five columns give the prediction
performances Acc, Sn, Sp, MCC, and AUC.

‘g‘.’rd Vector Acc Sn Sp MCC AUC
imension

12 0.7085 0.8550 0.5606 0.4943 0.8177

24 0.6658 0.9150 0.4141 0.4655 0.8094

48 0.7538 0.8150 0.6919 0.5408 0.8167

enhancers 9 0.7060 0.8650 0.5455 0.4971 0.7359

Vvs. 192 0.7186 0.7650 0.6717 0.4580 0.8078

non-enhancers 394 0.7337 0.8400 0.6263 0.5253 0.8172

768 (this study)  0.7725 0.8300 0.7150 0.5793 0.8235

1536 0.7764 0.7550 0.7980 0.5408 0.8281

12 0.5550 0.4300 0.6800 0.0984 0.6351

24 0.5000 1.0000 0.0000 0.0000 0.6324

strong 48 0.6000 0.7100 0.4900 0.2265 0.6342

enhancers 9% 0.6250 0.8000 0.4500 0.3101 0.6275

VS 192 0.5700 0.6700 0.4700 0.1565 0.6279

weak 394 0.5950 0.7100 0.4800 0.2165 0.5987

enhancers 768 (this study)  0.6200 0.9100 0.3300 0.3703 0.6253

1536 0.5800 0.8700 0.2900 0.2469 0.5972

3. Materials and Methods

This section introduces a two-layer classifier for the detection and strength determina-
tion of enhancers. Firstly, the position-specific encoding algorithm (SeqPose) of nucleotide
sequences is described. Then the Chi-squared test (Chi2) is used to select a subset of
the SeqPose features. Lastly, the selected SeqPose features are loaded to the embedding
layer and mapped to a three-dimensional tensor. The two-layer classifier spEnhancer is
optimized for the two binary classification problems.

3.1. Datasets and Performance Metrics

This study retrieves the publicly available training and independent test datasets
released by the previous study [14]. Three existing state-of-the-art models are evaluated
using the same datasets. Therefore, the proposed model spEnhancer is also evaluated on
these two datasets. A fair comparison is carried out for the proposed model spEnhancer
and the three existing models using the leave-one-out validation on the training dataset and
the validation on the independent test dataset. The following describes how the training
dataset is generated. The independent test dataset is generated using the same procedure
and has no overlapped samples with the training dataset.

This article cites the standard data set S constructed by Prof. Bin Liu [14] based on
nine kinds of cell chromosome status information (2968 sequences in total)

— gt + -
5= Sstrong + Sweuk +5 (1)
where, S;mng contains only strong enhancer sequences, with a total of 742; S/ . con-

tains only weak enhancer sequences, with a total of 742; S~ contains only non-enhancer
sequences, with a total of 1484.
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All data consists of a positive sample data set and a negative sample data set. Among
them, the enhancer type in the first layer structure is a positive sample, and the non-
enhancer type is a negative sample; the strong enhancer type in the second layer structure
is a positive sample, and the weak enhancer type is a negative sample.

This study uses the five widely-used classification performance metrics [13], i.e.,
accuracy (Acc), Matthews correlation coefficient (MCC), sensitivity (Sn), specificity (Sp),
and the area under the ROC curve (AUC). Let the samples with the class labels 1 and
0 be positive and negative ones, respectively. The metrics Sn and Sp describe the ratios
of correctly predicted positive and negative samples, respectively. Acc is the ratio of the
correctly predicted samples. MCC describes the correlation between the real and predicted
class labels. AUC is a threshold-independent metric for a classification model, and a
good model tends to have a large AUC value [19]. These five metrics are defined in the
following formula.

Sn=1-S8"/s*" ()
Sp=1-S5,/S" 3)
Acc=1— (ST +587)/(STs™) 4)

1—-(ST+57,)/(5"+57)
\/[1 + (ST —8T) /St [1+ (St —5S7)/5]

MCC = )

The notation ST is the number of positive samples, while ST is the number of incor-
rectly predicted positive samples. S~ is the number of negative samples, and S is the
number of incorrectly negative samples.

3.2. K-mer Indexing and SeqPose Feature Extraction

This study hypothesizes that the position-specific k-mer patterns may deliver im-
portant information to discriminate enhancers from the other nucleotide sequences. A
nucleotide sequence is a vector of letters and may be formulated as the one-hot integer
vectors. Another feature extraction strategy is to summarize the statistical metrics of k-mers
in a nucleotide sequence. All the k-mer instances are usually collected through a sliding
window with step size 1, as shown in Figure 2.

G . cltla - A 6-bp nucleotide
sequence, 1.e., =6

Iteratively collect 2-mers, 1.e., &=2

| Atotal of n-k+1=5
2-mers are collected.

a
i

EE
ﬁo
L

SeqPoseDict=
{GA, CT. TG, AC}

14231 {1,2.3,4}

Figure 2. Extracted SeqPose features of a nucleotide sequence. A, T, G, C represent the bases in the
nucleotide sequence.

The collected list of unique k-mers from all the training sequences is shuffled into a set,
which is used as an enhancer dictionary (denoted as SeqPoseDict). Each k-mer has a unique
ID (starting from 1) in this dictionary, SeqPoseDict. A query nucleotide sequence is encoded
by the same dictionary generated from the training sequences. Note that SeqPoseDict ID is
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not in the actual meaning. It is used to map the DNA sequence for numerical vectors, we
will in the next chapter by the experimental results show that different SeqPoseDict model
does not cause large fluctuations, it also illustrates the model of our proposed architecture
as a whole is robust. Here we only give one of the methods of constructing SeqPoseDict:
according to the order of appearance of k-mer in the training set, assign values from 1 until
all k-mers in the training set are traversed. For k-mers that are not in the SeqPoseDict in
the unknown data set, we specify that the k-mer ID is 0.

3.3. Selecting the Subset of Best Features

A feature selection step is carried out to remove the positions extracted in the above
section if these have low phenotype associations. Chi2 assumes the null hypothesis that
under the Chi-square distribution, a given feature is independent of the class label. A
statistical p-value is calculated to describe the null hypothesis. A small p-value rejects the
null hypothesis and supports that the given position is correlated with the class label. Next,
use Chi2 to determine the position label with low correlation with the label on the training
set (T) as the redundant feature and remove it from all samples, including the test set.

Each sample is a fixed-length (n) nucleotide sequence and is sliced as multiple k-mers
through the sliding window with step size 1. Each k-mer is regarded as a ‘word’. Therefore,
each sample can be viewed as a ‘sentence’ composed of multiple ‘words’ (See step 1 in
Figure 3).

The k-mer ‘word’ in the extracted feature of a query nucleotide sequence is replaced
by its ID in the dictionary SeqPoseDict (See step 2 in Figure 3).

The samples in the training dataset and the labels of these corresponding samples
are formed into a matrix M. That is, the first C-1 column of M indicates position-specific
feature, the last column is the label column, and each row of M is a sample. The correlation
between each feature and the class label is calculated by Chi2. The detailed calculations are
described in detail in the following sub-steps.

Take out the ith column and the label column Y in M. We can treat the different IDs
in the ith column as different k-mer categories and extend the column vectors into matrix
X by one-hot coding, where each row represents the one-hot encoding of IDs, and each
column represents the k-mer category. Then do the same for the label variable Y with
one-hot coding to make a two-dimensional matrix Y_label, where the rows represent the
one-hot code of the sample’s class label, and the column represents the sample’s class label
(see Step 3.1 in Figure 3).

Calculate the observed value by formula (6) and record it as vObserved (see Step 3.2
in Figure 3).

vObserved = YTX (6)

Summing each column of the data matrix X makes the variable vFeatureSum. Then the
formulas (7) and (8) are used to calculate the proportion of positive (vProbP) and negative
(vProbN) samples in the column vector Y_label, respectively. The variables vProbP and
vProbN are combined as vProbClass. The theoretical value is calculated according to the
formula (9), denoted as vExpected. Please be noted that the calculation uses floating-point
values with eight digits after the decimal point. Figure 3 shows only two digits after the
decimal point for an easy view (see Step 3.3 in Figure 3).

Ny
ProbP = — 7
vProb N @)
No
ProbN = — 8
vPro N ®)
vExpected = vProbClassT x vFeatureSum 9)

where N1, Ny, and N represent the numbers of the samples in category 1, the samples in
category 0 and all the samples, respectively.
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N T N
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CTCA---GG

tctt GG | —mn
T:|cttctg 2mer

ACCC--- AC

Step 1: 2-mer split

k-mer category: AA

vObserved: (

Each column as a whole is a
position-specific feature

k-mer category:

label category:

vFeatureSum: (150 80

Bring

vFeatureSum
vProbClass into formula (9)

k-mer category:

vExpected: (

Put vObserved and vExpected into
formula (10) to calculate the Chi2|

AT 4 -
UNK 0 _L —]
1| 2 14 |1
16| 17 14 |1
t 8 . m:f[17] 18 -~ 190
SeqPoseDict Step 2: Encoder o :
10 8 10 |1
CT TC GG — 1
tc  ct GG Y: label column
T:| ct tt tg _
AC CC AC
2-mer sequences
AC tc tg it k-mer category:
\{ AA AC -+ tc tg tt
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83 51 24 17 24 0 0 0 00
Step 3.2: Calculate the observed value 00 100 Step 3.1: Take out }he
X110 0 00 O i column (here i=1
. HE LI A for example) and the
A‘A AC te & 0 1 0 0 O label column
76 60 98) D label category: 1
0 1 g 1
¥
vProbClass: (5.0093598¢e — 1 4.9906402e — 1), 8 i
and Y_label:{ 1 0
0 1
AA AC tg tt
v
7.514e1 4.007el 3.006e1 4.909e1) S 4 R
7.486e1 3.993el 2.994e1 4.891el S:?P“'St e
Step 3.3: Calculate the theoretical value cp3.1-5tep.
until  all  the
k-mer category: AA AC tg tt columns in the
M matrix have
ChiZ'( 1.77e0  6.13e0 1.12e0 2.53e0) been retrieved
‘\18e—1 1le—-2 8e—4 4.8e—07 |

value of each kmer category in the i
column

Step 3.4: Calculate the Chi2 value

Step 3.5: Combine the obtained Chi2 value
with Python package scikit-learn to obtain
the pvalues of all kmer in the current i”
column, and then add all the pvalues to
obtain the overall pvalue of the i” column,
which is defined as vFeaturePvalue

Figure 3. Flow chart of Chi2-based SeqPose feature selection.

Formula (10) calculates the Chi2 value of each k-mer category in a column of the data
matrix M. Please be noted that the calculated Chi2 values reach 16 digits after the decimal
point. Figure 3 rounds these values for a better view (see Step 3.4 in Figure 3).

Chi2 =

(vObserved — vExpected )

(10)

vExpected

The corresponding p-value is calculated using the tool Python package scikit-learn
version 0.20.3. This paper defines the p-value of each column in the matrix M as the sum of
p-values of each k-mer in this column, denoted as vFeaturePvalue (See step 3.5 in Figure 3).
Repeat the steps 3.1-3.5 until all the feature columns are evaluated (See step 4 in
Figure 3).
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The features are sorted by vFeaturePvalue in the descendent order, and the top K
features with the largest vFeaturePvalue are removed for their small correlations with the
class labels.

3.4. Vectorization

The features of a sample nucleotide sequence from the above section form a list of
consecutive k-mer ‘words’, and this list is regarded as a ‘sentence’. The traditional one-hot
coding strategy makes the feature matrix very sparse, so the step of text vectorization is
carried out through the word embedding technique. A numeric tensor is generated by the
text vectorization of a sample (a nucleotide sequence).

The dimension of the original one-hot coding feature vector of each k-meris 1 x P,
and we project each k-mer into a Q-dimensional word vector by embedding layer. P is also
the size of the dictionary SeqPoseDict. This paper uses the word embedding layer to map
each k-mer to a word vector of Q dimensions. The recently proposed BERT model performs
very well on the text-based classification problems. After evaluating eight values {12, 24,
48, 96, 192, 394, 768, 1536} for the dimension of word vectors, this study uses the same
parameter settings of the token embedding layer from the BERTgssg model [20], which
assigns Q = 768. The detailed experimental data may be found in the following sections.

The word embedding layer is randomly initialized and updated during the training
process of the deep learning classifier. After each word passes through the word embedding
layer, it will change from an ID value to a 768-dimensional row vector, as shown in Figure 4.
This step generates the SeqPose features from the samples.
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AATAATGAATGTGTTTTGTTCTCGT |  2mer 3mer 4mer T 7
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GATTTTAAGGAGGTTGATTATTTCT | Random initialization ™ 2
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GACTGCCACCTGGTGAGTTGAGA Ce o
GCCCTGGTTTCATGACTAACTGGC
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Figure 4. Illustration of the nucleotide sequence vectorization process.

3.5. Structural Description of the Classifier SpEnhancer

uondIaS dImed |

The two-layer enhancer prediction model spEnhancer is illustrated in Figure 5. All
the nucleotide sequences are converted to the SeqPose features. Both of the two layers of
the proposed classifier spEnhancer use the bi-directional long-short term memory (BD-
LSTM) model combined with attention mechanism as the classifier because that the reverse
complementary nature of a DNA molecule. The output of each neuron in the BD-LSTM is
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calculated from the input of the current neuron and its two neighboring neurons, and then
passed as the input of batch normalization. The reason for introducing batch normalization
is to prevent the problem of gradient disappearance. In addition, when extracting features,
we hope that the model will pay more attention to features with high importance. Therefore,
we introduce the attention mechanism in the model to assign weight coefficients to features
to indicate the importance of the features, and then linearly combine the weight coefficients
with the original input features and output to the next layer. The dropout layer is then
utilized to mask a certain proportion of neurons from calculations and may effectively
prevent over-fitting. This BD-LSTM layer delivers its output to the dropout layer, and
then the full connection layer generates the final prediction results using one neuron with
the value 1 or 0. The two layers of the proposed model spEnhancer have the same neural
network architecture, as shown in Figure 5. The first layer is trained to predict whether a
nucleotide sequence is an enhancer (1) or not (0). The second layer of the proposed model
is trained to describe whether an enhancer is a strong (1) or weak (0) one.

SeqPose encoding and feature selection

Dataset ——*  K-mers }cnchc SeqPose + Chi2

. features

'{ SeqPoseDict |

emb-BD-LSTM-Attention model

spEnhancer

P: enhancer N: non-enhancers |

. = x
SeqPose encoding and feature selection

model

First-layer

| emb-BD-LSTM-Attention model

non-enhancer
+ >

enhancer
v

P: strong N: weak

| SeqPose encoding and feature selection |

model

| emb-BD-LSTM-Attention model

Second-layer

strong enhancer
»

weak enhancer
>

Figure 5. Workflow of the proposed two-layer model spEnhancer. A schematic diagram depicting
the steps of feature extraction, feature selection, and prediction.

3.6. Training Procedure of SpEnhancer

This study implements the deep learning model’s training through the packages keras
version 2.2.4 and tensorflow-gpu version 1.14.0 in the Python programming language
version 3.7.7. The working environment is equipped with the GPU card Nvidia GeForce
RTX 2060. In a multi-CPU server environment, we use 8-fold cross-validation to determine
three sets of hyperparameters in turn: batch size (pBatchSize), the number of neural units
in the LSTM layer (pLSTMSize), and the dropout ratio (pDropoutRatio). Moreover, the
results obtained on the leave-one-out method are compared with existing research.

The dataset is retrieved from the database [17].

The model uses the Adam [21] optimizer to guide the model training process, and the
optimization goal is the prediction accuracy on the validation dataset.
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4. Conclusions

This proof-of-principle study demonstrates that the SeqPose features generated by the
natural language processing (NLP) technologies achieved similar detection performances
of enhancers and their enhancing strengths, compared with the existing best models. The
experimental data suggests that the genomic sequences may be regarded as the language
of lives, and the functional roles of genomic sequences may be investigated through the
NLP technologies.

Our experimental data also demonstrates the importance of removing the unassociated
positions from training a DNA sequence-based prediction model. The retaining of some po-
sitions in the DNA sequences may even reduce the overall model prediction performances.
A previous study showed that many deep learning models may be improved by removing
the features without contributions to the models [22]. The time-consuming training process
of a deep learning model may be sped up by removing the unassociated features.

It is anticipated that more applications of the NLP technologies will be conducted to
investigate genomic functional elements.
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