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Table S1. Mass spectrometry analysis of protein obtained during co-purification of PvdF with 
His6PvdA* 

Description Coverage Unique peptides 

His6PvdA 70.65 46 

PvdF 53.45 32 

 

*PvdF and His6PvdA were co-purified following expression in E. coli BL21 DE3. The identities of 
His6PvdA and PvdF proteins obtained following co-purification (Figure 7) were confirmed by mass 
spectrometry. 
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Table S2. Bacterial strains and plasmids used in this study 

Bacterial strain Genotype  Reference 
Pseudomonas 
aeruginosa PAO1 
 

wild-type 
 
 

Laboratory 
stock  

Pseudomonas 
aeruginosa 
PAO1pvdF 
 

pvdF 
 
 
 

(McMorran et 
al., 2001) 
 

 
E. coli JM83 
 
 
 

 
rpsL ara Δ(lac-proAB) Φ80dlacZΔM15 
 
 
 

Laboratory 
stock 
 

E. coli BL21(DE3) 
 
 
 

fhuA2 [lon] ompT gal (λ DE3) [dcm] ∆hsdS 
λ DE3 = λ sBamHIo ∆EcoRI-B nt::(lacI::PlacUV5::T7 gene1) 
i21 ∆nin5 
 

 
(Studier & 
Moffatt, 1986) 
 
 

Plasmid Properties Reference 

pLUG-PRIME T7 promoter, lacZa; ampR iNtRON 
Biotechnology, 
Inc 
 

pGEM®-T Easy  T7 promoter, lacZa; ampR 

 
Promega 

pET-DUET-1 lacIq, T7 promoter, colE1ori; ampR; co-expression vector Novagen 
 

pET-DUET-
1his6pvdF 

pET-DUET-1 with pvdF gene in MCSI and His6-tag 
upstream; ampR 

 

This study 
 

pET-DUET-1 pvdF pET-DUET-1 with pvdF gene at MCSII; ampR This study 
 

pET-DUET-1 
his6pvdF;pvdA 

pET-DUET-1 with PvdF gene at MCSI, His6-tag upstream 
and pvdA gene in MCSII; ampR 

 

This study 
 

pET-DUET-1 pvdA pET-DUET-1 with pvdA gene at MCSII; ampR This study 
 

pET-DUET-1 
his6pvdA 

pET-DUET-1 with pvdA at MCSI and His6-tag upstream’ 
ampR 

 

This study 
 

pUCP20 lac promoter, lacZa; ampR; expression vector (Schweizer, 
1991) 

pET21a T7 promoter, pBR322 origin; ampR; expression vector Novagen 
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Table S3. Primers used in this study 

Primer Sequence (5’ – 3’) Cloning 
vector 

DNA cloning   
pvdFforexpress GGGGGATCCAATGACGAAAAGGAAACTGGC MCS I pET-

DUET1 
pvdFexpressrev GGGAAGCTTTCAGAGCTTCTCGGCGAG MCS I pET-

DUET1 
pvdA For GGGCATATGATGACTCAGGCAACTGCAACC MCS II pET-

DUET1 
pvdA Rev GGGCTCGAGCGGGACATGCAACGAAAACG MCS II pET-

DUET1 
PriyaAfor GGGGAGCTCCATGACTCAGGCAACTGCAACC MCS I pET-

DUET1 
PriyaArev GGGGCGGCCGCGACATGCAACGAAAACG MCS I pET-

DUET1 
PriyaFfor GGGCAATTGAATGACGAAAAGGAAACTGGC MCS II pET-

DUET1 
PriyaPvdF GGGGACGTCTCAGAGCTTCTCGGCGAG MCS II pET-

DUET1 
PvdFC-FOR GGGGTATACATGACGAAAAGGAAACTGGCC pET-21(a) 
PvdFC-REV GGGAAGCTTGAGCTTCTCGGCGAGCA pET-21(a) 
 
Site-directed mutagenesis 

 
Mutation 

ForPvdFG147A TTGGACGCTCTCCTGGTCATCCTCGATGAGCTGGT G147A 
RevPvdFG147A CAGGAGAGCGTCCAATACCACCACATCGGCGCCCA G147A 
ForPvdFG147F TTGGACTTTCTCCTGGTCATCCTCGATGAGCTGGT G147F 
RevPvdFG147F CAGGAGAAAGTCCAATACCACCACATCGGCGCCCA G147F 
ForFN168H ATCATGCATATCCATCCTGGCGTGACGCGCGAGGA N168H 
RevFN168H ATGGATATGCATGATCCGCCGTGCGAACGGAGCGC N168H 
ForFH170R AATATCAGACCTGGCGTGACGCGCGAGGACTCGC H170R 
RevFH170R GCCAGGTCTGATATTCATGATCCGCCGTGCGAAC H170R 
ForFD229H GGCATCCATTCCGGCGAAGTGTTCCATGATGTG D229H 
RevFD229H CGCCGGAATGGATGCCATTGTCCACATAGTGGAAC D229H 
ForFN254A CGCTGGGCTAACTTCAACAACAGCCTGTTCCCG N254A 
RevFN254A GAAGTTAGCCCAGCGCAGCTCGAGGATGGTGTCGT N254A 

 

Primers were purchased from Integrated DNA Technologies and Macrogen. Introduced restriction 
sites are under lined. 
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Figure S1. Crystal structure of E. coli GART and its  active site amino acids. A. Strucutre of GART in 
complex with GAR and the fTHF analogue, 10-formyl-5,8,10-trideazafolic acid (fTDAF) (green sticks) 
(PDB 1C2T).  Active site residues are shown in olive sticks. B. Substitutions of the active site residues. 
The modelled substitutions, G87A, G87F, N106H, H108R, D144H and Q170A are labelled and 
represented in silver sticks. The modelled mutations correspond to G147A, G147F, N168H, H170R, 
D229H and N253A mutations, respectively, in PvdF. 
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Figure S2. Purification of His6PvdF using Ni2+- affinity resin and size exclusion chromatography. E. coli 
BL21 (DE3) (pET-DUEThis6pvdF) was used to overexpress His6PvdF. Following cell disruption, the 
soluble fraction was separated and used for purification. A. Chromatogram obtained during size 
exclusion chromatography (SEC) of semi-purified His6PvdF.  B. SDS gel of samples at different stages 
of purification. The Nickel-resin purified sample was used for SEC. The SEC fractions shown were 
pooled together and used for enzyme assays or snap frozen and stored at -80 °C for later use.   
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Figure S3. PvdFHis6 catalyses synthesis of fOHOrn from OHOrn and fTHF. Reaction mixtures 
containing OHOrn, fTHF and PvdFHis6 were incubated and analysed by direct injection mass  
spectrometry. Spectra present relative peak intensities of ionised molecules in a range of mass to charge  
ratios (m/z) from 125 to 185. A. PvdFHis6  reaction showing peaks corresponding to OHOrn ([M+H]+  
149.0921 +/- 3 ppm; blue) and fOHOrn ([M+H]+ 177.0870 +/- 3 ppm; red). B. Negative control with  
omission of PvdFHis6.  C. Negative control with omission of OHOrn. Note the background peak at m/z  
177.0566 is not related to the fOHOrn peak at m/z 177.0870 (delta m/z > 170 ppm). D. Negative control  
with omission of fTHF.   



 8 

 

 

 

Figure S4. Purification of PvdF mutant enzymes. PvdF mutant variants were overexpressed in E. coli 
BL21(DE3) and cell disruption was carried out using sonication. The soluble fractions were loaded onto 
Ni2+-resin to purify the proteins. The proteins were further purified using size exclusion 
chromatography. The eluted proteins were analysed using SDS-PAGE. The corresponding bands of 
each variant showed pure protein after SEC. The fractions for each variant were pooled together and 
used for enzyme assays or snap frozen and stored at -80 °C for later use. Full details of the purification 
protocol are provided in the manuscript. 
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Figure S5. Circular dichroism of PvdF and mutant variants. Circular dichroism (CD) was used to 
analyse the secondary structure of wildtype and mutant PvdF. Three scans were carried out for each 
sample. The mean was calculated for each sample, the data were normalized with blank and the 
ellipticity was converted into mean residual ellipticity. A. CD spectra of PvdF wild type and mutant  
proteins plotted in mean residual ellipticity as a function of the far-UV region spectrum. B. The 
secondary structures were analysed using Dichroweb. The predicted secondary structure composition 
of the mutants was close to WTs showing no major changes in protein structure due to mutation. 
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Figure S6. Addition of OHOrn had no effect on protein melting. The thermal stability tests of PvdF 
mutant enzymes and WT were carried out using SYPRO® orange in the presence and absence of 
substrates. The fluorescence was recorded at 580 nm using LightCycler® 480. The thermal stability 
curves are plotted in fluorescence as a function of temperature in centigrade. A-G). The protein melting 
curves of PvdF mutant enzymes and WT in the presence and absence of OHOrn and fTHF. The blue 
indicates protein with no substrate and the orange indicates protein with L-OHOrn. The yellow colour 
indicates protein in the presence of OHOrn and fTHF whereas the grey represents protein with fTHF. 
The blue and orange curves show similar pattern as the addition of OHOrn has no effect on protein 
stability whereas the yellow and grey are similar as the protein stability is increased with addition of 
fTHF with a higher shift in fluorescence amplitude. 
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