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Abstract: The number of sources of anthropogenic magnetic and electromagnetic fields generated by
various underwater facilities, industrial equipment, and transferring devices in aquatic environment
is increasing. These have an effect on an array of fish life processes, but especially the early develop-
mental stages. The magnitude of these effects depends on field strength and time of exposure and is
species-specific. We review studies on the effect of magnetic fields on the course of embryogenesis,
with special reference to survival, the size of the embryos, embryonic motor function, changes in
pigment cells, respiration hatching, and directional reactions. We also describe the effect of magnetic
fields on sperm motility and egg activation. Magnetic fields can exert positive effects, as in the case
of the considerable extension of sperm capability of activation, or have a negative influence in the
form of a disturbance in heart rate or developmental instability in inner ear organs.

Keywords: anthropogenic magnetic field; fish; early developmental stages; embryogenesis; larval
development; gametes

1. Introduction

The number of sources of anthropogenic magnetic fields (MFs) and electromagnetic
fields (EMFs) that affect fishes increases constantly with technological advancement. This is
due to the increasing number of electricity-generating and transferring devices in water:
electric power stations, wind farms, pipelines with a cathodic protection system, and, most of
all, high-power transmission cables [1–7]. The industrial development with its increasing
demand for electricity has caused the development of transmission lines, both over ground
and underwater, which implies progressing, significant changes in aquatic environments [8].

Overall, underwater cables can be assigned to two categories. The first includes high
voltage direct current cables (HVDC), which emit static magnetic fields (SMFs); the second
includes alternating current cables (AC), which emit time-varying EMFs [4]. The char-
acteristics of these two categories are different, and, in consequence, they have different
effects on fishes. It is assumed that low-frequency electromagnetic fields (LF-EMFs) exert a
much stronger effect on biological structures than do SMFs [8,9]. MFs, to which fishes
may become exposed for rather short distances from the source, and the field’s magnitude
depend on the type of the cable, on the electric current intensity, and on whether the cable
rests on the sea bottom or is embedded in it [2,4]. The intensity of the field over these cables
increases in rough proportion to the current flow in the cables and depends on the depth at
which the cable is buried [2]. DC values of MFs recorded in close proximity of underwater
cables can reach <10 mT [9], and those near industrial cables at the level of sea bottom can
reach 250 µT [2,3] and can be perceptible by fishes within a distance of several meters [10].

We review the effect of MF and EMFs on early developmental stages, with special
reference to gametes, embryogenesis (its duration and changes during the process), the sur-
vival of the embryos, changes in larval behavior, and pigmentation; during these stages,
when cell differentiation takes place, the developing organism is most susceptible to the
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effects of such factors, and the consequences of these effects extend to the whole life span
of the fish and even to future generations.

2. Embryogenesis

Fish embryogenesis is sufficiently long-lasting for its course to become modified
when the developing embryo is placed in a distorted geomagnetic field (GMF); [11,12]
the modifications depend on the value and characteristics of the static or time-varying field
of anthropogenic origin [13–15].

2.1. Duration of Embryogenesis and Hatching

Artificially generated SMFs (from 1 to 5 mT) have an effect on the duration of embry-
onic development of the sea trout (Salmo trutta m. trutta L.) and rainbow trout (Oncorhychus
mykis (Walbaum)). When applied to developing embryos during the whole incubation
period from the fertilization to the hatching of eleutherembryos, such fields slow down
embryonic development and, thus, extend the time spent by the embryos inside the egg
envelopes [11]. SMFs of 1 mT, 3 mT, and 5 mT were observed to slow down the embryonic
development of the sea trout: in control conditions, the embryogenesis took 245 D◦ (sum of
mean daily temperature of each day of incubation counted from fertilisation to hatching),
and the values were 260 D◦, 268 D◦, and 288 D◦ in SMFs of 1 mT, 3 mT, and 5 mT, respec-
tively [16]. A similar slowing down of embryonic development was observed in European
whitefish (Coregonus lavaretus (L.)) (control conditions: 399 D◦; in MFs of 1 mT and 3 mT:
405 D◦; in 5 mT: 414 D◦) as well as in the vendace (Coregonus albula (L.)) (control: 331 D◦;
in MFs of 1 mT, 3 mT, and 5 mT: 373 D◦, 382 D◦, and 397 D◦, respectively) [16].

Exposure to an SMF of 10 mT during embryogenesis of the northern pike (Esox lucius
L.) resulted in a shortening of the embryogenesis by 1 day compared to the control [17].
The authors attributed this effect to a change in metabolic rate; changes in the heart rate
of embryos and larvae of the northern pike in fields of 4 mT [18] and 50–70 mT were
interpreted in a similar way [11]. Incubating rainbow trout eggs in an STM (10 mT) and an
EMF (1 mT, 50 Hz) from the eyed stage to hatching caused no significant changes in the
duration of embryogenesis [12]. The exposure of zebrafish (Danio rerio (Hamilton)) embryos
48 h post-fertilization to a 50 Hz AC MF of 1000 µT resulted in a delay of hatching compared
to the control. The moment of exposure to MF was crucial, since no statistically significant
effect was observed when the exposure started 2 h post-fertilization [19]. A sinusoidal EMF
(150 µT, 500 Hz), applied to developing roach (Rutilus rutilus (L.)) embryos from the moment
of fertilization, shortened the duration of embryogenesis, and the embryos hatched earlier
compared to the control [20]. The hatching of zebrafish embryos continuously exposed to
50 Hz sinusoidal fields of 200 µT, 400 µT, and 800 µT 48 h post-fertilization was delayed
compared to the control [21].

The successful leaving of egg envelopes is crucial to larval survival. The secretion of a
hatching enzyme (chorionase) to the perivitelline space of the egg, causing the egg envelope
degradation and, consequently, the hatching of the embryo, may depend on an MF [22,23].
An SMF of 10 mT caused no statistically significant difference between the experimental
variant and the control in the hatching success of the northern pike. The percentage of
hatching embryos was very similar: 87.1% in the experimental variant and 83.3% in the
control [17]. A shortening of the hatching period in SMFs of 4 mT and 5 mT compared
to the control was also observed: the duration of the hatching (time between leaving the
egg envelopes by the first and the last embryos) of sea trout larvae was 4 days in an MF
and 15 days in the control [11]. Similarly, a sinusoidal EMF (150 µT, 500 Hz), applied to
developing roach embryos from the moment of fertilization, resulted in a longer hatching
process compared to the control [20].
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2.2. Survival and Size of Eleutherembryos

MF and EMF effects on the duration of embryogenesis, hatching, and survival are
species-specific; they depend not only on the intensity of the field, but especially on the
moment of exposure during embryogenesis.

The value of a generated MF can affect the characteristics of hatched sea trout
eleutherembryos. An SMF of 5 mT was observed to cause changes in the mass and
length of eleutherembryos: the eleutherembryos, since fertilization had been incubated in
the MF of this intensity, were longer, heavier, and more mobile. The difference in length
was up to 3.79 mm (14.8%), and the difference in body mass up to 31.33 mg (26.5%) [11].
In the rainbow trout, the difference between embryos incubated in a generated SMF of
5.5 mT and those in control conditions was small—the mean length of the larvae from eggs
incubated in the SMF was 15.25 mm, and that in the control was 12.77 mm, while the re-
spective values for body mass were 78.3 mg and 61.3 mg [11]. In contrast, a sinusoidal EMF
(150 µT, 500 Hz), applied to developing roach embryos from the moment of fertilization
to gastrulation, decreased the length and weight of the yearlings [20]. The exposure of
northern pike embryos to an SMF (10 mT) from fertilization, or the exposure of rainbow
trout embryos to static (10 mT) and electromagnetic fields (1 mT, 50 Hz) from the eyed
stage had no negative effect on their survival [12,17]. Similarly, no such effect was observed
in the sea trout incubated in an SMF (5.5 mT) from fertilization, and the embryos’ survival
was even higher [11]. Sinusoidal MFs (50 Hz) of 30 µT, 100 µT, 200 µT, 400 µT, and 800 µT
had no effect on the cumulative mortality and malformation rate in zebrafish (D. rerio)
embryos [21]. However, an MF of 500 Hz (1.4–1.6 µT) doubled the embryo mortality [24].

2.3. Permeability of Egg Envelopes

Mature teleost fish eggs are covered by a protective egg envelope, which, besides
protection, plays an important part in gas exchange and ensures effective removal of
metabolites [25]. Initially, the egg envelope is permeable, so that the egg placed in water,
whether fertilized or not, absorbs water. As a result, perivitelline space is formed between
the envelope and the egg cell (yolk cell sphere surrounded by cytoplasm with the haploid
nucleus); it is filled with fluid that contains not only water but also cortical alveoli with
hydrophile substances [25–27].

Osmometric measurements of egg envelopes of the sea trout, Atlantic salmon (Salmo
salar L.), and rainbow trout in an SMF of 2 mT revealed changes in their permeability.
The quantity of water passing through the envelopes placed on the osmometer collars in
the SMF increased significantly; the field of this intensity caused an increase in permeability
after egg activation during the formation of perivitelline space [26].

During such formation in sea trout, an STM of 250 mT slowed down water uptake
through the envelope in the initial period (up to ca. 20 min) after egg activation. In the
later period, there was a tendency to equalize the quantity of absorbed water, and the
volume of eggs exposed in the static field was similar to that in the control 180 min after
activation [27,28]. Sea trout eggs activated and exposed to SMFs (1 mT, 3 mT, 5 mT) for 24 h
had a larger volume compared to the control. A similar increase in egg volume under
the effect of an MF was observed in perch (Perca fluviatilis L.) and European whitefish.
Eggs exposed in an MF in subsequent stages of embryogenesis did not differ from the
control eggs [29].

2.4. Effect of MF on Canals in Egg Envelope (Zona Radiata)

In teleost eggs, the envelope (zona radiata) is built of two layers of different thickness,
depending on the species: a thin external layer—the zona radiata externa (ZRE)—and a
thicker internal layer—the zona radiata interna (ZRI) [25,30,31]. The external surface of
zona radiata may bear pores—entrances to canals whose number and size are not always
uniform over the whole surface [32]. The external layer of zona radiata in salmonid fishes is
smooth and without visible structures; the internal layer is thicker and perforated by canals
that are perpendicular to the surface. There is no distinct layered structure in the cross
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section, as opposed to other families and species [33]. The quantity of water penetrating
through the egg envelope to the inside of the egg is probably dependent on changes in
the number of open canals in the zona radiata externa (ZRE). The envelope in sea trout
eggs, exposed in an MF of 5 mT within 2 h post-fertilization, had a greater number of
open canals on the external surface of the zona radiata externa. The number of open
canals on corresponding fragments of the zona radiata externa of the control eggs was
223 ± 18, and it was 283 ± 50 in the eggs exposed in the MF. During the subsequent 24 h
post-fertilization, the number of open canals in the zona radiata externa at 3 mT and 5 mT
decreased, while it was similar to the control at 1 mT [29].

2.5. Embryonic Motor Function

The movement of the yolk sphere with the developing embryo inside the egg plays a
very important part in the normal course of embryonic development—it facilitates peri-
blast aggregation and, first of all, enables the mixing of perivitelline fluid that favors
gas exchange, thus improving the oxygen conditions of the developing embryo [34–37].
Embryonic motor activity appears at early stages of fish embryogenesis; it is manifest in
different ways, depending on the species and stage of development. It starts with changes
in the position of intracellular structures, followed by contractions of major systems of
contractile elements; the contractions are manifest as grooves that pass in an undulating
movement over the ectoplasm surface in early stages of embryonic development and are
termed “quasi-peristaltic” (a quasi-peristaltic contraction refers to a movement performed
by the egg cell ectoplasm; the movements are visible as a parallel translocation of crests
on the yolk sphere surface. The translocations induce a swirling motion of the embryonic
plate and revolving movements of the entire egg cell) [34,38–41]. This is followed by coor-
dinated contractions of the spatially ordered specialized muscular layer of the soma and
by movements in individual organs [35,36]. The first category of movements is based on
periblast contractions. In northern pike eggs, it causes revolutions of the embryonic shield
around the egg’s upper pole in the protoplast surrounding the yolk sphere, and a rotational
movement that is the most distinct during gastrulation [34]. A similar phenomenon was ob-
served in developing eggs of the medaka fish (Oryzias latipes Temminck & Schlegel). [35,36]
In addition, in the embryonic development of the German carp (Carasius auratus gibelio
(Bloch)), a protoplasmic wave occurs, and the duration of one cycle is about 2 min. [36]

2.5.1. Ectoplasm Motor Function

Static or sinusoidal MFs have an effect on the quasi-peristaltic movements in the
embryos of various fish families at the morula or gastrula stages, or at the stage of somatic
movements [42,43]. The effect, however, is not always the same; there is a large body of
data indicating that it is largely species-specific. In the northern pike, an SMF of 4 mT
causes an increase in angular velocity of the peristaltic wave, and in early developmental
stages, the effect is more pronounced (Figure 1) [42,43]. In the sea trout at the cleavage stage,
no quasi-peristaltic wave was visible (control), and exposure in an SMF (4 mT) caused no
noticeable changes. In embryos at the stage of 1

4 epiboly, the MF in most cases caused a
disappearance of the quasi-peristaltic wave [43]. A sinusoidal MF (15 mT, 50 Hz) caused
either a complete disappearance of the quasi-peristaltic wave or (less often) an increase in
the velocity of its cycle around the yolk sphere [43].

In some cases, a great regularity of the changes of quasi-peristaltic movements under
the effect of SMF was observed. In the European whitefish in an SMF (4 mT), the angular
velocity of a quasi-peristaltic wave in embryos at the blastula stage increased with each
cycle. During the first six cycles (rotations), the increase was slow until achieving statistical
significance during the sixth cycle (Figure 2). A similar tendency was observed at the
gastrula stage—during the eighth cycle of the wave on the perimeter of the yolk sphere,
the differences in angular velocity of the moving grooves and crests became statistically
significant [43]. An EMF (15 mT, 50 Hz) caused an increase in the velocity of the quasi-
peristaltic wave in the ectoplasm of the European whitefish, and significant differences
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occurred after the fifth cycle at the blastula stage, and after the seventh cycle at the gastrula
stage. Moreover, the ectoplasm crests were observed to increase in height [43].Int. J. Mol. Sci. 2020, 21, x  5 of 15 
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Figure 2. A quasiperistaltic wave moving at 1 min intervals (a–h) over the ectoplasm surface in the
egg of European whitefish in a 4 mT SMF (top view, blastula stage) [43].

Similarly, in the big-scale sand smelt (Atherina boyeri Risso), exposure to an SMF (4 mT)
increased the velocity of the quasi-peristaltic wave of the ectoplasm of embryos at the
blastula stage, and the differences became statistically significant after the sixth cycle [43].

2.5.2. Motor Function of Cardiac Muscle (Late Embryogenesis)

SMFs and time-varying MFs have a different effect on the heart rate of fish embryos;
it is to some extent species-specific. The exposure of sea trout embryos to an SMF (4 mT)
initially (for ca. 10 min) caused an increase in the frequency of embryonic heart contractions;
this was followed (during the next 10 min) by a leveling of the heartbeat and finally its
decrease to the initial level (after 30 min), as in the control (Figure 3). European whitefish
embryos in an SMF (4 mT) showed a slight and short-lasting slowing down of the heart
rate, and the frequency then increased distinctly to reach its peak approximately from the
8th to the 10th minute; the acceleration was followed by a slowing down and stabilization
at one level higher than the control [43]. The exposure of common carp (Cyprinus carpio
L.) embryos to an SMF (51–70 mT) caused an increase in the heart rate already in the first
minute. The fastest heart rate occurred within 5 min from exposure, and the frequency of
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contractions then decreased to reach the pre-experiment level after 15 min [44]. Northern
pike embryos exposed to an SMF (4 mT) reacted similarly to common carp embryos:
the heart reaction occurred immediately after the beginning of the exposure, followed
by an increased heart rate during 5 min and then a slow decrease to the initial level [45].
The exposure of the big-scale sand smelt to an SMF (4 mT) evoked a reaction in the form of a
slight increase in heart rate by ca. 2%, preceded by a temporary slow-down. This persisted
for 3–4 min and was followed by a constant and regular decrease to the control or slightly
lower level [43].
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In the European whitefish, as in the sea trout, the embryo’s heart in a time-varying
MF (15 mT, 50 Hz, sinusoidal wave) accelerated, and a constant, steady increase was
observed until the 22nd minute from the moment of exposure; the increased heart rate was
maintained until the end of the experiment [43].

2.6. Embryonic Pigment Cells

Melanophores are star-shaped cells with numerous processes. Very important compo-
nents of their structure are actin microfilaments and microtubules [46–48]. Melanosomes
located in the melanophore cytoplasm are oval in shape and contain melanin, which pro-
tects the cell’s DNA against, e.g., ultraviolet radiation [49]. In embryonic development,
in most cases, pigment cells become visible as early as 2/3 to 3/4 of the course of em-
bryogenesis, and the quantity of pigment contained in them increases gradually. Initially,
the greatest number of pigment cells occurs in the eyes, on the dorsal side of the embryo
and in the yolk sac [50].

2.6.1. Eye Pigment

Constant exposure to an SMF from the moment of fertilization delayed the appearance
of the pigment in European whitefish embryos, since melanophores in the eyes were visible
from 92 D◦ in the embryos exposed in the fields of 1 and 3 mT and from 105 D◦ in those
exposed in 5 mT, while in the control the first eye melanophores appeared after 86.5 D◦.
A similar delay in the appearance of eye melanophores was observed in the vendace:
the first melanophores (in eyes) appeared in the control after 97.5 D◦, and they appeared in
an SMF of 1 mT after 11 D◦, in 3 mT after 119.5 D◦, and in 5 mT after 125 D◦ [51]. A similar
dependence was observed in the African catfish (Clarias gariepinus Burchel)) (Figure 5).Int. J. Mol. Sci. 2020, 21, x  8 of 15 
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2.6.2. Body Pigment

MFs affect the time of appearance of pigment cells in the developing fish embryos,
their number, and the degree of melanin concentration. The first body melanophores
in the control group of European whitefish embryos appear on the surface of yolk sac
and in the caudal region, and were observed after 129.5 D◦. In the embryos exposed
in an SMF from fertilization, the melanophores appeared later, and the moment of their
appearance was correlated with the intensity of the field. With increasing intensity of
the field, their appearance was increasingly delayed: they appeared at 146 D◦ in 1 mT,
at 162.5 D◦ in 3 mT, and at 173.5 D◦ in 5 mT. Moreover, the MF caused a decrease in
the number of pigment cells in the embryo’s body, and the value of the melanophore
index (melanophore index: the value describing the degree of dispersion or aggregation of
melanin inside pigment cells; 1: maximum aggregation; 5: maximum dispersion; 2, 3, and 4:
intermediate stages) decreased with increasing intensity of the field [51]. A somewhat
different reaction of pigment cells on the yolk sac and body was observed in developing
vendace embryos: the first melanophores in the embryos incubated in an MF of 1 mT
appeared after 158 D◦. Body pigment appeared in the control embryos after 6 D◦ and in
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the embryos exposed in an MF of 3 mT after 172.5 D◦. Melanophores in the embryos that
developed in an MF of 5 mT were the last to appear (192 D◦). Analysis of the degree of
dispersion of melanin in pigment cells of vendace embryos exposed in SMFs of 1 mT, 3 mT,
and 5 mT showed a tendency for pigment aggregation with increasing intensity of the
field [51]. In sea trout embryos, SMFs of 1 mT, 3 mT, and 5 mT delayed the appearance
of melanophores; the number of melanophores was also smaller. The first melanophores
appeared after 184 D◦ and in the experimental variants after 194 D◦ (1 mT and 3 mT)
or 198 D◦ (5 mT) [16]. The MF affects the time of appearance of pigment cells in the
bodies of developing fish embryos, their number, and the degree of melanin concentration.
In the black tetra (Gymnocorymbus ternetzi Boulenger, 1895), an MF of 14 T caused pigment
aggregation in the cells, while a field of 8 T caused no such effect [52]. A time-varying MF
(62 mT, 50 Hz) caused a delayed change of color in the goldfish aged less than 1 year after
20 h of exposure [53].

2.7. Respiration

An MF has an influence on respiratory processes in fish embryos, and this is correlated
with the stage of embryogenesis at which embryonic motor function becomes apparent.
Measurements of oxygen consumption in rainbow trout embryos in an SMF showed that
the MF stimulated respiration, which was manifested as a significant increase in oxygen
consumption [54,55]. In SMFs of 5 mT and 10 mT, oxygen consumption in rainbow trout
embryos, compared to the control, increased during blastomerization, at the beginning of
gastrulation, in the period after the closing of the blastopore, and during early organogene-
sis. In pre-hatching embryos, no statistically significant differences were found between
the oxygen consumption in the MF and in the control [54]. In SMFs of 50 and 150 mT in
rainbow trout, a distinct increase in oxygen consumption compared to the control occurred
in the period of the eyed stage and the further development of the circulatory system and
in fields of 150 and 300 mT during the closing of the blastopore. In a static field of 50 mT,
differences in oxygen consumption were also observed in the period of blastomerization
and at the beginning of gastrulation [25,26].

2.8. Directional Reactions of Embryos

The spatial orientation of embryos pertains not only to fish species that migrate for
long distances, such as the Atlantic salmon and the sea trout, but also to species that
perform no such migrations [56,57].

Eggs of the Atlantic salmon, sea trout, rainbow trout, vendace, northern pike, and rudd
(Scardinus erythrophthalmus L.) were incubated from the moment of fertilization to blasto-
pore closing, in SMFs of 0.5, 1.0, 2.0, and 4.0 mT, superimposed on the local MF of the
orientation in accordance with that of the GMF [58]. Studies have shown that the embryos
of the migratory species (Atlantic salmon, sea trout, and rainbow trout) in the GMF and in
the generated static fields of 0.5, 1.0, 2.0, and 4.0 mT superimposed on the GMF were always
aligned mainly in north–south planes (N–S, NNE–SSW, and NNW–SSE) [58]. Likewise,
embryos of the vendace and northern pike in MFs of 0.5, 1.0, and 4.0 mT as well as the
rudd in MFs of 1.0, 2.0, and 4.0 mT superimposed on the GMF preferred the north–south
alignment (Figure 6). No significant directional preferences were observed for embryos of
the vendace and northern pike in a generated MF of 2.0 mT and of the rudd) in a field of
0.5 mT [59].

Exposure to SMFs, rotated clockwise by 90◦, caused the embryos of Atlantic salmon,
sea trout, rainbow trout, vendace, northern pike, and rudd to align according to the force
lines of a generated magnetic field of 0.5 mT, which confirms the much stronger effect
of the generated static field compared to the GMF [59]. The effect of exposure in static
fields rotated by 90◦ in a later period of embryogenesis (not from the start of incubation)
depended on the stage of embryogenesis. A magnetic field of higher intensity caused a
more distinct orientation compared to the control. In the experimental variants, embryos
of the sea trout and Atlantic salmon in a field of 2.0 mT, whose position was changed
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after 60 D◦ of development, aligned themselves along the north–south planes, while in the
control variant, no significant orientation was observed [58,59].
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Short-term (60 min) exposure of sea trout eggs prior to fertilization in a time-varying
MF (100 mT, 50Hz, sinusoidal) and in an SMF (100 mT) had no effect on later directional
preferences of the embryos [59].

3. Larvae

Static and time-varying MFs seem to have no effect on larval survival. Experiments on
guppies (Lebistes reticulatus Peters) exposed to an MF of 50 mT for 200 days [60], northern
pike exposed for 6 days after hatching to a static field (10 mT) [17], sea trout exposed after
hatching to SMFs (1–5 mT) [11], and rainbow trout exposed from the eyed stage to the sixth
day post-hatching to an SMF (10 mT) and an EMF (1 mT, 50 Hz) [12] showed that MFs of the
values applied had no effect on their larval survival. An analysis of the mortality of flounder
(Platichthys flesus (L.) fry in a magnetic field of 3.7 mT showed no significant differences
between the experimental variants and the control [61]. Brewer [60], with continuous
exposure of the guppy for 200 days and three consecutive generations, showed the effect of
an MF of 50 mT on the reproduction rate in second and third generations.

The size and growth rate of fish larvae appear to be not or only slightly affected by
MFs. Northern pike larvae exposed in an SMF of 10 mT were of similar size to the control
variant. Immediately after hatching, their standard length in an experimental variant was
9.84 mm, and that in the control was 9.86 mm. The growth rate of the larvae six days after
hatching was also similar: in the exposed larvae, it was 0.52 mm × day−1; in the control,
it was 0.53 mm × day−1; the larval mortality was also similar: 54.5% for the experimental
variant and 54.3% for the control [62]. The Fish Condition Index of the northern pike was
smaller in an SMF 1 day after hatching, and the yolk sac height was smaller [17].

The exposure of eggs and larvae of the rainbow trout from the eyed stage to the
26th day after hatching in static (10 mT) and EMFs (1 mT, 50 Hz) caused no differences in
larval growth between the exposed and control larvae. An enhanced yolk sac absorption
rate was observed in both experimental variants; moreover, larvae with absorbed yolk sacs
at the time of swimming were less efficient in food uptake [12].

A static field of 10 mT and a 50 Hz EMF of 1 mT caused developmental instability in the
inner ear organ. The rainbow trout, incubated and reared in fields of such values for 13 days
in the egg stage and 24 days in the larval stage, showed a fluctuating asymmetry of otolith
size, and a higher significance occurred in the youngest larvae (five days after hatching) [63].
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3.1. Heart Rate Studies

The exposure of common carp larvae in an SMF (51–70 mT) causes an increase in heart
rate preceded by a temporary slow-down in the first minute of exposure. The fastest heart
rate was observed within the first three minutes of the experiment, and it decreased to
a level close to that before the experiment after seven minutes [11]. A similar change in
heart rate in reaction to an SMF was observed in northern pike larvae—immediately after
exposure, the heart rate slowed down and then accelerated, and this state persisted for
4 min, which was followed by a return to the original level [11].

3.2. Fin Motor Function

Larvae of many species, such as zebrafish, rainbow trout, and Brycon amazonicus
(Spix et Agassiz), immediately after hatching, do not have fully formed respiratory organs
in the form of gills. An additional respiratory function is fulfilled, among other organs,
by pectoral fins [64]. Their motor function is to some degree correlated with the func-
tioning of the circulation system, since a faster heart rate precedes increased fin mobility,
thus increasing the quantity of oxygen, which reaches the larvae’s respiratory surfaces.
When sea trout larvae were subject to an SMF (between 51 and 70 mT), a dependence
was observed between the heart rate and the frequency of fin movement after the start of
exposure. The heart rate was highest between the second and seventh minute of exposure,
and the frequency of fin movements was highest between the third and ninth minute of
the experiment [65].

3.3. Pigment Cells

In teleost larvae, the pigment cells play a very important role: they facilitate predator
avoidance [65]. The number of pigment cells and the degree of dispersion of melanin
in the melanophores change with development and under the effect of environmental
factors [66]. The exposure of hatched northern pike larvae in an SMF influences the
degree of aggregation or dispersion of melanin in their pigment cells, as expressed by the
melanophore index. SMFs of 1 mT, 3 mT, and 5 mT, applied constantly irrespective of light
intensity, caused statistically significant differences between a control and all experimental
variants: the pigment aggregated in the melanophores [67]. A similar reaction occurred in
skin pigment cells of European whitefish larvae—the degree of pigment dispersion in the
melanophores was greatest in the control variant, and the value of the melanophore index
decreased with the increasing intensity of MF (1 mT, 3 mT, and 5 mT) [51].

The incubation of river trout (Salmo trutta m. fario L.) larvae in an SMF of the same values
but in light of greater intensity (75 lux) caused pigment aggregation, i.e., a smaller melanophore
index, while no such aggregation was observed in less intense light (30 lux) [50]. In sea trout,
the greatest pigment dispersion in the melanophores was observed in the control, and the
smallest dispersion, i.e., the smallest melanophore index, was recorded in a field of 5 mT [16].

3.4. Directional Reactions of Larvae and Fry

Changes in the values of surrounding MFs may cause changes in directional reactions
and orientation in the early development stages of fish. When embryos of the Chinook
salmon (Oncorhynchus tschawytscha (Walbaum)) were placed in tubes imitating natural
gravel nests, the emerging larvae were sensitive to an MF. Reversal of the vertical compo-
nent of the field had a significant effect on their upward movement [68].

Studies on larvae of Atlantic haddock (Melanogrammus aegrefinus (Linnaeus)) placed in
a behavioral chamber in the Norwegian North Sea and in a magnetic laboratory showed
that, when the direction of MF was modified, the larvae aligned themselves in the north-
west direction [69]. Sea trout larvae and fry in experimental sets where they could enter
chambers with a modified value of MF at the entrance mostly entered chambers with an
increased value of magnetic field [69]. Similar reactions were observed in the vimba bream
(Vimba vimba (Linnaeus)) fry [70].
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Observations of the behavior of juvenile Siberian sturgeon (Acipenser baeri Brandt)
in round arenas where the fish could choose movement in four directions showed that
magnetic fields of both 0.2 mT and 0.9 mT affected their directional reaction (in preparation).

Juvenile zebrafish, aged approximately 4 months, and roach showed a spatial orienta-
tion in a GMF. The zebrafish preferred north and south, and they preferred east and west
after a 90◦ rotation of the horizontal component of the GMF. The roach in the geomagnetic
preferred east-northeast only, and a 90◦ rotation of the horizontal component of the GMF
changed the preferred direction to south-southeast [24].

The exposure of roach embryos in extremely LF-EMFs (1.4–1.6 µT, 500 Hz; 1.4–1.6 µT,
72.5 Hz) caused changes in the total number of vertebrate and the number of seismosensory
system orifices in the mandibular bones [24].

4. Gametes
Spermatozoa

There is a direct dependence between the spermatozoa motility and their ability
to fertilize eggs, which is why sperm motility is one of the most important criteria in
assessing fish semen quality. The movement capability of fish sperm after their release to
the water is limited in time. The motility of fish spermatozoa is sensitive to several external
factors, such as temperature, ions, pH, or osmolarity [71–74]. Salmonids are controlled by
the concentration of K+ ions [75], Acipenseridae spermatozoa are immotile in the seminal
plasma [76], and osmotic pressure is the main factor in cyprinids [77]. SMFs of 1 mT, 5 mT,
and 10 mT and in time-varying MFs of the same intensity (50 Hz) were found to influence
the sperm motility in sea trout; they affected curvilinear velocity (VCL), rectilinear velocity
(VSL), and average velocity (VAP). In both static and time-varying fields, the exposure
extended the time of sperm motility to 12 days (288 h), while the control sperm remained
motile for only 3 days (72 h); in addition, the exposure increased the velocity [78].

An SMF improved sperm motility parameters in Danube salmon (Hucho hucho (L.))—
among others parameters, VCL, VSL, and VAP. The percentage of the fertilization of eggs by
spermatozoa kept for 24 h in an MF of 1 mT was 71.32%; it was 58.23% in an MF of 5 mT,
–59.99% in an MF of 10 mT, and 32.60% in the control [78]. The effect of the exposure lasted
during the hours following the sperm sampling [78,79]. The dispersion of genetic material
(comet assay) in the heads of sea trout spermatozoa that had been subject to static and time-
varying MFs was within the normal range, thus indicating no effect of the applied fields on
DNA fragmentation [78].

5. Concluding Remarks

The interest in the effect of SMFs and EMFs on early developmental stages has been
steadily increasing in recent years, since technological advancement contributes much
magnetic and electromagnetic “pollution” in the aquatic environment, and the number
of various electric facilities and industrial equipment in aquatic environment is growing.
The effects of anthropogenic MFs on early development stages of fishes are varied and
manifest both with a long-term and short-term exposure to an MF. The effect depends on
the characteristics of the field (static vs. alternating), its magnitude, the time of exposure,
and the advancement of ontogenesis during the exposure. The effect of long-term exposure
to an SMF on, for example, the duration of the hatching period may be favorable because it
reduces the duration of the process. Incubation in an SMF may increase survivorship of
the hatchlings. Storing sperm in an MF prolongs its activation capacity. An alternating MF,
depending on its characteristics, can increase the embryos’ mortality and can cause a heart
rate disturbance or a developmental instability of the inner ear organ. The long-term impact
of anthropogenic SMFs and EMFs on early developmental stages, which in consequence
affects whole fish populations, should be considered, as they even offer the possibility of
estimating the effect on whole fish populations. There is thus a need for standards for
SMFs and EMFs that can be safely introduced into aquatic environments.
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42. Tański, A.; Korzelecka, A.; Bonisławska, M.; Winnicki, A.; Formicki, K. New data on morphomechanical changes during

em-bryogenesis of pike (Esox lucius L.). Univ. Agric. Stetin. 2000, 214, 207–213.
43. Korzelecka-Orkisz, A. The Essence, Manifestation and Biological Significance of Embryonic Motor Activity in Osteichthyes in a

Light of Ecophysiological Analysis. Ph.D. Thesis, Wyd. ZUT w Szczecinie, Szczecin, Polska, 2015; pp. 1–100. (In Polish)
44. Formicki, K.; Winnicki, A. Effects of constant magnetic field on cardiac muscle activity in fish embryos. Publ. Espec. Inst.

Esp. Oceanogr. 1996, 21, 287–292.
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59. Tański, A. Orientation of Fish Embryos Development in Magnetic Field. Ph.D. Thesis, University of Agriculture, Szczecin, Poland,
2002. (In Polish)

60. Brewer, H. Some preliminary studies of the effects of a static magnetic field on the life cycle of the Lebistes reticulatus (guppy).
Biophys. J. 1979, 28, 305–314. [CrossRef]

61. Bochert, R.; Zettler, M.L. Long-term exposure of several marine benthic animals to static magnetic fields. Bioelectromagnetics 2004,
25, 498–502. [CrossRef]

62. Fey, D.P.; Lejk, A.M.; Greszkiewicz, M. Daily deposition of growth increments in sagittae and lapilli of laboratory-reared larval
northern pike (Esox lucius). Fish. Bull. 2018, 116, 302–309. [CrossRef]

63. Fey, D.P.; Greszkiewicz, M.; Jakubowska, M.; Lejk, A.; Otremba, Z.; Andrulewicz, E.; Urban-Malinga, B. Otolith fluctuating
asymmetry in larval trout, Oncorhynchus mykiss Walbaum, as an indication of organism bilateral instability affected by static
and alternating magnetic fields. Sci. Total Environ. 2020, 707, 135489. [CrossRef]

64. Zimmer, A.M.; Mandic, M.; Rourke, K.M.; Perry, S.F. Breathing with fins: Do the pectoral fins of larval fishes play a respiratory
role? Am. J. Physiol. Integr. Comp. Physiol. 2020, 318, R89–R97. [CrossRef] [PubMed]

65. Formicki, K. Respiratory movements of trout (Salmo trutta L.) larvae during exposure to magnetic field. Acta Ichthyol. Piscat.
1992, 22, 149–154. [CrossRef]

66. Kelsh, R.N.; Parichy, D.M. Pigmentation. In Fish Larval Physiology; Finn, R.N., Kapoor, B.G., Eds.; Science Publisher: New York,
NY, USA, 2008; pp. 27–49.

67. XII European congress of ichthyology? ECI XII. J. Fish Biol. 2006, 69, 1267. [CrossRef]
68. Putman, N.F.; Scanlan, M.M.; Pollock, A.M.; O’Neil, J.P.; Couture, R.B.; Stoner, J.S.; Quinn, T.P.; Lohmann, K.J.; Noakes, D.L.G.

Geomagnetic field influences upward movement of young Chinook salmon emerging from nests. Biol. Lett. 2018, 14, 20170752.
[CrossRef] [PubMed]
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