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Abstract: Although extensive advancements have been made in treatment against hepatocellular
carcinoma (HCC), the prognosis of HCC patients remains unsatisfied. It is now clearly established
that extensive epigenetic changes act as a driver in human tumors. This study exploits HCC epigenetic
deregulation to define a novel prognostic model for monitoring the progression of HCC. We analyzed
the genome-wide DNA methylation profile of 374 primary tumor specimens using the Illumina
450 K array data from The Cancer Genome Atlas. We initially used a novel combination of Machine
Learning algorithms (Recursive Features Selection, Boruta) to capture early tumor progression
features. The subsets of probes obtained were used to train and validate Random Forest models to
predict a Progression Free Survival greater or less than 6 months. The model based on 34 epigenetic
probes showed the best performance, scoring 0.80 accuracy and 0.51 Matthews Correlation Coefficient
on testset. Then, we generated and validated a progression signature based on 4 methylation probes
capable of stratifying HCC patients at high and low risk of progression. Survival analysis showed
that high risk patients are characterized by a poorer progression free survival compared to low
risk patients. Moreover, decision curve analysis confirmed the strength of this predictive tool over
conventional clinical parameters. Functional enrichment analysis highlighted that high risk patients
differentiated themselves by the upregulation of proliferative pathways. Ultimately, we propose
the oncogenic MCM2 gene as a methylation-driven gene of which the representative epigenetic
markers could serve both as predictive and prognostic markers. Briefly, our work provides several
potential HCC progression epigenetic biomarkers as well as a new signature that may enhance
patients surveillance and advances in personalized treatment.

Keywords: hepatocellular carcinoma; epigenetic; prediction model; tumor microenvironment;
hepatocellular carcinoma DNA methylation

1. Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths world-
wide. According to the 2018 statistical report of global cancer burden (GLOBOCAN), HCC
is the sixth for incidence and the fourth for mortality cancer, accounting for 841,080 new
cases and 781,631 deaths per year worldwide [1]. HCC lesions originate from chronic
liver fibrosis and cirrhosis, which arise from repeated cycles of injury and repair. Tissue
injuries originate from several sources including chronic viral hepatitis (hepatitis B and
C), excessive alcohol intake, non-alcoholic fatty liver disease, aflatoxin exposure, tobacco
smoking and diabetes [2,3].
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With its consistent immune/inflammatory pathogenesis, HCC appears as a strong
candidate for the application of immune-based therapies; however, this strategy has been
shown to be only partially successful [4]. Currently, the survival of HCC patients that are
not eligible for curative therapy (i.e., resection, local ablation and liver transplantation)
depends on their response to the less efficient systemic chemotherapy [5,6]. The refrac-
toriness of HCC, not only to classical chemotherapy but also to targeted therapy, is still
poorly understood; HCC progression and resistance can be affected by multiple biological
processes such as epigenetic modulation [7], immune microenvironment in the tumor
site [8] and mechanisms of chemoresistance (MOC) [9]. Therefore, HCC patient stratifi-
cation into homogeneous progression groups is critical for the identification of potential
biological processes involved in cancer progression, which then form the bases for the
selection of the most appropriate treatment or possibly shed new light on novel druggable
biological targets.

Despite the extensive advancement in earlier diagnosis, therapy decision-making and
interdisciplinary evaluation, the prognosis of HCC patients remains poor. Ongoing prog-
nostic models integrate tumor node metastasis (TNM) staging, liver function, comorbidities
and other parameters to predict HCC progression and prognosis [10]; however, since HCC
is a very heterogeneous disease, the prognostic performance of classical methods is still not
satisfactory. Nowadays taking into account large scale omics data is becoming fundamental
when establishing novel prognostic and predictive tools that can better represent a broader
HCC scenario.

The use of whole gene expression and methylation analysis of tumors have proved
that it is possible to highlight patterns and signatures related to prognosis, tumor classi-
fication and response to treatment [11,12]. Meanwhile, Machine Learning methods have
been trained and applied into genomic data to discover new molecular signatures, in-
terpret complex biological mechanisms and predict clinical outcomes from biomedical
datasets [13,14]. Therefore, besides traditional clinical-pathological risk factor models, an
efficient predictive model that can classify patients in different cancer progression groups
is highly desirable. Moreover, the features used by this model for making predictions
could be the bricks of an optimized prognostic model capable of stratifying patients in
relation to cancer progression, eventually providing a more oriented therapy decision and
an improved clinical management.

In this study, we aimed to build and evaluate a predictive model able to classify
HCC patients with a progression-free survival (PFS) time greater or less than six months
by using their methylation profiles. HCC patients were from a large dataset within the
Liver Hepatocellular Carcinoma (LIHC) project of The Cancer Genome Atlas (TCGA). We
initially used a Machine Learning algorithm (Random Forest) combined with different
features selection algorithms to select the best prediction subset of methylation probes
on cytosine-phosphate-guanine dinucleotides (CpGs), resulting in a final 34 CpGs-based
model for PFS prediction. Then, starting from these final 34 markers, we performed a
univariate Cox regression analysis to select PFS relevant CpG probes followed by the
construction of a CpGs-based prognostic signature using a stepwise model selection. A
four-CpGs-based risk model was successfully built, validated and used to stratify the
patients in high risk and low risk for an early cancer progression. Finally, we conducted
an analysis of differentially expressed genes (DEGs) followed by a functional enrichment
analysis to gain more insights into the biological differences between high risk and low risk
patients as well as into the processes involved. This prognostic signature could be useful in
the HCC patient administration, by providing a stratification system that reliably separates
patients with respect to the progression prognosis, ultimately impacting both therapy and
clinical decision-making.
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2. Materials and Methods
2.1. Datasets

The transcriptome data (HTSeq raw read counts), methylation data (beta values),
survival information and clinicopathological information within the Liver Hepatocellular
Carcinoma (LIHC) project of The Cancer Genome Atlas (TCGA) were downloaded from
the GDC data repository (portal.gdc.cancer.gov).

The patients were divided in relation to the PFS time in two groups: a first “G6M”
group characterized by a PFS greater than six months, and a second “L6M” group charac-
terized by a PFS less than six months.

DNA methylation dataset based on the Illumina HumanMethylation450 BeadChip
Assay (version 07-20-2019) includes the analysis of 374 primary tumor specimens. The
genomic annotation of each CpG probe was accomplished using the illuminaMethyl450_
hg38_GDC manifest from GDG portal. The methylation level of each CpG was expressed
as a ratio of intensities between methylated and unmethylated alleles ranging from 0
to 1 (β = M/(M + U)). The probes were filtered out based on the following criteria:
first, methylation beta value not available in any sample; second, probes located in sex
chromosomes [15]; third, highly correlated probes (Pearson r > |0.9|) [16]; fourth, probes
containing single-nucleotide polymorphisms (dbSNP132Common) [17]; fifth, half of total
probes with the lowest overall variance [18].

2.2. Machine Learning Model

The workflow used to develop and assess the Machine Learning (ML) model for
patient classification, with respect to a PFS greater or less than six months, is reported in
Figure 1. The major steps include: data preparation and data pre-processing followed
downstream by model building, calibration and final validation.

Methylation data were processed and filtered as described in the datasets section. To
test whether reducing the number of variables in an unsupervised manner would have
improved the classification performance, we started with an independent variance filtered
dataset (IVF) (basic filtering + variance filtering) and a basic filtered dataset (ALL). Then
both datasets were split into 80% training and 20% test partitions in a stratified manner,
making sure that the pair of classes were present in both partitions and in equal proportion.
The training set was used in the model construction step while the testset was kept aside to
perform the model validation.

Within the model construction step, we evaluated the performance of a supervised
learning algorithm namely Random Forest (RF), using the “ranger” package (v0.12.1) [19].
Different analysis pipelines were defined, the algorithm was trained: on all variables (ALL),
following a backward features selection (Recursive Features Selection, RFE) (RFE), follow-
ing an all relevant features analysis (Boruta), and on the overlapping features extracted
from these two selection techniques (RFE∩Boruta + RF). The RFE features selection was
achieved using the rfe function of “caret” package (v6.0-86) [20], within a 10-fold cross-
validation (CV) and using RF algorithm on each iteration to extract the feature importance.
The all relevant feature selection was performed with a wrapper algorithm called “Boruta”
package (v6.0.0) [21], within a 10-fold CV to assess the best number of features for the
output classification.

In order to forcefully assess the pipelines performance, the algorithms were imple-
mented within a 10 × 5 CV scheme, using the train function of caret package; again, the
fold assignment was stratified to avoid class imbalances. The hyperparameters optimiza-
tion was performed within the CV passing a custom grid parameter to the train function.

To avoid overoptimistic inflated results, especially on imbalanced datasets, perfor-
mance was assessed both in terms of accuracy (ACC) and Matthews Correlation Coefficient
(MCC) [22]. The overall performance in cross-validation is evaluated across all CV itera-
tions as average MCC and ACC with 95% studentized bootstrap confidence intervals (CI),
and on the test partition as MCC and ACC. To verify the occurrence of possible selection
bias effects, the pipeline was also run with randomized output labels.

portal.gdc.cancer.gov
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Figure 1. Workflow for the development of a methylation-based Machine Learning model to predict
the progression free survival (PFS) status of hepatocellular carcinoma (HCC) patients.

2.3. Correlation Analysis between Methylation Degree and Gene Expression

The CpG sites’ methylation effect on cis regulated gene expression was assessed using
Pearson’s correlation (r) test between the CpGs β values and the normalized transcript
counts of the corresponding genes [23]. The threshold for a significant correlation was set
as |r| > 0.2 and BH adjusted p-value < 0.05 [24].
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2.4. Survival Analysis and Cox Regression Model

Univariate Cox proportional hazards regression analysis was performed using the
“survival” package (v3.2-3) [25] to screen which selected CpG probes were associated with
patients’ PFS. Afterward, statistically significant (p-value adjusted BH < 0.05) CpGs were
used to construct a multivariate Cox regression model using a stepwise model selection
in both direction, using the stepAIC function from “MASS” package (v7.3-51.6) [26]. The
corresponding risk scores of each patient were calculated using the resulted regression
model, then samples were stratified into high risk and low risk groups based on the risk
cutoff value of 1. Kaplan–Meier (KM) PFS curves were plotted to evaluate the prognostic
value of the model using the package “survival”.

2.5. Decision Curve Analysis

To assess the adequacy of our CpGs-based prognostic signature and the possible
clinical advantage over currently used parameters, we performed a decision curve analysis
(DCA) [27] using the R function dca available at http://www.decisioncurveanalysis.org.
PFS at 6 months was defined as binary outcome variable (G6M, L6M) and, as predictors,
we selected tumor features, biomarkers and the risk score predicted by our CpGs-based
prognostic signature.

2.6. Differentially Expressed Gene Analysis

To identify DEGs between high risk and low risk groups we used the “DESeq2”
package (v1.26.0) [28]. The DEGs analysis was conducted using thresholds of absolute
log2fold change (logFC) and adjusted p-value (false discovery rate—FDR). Gene expression
between the two groups was considered deregulated with a FDR < 0.05 and logFC ≥ 1
or ≤−1, the latter indicating up- and downregulated expression in the high risk group,
respectively.

2.7. Gene Set Enrichment Analysis

Different enrichment methods were used to analyze the functional characteristics of
DEGs between the two groups. Gene Ontology (GO) annotation was performed using
“goseq” package (v1.38.0) [29], Disease ontology annotation was performed using “DOSE”
package (v3.12.0) [30] and the Kyoto Encyclopedia of Genes and Genomes annotation
(KEGG) was performed with “clusterProfiler” package (v3.14.3) [31]. In all methods,
an adjusted p-value (Benjamini–Hochberg correction, BH) < 0.05 was considered as the
threshold level of statistical significance.

2.8. Computational and Software Setup

All the analyses were performed in R environment (v3.6.3) [32] on a 12-core Intel Xeon
E3-12xx v2 workstation with 72 GB of RAM running Ubuntu 18.04.5 LTS. Graphical plots
were created using “ggplot2” package [33] and graphical heatmaps were drawn using
“pheatmap” package [34].

3. Results
3.1. Constructing Prediction Models by Machine Learning

In Figure 1 we present the workflow that resumes the sequence of steps needed to
develop and assess the Machine Learning (ML) pipeline to predict the PFS of HCC patients.

The study included 374 primary tumor cases of HCC from The Cancer Genome Atlas
(TCGA) cohort. The main clinical and etiological features of cohort used in this study
are summarized in Appendix A Table A1. Firstly, patients were stratified in two groups,
one comprising patients with a PFS less than six months (L6M) and the other comprising
patients with a PFS greater than six months (G6M); the two groups were composed by 115
and 259 patients, respectively.

http://www.decisioncurveanalysis.org
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The CpG beta values from 450k DNA methylation microarray analysis, consisted
of 485,577 CpG methylation probes, that were pre-processed by applying different basic
filters to remove: probes containing missing values (n = 116,392); highly correlated probes
(n = 29,760); probes residing on X and Y chromosomes (n = 12,662); and probes containing
single-nucleotide polymorphisms (n = 4798). By using this approach, we obtained a final
series of 323,564 probes for the subsequent analyses. We then performed an unsupervised
feature selection by an independent variance filtering (IVF) on the half most variable probes
(n = 161,782) [18].

The methylation filtered data were split into training (300 patients) and test (74 pa-
tients) sets. The training set was used for the model development and optimization within
a 10 × 5 CV and the testset was used for assessing the model performance. In parallel,
within the model development step, we used two feature selection methods called RFE and
Boruta to reduce the number of features and to possibly identify PFS-specific methylation
markers. By using RFE, we got a set of 415 CpG probes that led to the RF algorithm with
the highest MCC value. With Boruta analysis, we found that the best subset of probes was
the first 200 CpG ranked by importance. We also took in consideration the overlapping
probes from the two methods (Figure 2) (Table A3).

ALL  323,564 CpG

Boruta  
200 
CpG

RFE  
 415 
CpG

RFE ⋂ 
Boruta 
34 CpG

IVF   
161,782 CpG

Trainset Methylation Beta Values

cg11889692
cg11567854
cg02360980
cg21884421
cg18755783
cg04458670

cg15975806
cg22392666
cg22539431
cg26305174
cg19377250
cg24130561
cg07196761
cg24639100
cg25143247
cg02606058
cg08889930
cg06496272
cg16224163
cg01256987

cg02675527
cg01500402
cg27570661
cg26152983
cg24332685
cg18105612
cg12961607
cg04907173
cg27321942
cg04197548
cg26789453
cg17178175
cg05567269
cg05990312

PFS
Pred. PFS Pred. PFS

G6M
L6M

PFS
G6M
L6M

0.2

0.4

0.6

0.8

Figure 2. Heatmap of hierarchical clustering of 300 HCC trainset patients by DNA methylation
beta values of the final 34 cytosine-phosphate-guanine dinucleotide (CpG) sites. Abbreviations:
real progression free survival class (PFS); predicted progression free survival class by the best
model (Pred.PFS); greater than six months (G6M); lower than 6 months (L6M). Color scale: blue =
hypomethylated CpG site; white = normal methylated CpG site; red = hypermethylated CpG site.

The subsets of probes obtained were used to train RF models following the approach
illustrated in Figure 1. As reported in Table 1, we tested different pipelines: all basic fil-
tered probes (ALL + RF), independent variance filtered probes (IVF + RF), probes selected
using RFE method (RFE + RF), probes selected using Boruta method (Boruta + RF) and
overlapping probes from RFE and Boruta (RFE∩Boruta + RF). In Table 1, the results of
the classification performance are shown. These results indicated that the dimensionality
reduction by feature selection techniques can improve the classification performance in all
the experimental groups [35]. In fact, (ALL + RF) and (IVF + RF) achieved a trainset mean
cross-validation MCC of 0.127 and 0.162, respectively. In contrast, (RFE + RF), (Boruta
+ RF) and (RFE∩Boruta + RF) achieved a trainset mean cross-validation MCC of 0.467,
0.485 and 0.533, respectively, that were significantly higher than RF models trained with
thousands of features. The trend of increased performance due to dimensional reduction
was also seen in the testset partition (Table 1).
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Table 1. Models performances in cross-validation (mean with confidence intervals) and on the testset. ACC: accuracy; MCC: Matthews Correlation Coefficient; CI: 95% studentized
bootstrap confidence interval.

Workflow Features Selection N° Features Hyperparameters
Train Metrics Test Metrics

MCC (CI) Kappa (CI) ACC (CI) MCC Kappa ACC

ALL + RF None 323,564 max.depth = 10 num.trees = 50
mtry = 569 min.node.size = 20

0.127
(0.09–0.163)

0.113
(0.081–0.145)

0.679
(0.668–0.690) 0.157 0.120 0.695

IVF + RF IVF 161,782 max.depth = 15 num.trees = 100
mtry = 402 min.node.size = 20

0.162
(0.128–0.197)

0.146
(0.115–0.178)

0.679
(0.665–0.694) 0.138 0.115 0.686

RFE + RF IVF + RFE 415 max.depth = 10 num.trees = 500
mtry = 24 min.node.size = 20

0.467
(0.431–0.503)

0.455
(0.419–0.491)

0.784
(0.771–0.798) 0.428 0.371 0.773

Boruta + RF IVF + Boruta 200 max.depth = 15 num.trees = 200
mtry = 17 min.node.size = 20

0.485
(0.453–0.518)

0.473
(0.440–0.506)

0.790
(0.777–0.803) 0.415 0.394 0.767

RFE∩Boruta + RF IVF + Intersect
(RFE-Boruta) 34 max.depth = 15 num.trees = 500

mtry = 5 min.node.size = 20
0.533

(0.502–0.563)
0.523

(0.493–0.553)
0.806

(0.794–0.818) 0.510 0.484 0.802

RFE∩Boruta + RF
(randomized output)

IVF + Intersect
(RFE Boruta) 34 max.depth = 15 num.trees = 500

mtry = 5 min.node.size = 20
0.018

(−0.016–0.053)
0.014

(−0.010–0.037)
0.671

(0.663–0.680) −0.065 −0.042 0.648
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Conclusively, the RF model (RFE∩Boruta + RF) showed the best performance metrics
and 34 CpG probes (Figure 2) were selected as final predictive markers for PFS prediction.

3.2. Correlation of Final CpG Site Methylation and Matched Gene Expression

DNA methylation is an epigenetic mechanism that involves the addition of a methyl
group to a DNA cytosine and occurs mainly at CpG dinucleotide sequences in mammals.
The degree of methylation at CpG sites but also the balancing of methylated and unmethy-
lated CpGs over the genome control several biological functions such as gene expression
regulation, cellular differentiation and mammalian development [36]. Aberrant DNA
methylation has been associated with cancer, where the epigenetic reprogramming might
play a part in cancer pathogenesis by regulating the expression of tumor suppressor genes
or oncogenes [37,38]. We investigated the impact of the 34 final CpG sites on the local
regulation of matched genes expression (cis-acting) by conducting Pearson correlation
analysis [23]. The analysis was achievable for 26 CpGs due to the lack of matched gene
expression for the remaining excluded probes. Among the 26 CpGs, 5 CpG sites showed a
weak significant correlation (0.2 <|r| < 0.4, BH adjusted p-value < 0.05) and 2 CpG sites
showed a moderate significant correlation (0.4 <|r| < 0.7, BH adjusted p-value < 0.05) [24]
(Figure 3, Table A2). Of note, all significantly correlated CpG sites were characterized by
an inverse correlation between DNA methylation and gene expression, that seems to be
consistent with the transcriptional silencing effect of DNA methylation [39].
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Figure 3. Correlation of CpG site methylation and corresponding gene expression. Matched methylation and gene
expression data were plotted to highlight the correlation of the first six (out of 34 final CpG sites) more correlated CpG sites.
The x-axes represent the beta value of the probe. The y-axes represents the gene expression reported as variance stabilizing
transformation (vst) of raw counts. The heatmap above each plot shows the beta value of the probe and vst counts of the
matched gene; color scale depicts standardized transformed values (z-scores).

Minichromosome maintenance complex component 2 (MCM2) and SPG20 were the
genes that showed a moderate negative correlation with their matched CpG probe. The
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SPG20 gene encodes a protein called Spartin that has been found to be involved in intra-
cellular epidermal growth factor receptor trafficking; SPG20 promoter has been found
to be hypermethylated in colorectal cancer, resulting in gene silencing and cytokinesis
arrest [40]. SPG20 promoter hypermethylation was also validated as a novel noninvasive
biomarker [41]. MCM2 is one of six highly conserved proteins recruited to form the MCM
protein complex, a cell ubiquitous hexamer that works as molecular motor performing
DNA duplex unwinding and fork progression during DNA replication [42]. MCM2 has
been found to be overexpressed in several cancers such as oral, gastric, colon, lung and
breast cancer. High MCM2 expression in cancers was associated with higher grades, more
advanced stages and poor prognosis [43].

3.3. Construction of CpG-Based Prognostic Signature

To study the possible prognostic impact of the selected CpG probes we used Cox
regression analysis to assess which of the 34 final CpG probes were associated with PFS
time in the trainset. Eleven CpG probes were significantly correlated with the PFS (p-value
BH adjusted <0.05) (Table A3). Afterwards, to better identify which of them could be more
important in the clinical outcome assessment, a multivariate Cox regression analysis was
performed using a stepwise model selection in both direction starting with a model that
included all probes. Four CpG probes were identified (Table 2): cg08889930 (MCM2,TPRA1),
cg11889692 (TMEM63C,RP11-463C8.4), cg12961607(SRSF7), cg22539431 (SND1). Three
CpG sites (cg08889930,cg12961607,cg22539431) were characterized by a negative coefficient
that in this case implies a higher PFS for patients with higher beta values of these CpG
sites; conversely one site (cg11889692) with a positive coefficient confers a lower PFS for
patients with higher beta values of this CpG site. Importantly, lower values of cg08889930
were associated with a worse PFS and this is in keeping with the evidence that we reported
that its value was negatively correlated with MCM2 expression. The hypomethylation of
cg08889930 and the resultant overexpression of MCM2 were in keeping with what was
previous reported [43].

Table 2. Coefficients of the four CpGs multi-variate cox regression model. Abbreviations: HR = hazard ratio; CI = confidence interval;
* = p-Value < 0.05; ** = p-Value < 0.01.

CpG Gene Coeff. bi HR [exp(bi)] HR 95%CI p-Value Significance

cg08889930 MCM2, TPRA1 −1.796 0.1660 (0.05–0.52) 0.00222 **
cg11889692 TMEM63C,

RP11-463C8.4
1.448 4.2541 (1.79–10.10) 0.00104 **

cg12961607 SRSF7 −0.852 0.4265 (0.19–0.94) 0.03573 *
cg22539431 SND1 −1.870 0.1541 (0.04–0.59) 0.00626 **

Taking into account the estimated Cox regression coefficients, we then constructed a
prognostic risk model described by the formula as follows:

RiskScore =(−1.796)× cg08889930(βvalue) + (1.448)× cg11889692(βvalue)

+ (−0.852)× cg12961607(βvalue) + (−1.870)× cg22539431(βvalue)

The corresponding risk scores of each trainset patient were calculated using the
formula and the samples were stratified into high-score and low-score groups based on
the risk score = 1 as cutoff. Next, we used Kaplan–Meier survival analysis to assess the
prognostic impact of the model in the risk stratified trainset. The relationship between PFS
time and risk score was statistically significant, with patients at high risk of progression
(n = 137) showing a considerable adverse PFS with respect to the patients at low risk of
progression (n = 163). This trend appeared as particularly visible during the first 12 months
(Figure 4A). Patients at high risk of progression had a significantly increased risk of disease
progression.
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Figure 4. (A): Survival analysis of 300 HCC trainset patients. (B): Survival analysis of 74 HCC testset
patients. Top graph shows the patient risk score calculated by the signature, by stratifying patients
in high risk of progression and low risk of progression. Middle heatmap shows the calculated risk
contribution of each CpG; patients are ordered in accordance with risk score (color scale is Z-score of
absolute risk values). Bottom plot shows Kaplan–Meier PFS curves for high risk and low risk patients.

To validate the risk model, we also tested the established model in the testset. The risk
scores were calculated using the aforementioned formula and the patients were stratified
in patients at high risk of progression (n = 29) and patients at low risk of progression
(n = 45). Low risk patients showed a significant advantage in PFS time compared to
high risk patients (Figure 4B). These results demonstrated that our model can provide an
accurate risk stratification system and reveal that the methylation level of these CpG probes
could affect the prognosis of HCC patients.
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3.4. Alpha-Fetoprotein Level in Risk Stratified Patients

Alpha-fetoprotein (AFP) is the first introduced and most extensively utilized marker
for diagnosis, prognosis and monitoring of HCC [44]. To test if preoperative AFP con-
centration is higher in patients at high risk of progression, we analyzed its distribution
between high risk and low risk groups (Figure A1). Preoperative alpha-fetoprotein con-
centration in high risk patients was statistically higher than low risk patients (Unpaired
two-samples Wilcoxon test, p-value = 8.347× 10−6). This result was consistent with the
fact that AFP level has been demonstrated to be an independent risk predictor associated
with pathological grade, progression and survival of HCC [45].

3.5. Decision Curve Analysis

Decision curve analysis (DCA) is a method that can be used to assess the value of
prognostic models [27]. In brief, DCA calculates a clinical “net benefit” for one or more
predictors, or diagnostic models, in comparison to reference strategies that are treating all
patients or treating no patients.

A number of models have been developed to calculate the tumor stage and prognosis.
Since the important role of the liver, HCC evaluation includes not only tumor features
but also liver function parameters as key prognostic factors for survival and progression.
Different staging algorithms are currently in use [46], they usually include prognostic
clinical variables, tumor burden variables, liver function variables and biomarkers.

We analyzed the predicted probability of PFS at six months using the risk calculated
by our 4 CpGs model and by common in-use clinical parameters, to assess the net benefit
that patients could obtain. As shown in Figure 5A, our method showed more benefits
with respect to in-use parameters, implying that our 4 CpG model performs well and is
able to stratify patients with PFS greater or lower than six months. Moreover, the benefit
was even more higher when we combined our model to strong prognosis factors such as
preoperative AFP levels and AJCC pathologic stage (Figure 5B).
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Figure 5. Decision curve analysis. The plot shows the net benefit per patient relative to no intervention for any patient (“treat none”).
The unit is the benefit for a patient who would have a PFS less than 6 months without intervention and who receives the intervention.
Black line: assume no patient has a PFS less than 6 months. Grey line: assume all patients have a PFS less than 6 months. (A): All
parameters are reported, purple line representing our CpGs based method achieving higher benefit than in-use parameters. (B):
Pathologic stage, preoperative AFP, 4 CpGs risk score and model including all these three variables are reported, blue line shows that
the benefit was even higher when we combined our model to strong prognosis factors.
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3.6. Identification of DEG Genes between Risk Stratified Patients

With the aim to understand the functional significance of the proposed epigenetic
4 CpGs score, we evaluated the putative gene expression modulation between the two
epigenetic risk categories. To do this, we performed a DEG analysis. Patients at low risk
of progression were used as reference. A total of 850 DEGs were identified, consisting
of 619 upregulated genes (FDR < 0.05 and logFC ≥ 1) and 231 downregulated genes
(FDR < 0.05 and logFC ≤ 1). In Figure 6, we reported the heatmap of DEGs in which
patients are ordered in accordance with the calculated risk score. Of note, as the risk
score increases (from the left to the right of the heatmap), the fold change increases in
upregulated genes and decreases in downregulated genes. In Table A4, we reported the top
25 upregulated and downregulated genes in patients at high risk of progression compared
to patients at low risk of progression.
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Figure 6. (A): Volcano plot of DEGs: in red 619 upregulated genes, in blue 231 downregualted genes.
(B): Heatmap of 850 DEGs. The data represent standardized fold change values. Patients in columns
are ordered in accordance with calculated risk score. The genes in rows are clustered in upregulated
and downregulated genes found in high risk patients compared to low risk patients. Abbreviations:
real progression free survival class (PFS); greater than six months (G6M); lower than 6 months (L6M).
Color scale: from blue to red = z-scores of normalized transcript count values.

3.7. Functional Enrichment Analysis of DEGS

In order to gain more insights into the biological function of the risk prediction
signature, we applied GO terms and KEGG pathway analyses to identify associated
biological terms and pathways from DEG profiles of risk stratified HCC patients. The
results of the GO analysis revealed that downregulated DEGs in patients at high risk
of progression were significantly enriched in biological processes including ‘hormone
metabolic process’, ‘lipid metabolic process’, ‘xenobiotic metabolic process’ and ‘cellular
response to xenobiotic stimulus’ (Figure 7A). The upregulated DEGs in patients at high
risk of progression were mainly enriched in ‘chromosome segregation’, ‘nuclear division’
and ‘mitotic nuclear division’ Figure 8A).

KEGG pathway analysis revealed that downregulated DEGs in high risk patients were
associated with pathways including ‘Retinol metabolism’, ‘Chemical carcinogenesis’ and
‘Drug metabolism—cytochrome P450 ’ (Figure 7B). The upregulated DEGs high risk patients
were enriched in ‘Cell cycle’, ‘ECM-receptor interaction’, ‘cytokine receptor interaction’
and ‘Hematopoietic cell lineage’ Figure 8B).

In Figures 7C and 8C, we reported the Gene-Concept Network of the main downregu-
lated and upregulated KEGG pathways in patients at high risk of progression. Downregu-
lated genes included several clusters of metabolic genes such as: alcohol dehydrogenases
(ADH) genes that are involved in alcohol metabolism, uridine diphosphate glucuronyl
transferase (UGT) genes which play roles in phase II drug metabolism and cytochromes
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(CYPs) P450 genes that catalyze the oxidation and metabolism of a large number of xeno-
biotics and endogenous compounds. Within downregulated genes, we also found solute
carriers (SLC) and ATP-binding cassette (ABC) proteins that play an essential role in the
uptake and in the export of a large variety of anti-tumor drugs, respectively.
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Figure 7. Functional enrichment analysis of downregulated DEGSs in patients at high risk of
progression. (A): Top 10 GO terms plotted in order of adjusted p-values (BH). Bar size represents
the number of significant DEGs that fall within a GO category (numDEInCat) and color represents
the adjusted p-values (BH). (B): KEGG pathways are ordered by adjusted p-values (BH), bars size
represent the number of significant DEGs that fall within a KEGG pathway (numDEInCat) and color
represents the adjusted p-values (BH). (C): Gene-Concept Network. The size of the KEGG pathways
stands for the number of DEGs that fall within each pathway. Color scale of gene names stands
for the log2-fold change of DEGs in the high risk of progression group compared to the low risk of
progression group.
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Figure 8. Functional enrichment analysis of upregulated DEGs in patients at high risk of progression.
(A): Top 10 GO terms plotted in order of adjusted p-values (BH). Bar size represents the number of
significant DEGs that fall within a GO category (numDEInCat) and color represents the adjusted
p-values (BH). (B): KEGG pathways are ordered by adjusted p-values (BH), bar size represents the
number of significant DEGs that fall within a KEGG pathway (numDEInCat) and color represents the
adjusted p-values (BH). (C): Gene-Concept Network. The size of the KEGG pathways stands for the
number of DEGs that fall within each pathway. Color scale of gene names stands for the log2-fold
change of DEGs in the high risk of progression group compared to the low risk of progression group.

Upregulated genes included several genes involved in the control of the cell cycle like
E2F2, cyclin-dependent kinase 1 (CDK1) and MCM2 but also cytokine gene network with
crucial effects on inflammation and tumor immunology as well. Within upregulated genes
we found surface markers that are expressed by stage- and lineage-specific hematopoietic
cell; as an example, overexpression of CD19, CD24 and CD38 could indicate an higher
infiltration level of B regulatory cells (Bregs) with a CD19+ CD24hi CD38hi phenotype.
Breg phenotype has been found to be enriched in the tumor microenvironment and to be
associated with progression of several cancers, including HCC [47–49].
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4. Discussion

HCC remains one of the most frequent malignancies and a leading challenge for
public health worldwide. Even after the application of curative treatments, such as resec-
tion, local ablation and liver transplantation, and the extensive advancement in earlier
diagnosis, staging systems and therapy decision-making, the long-term prognosis of HCC
remains poor. The evaluation of conventional parameters such as proper liver function,
vessel invasion, tumor staging and biomarker levels are commonly used in HCC prog-
nosis prediction; nevertheless, their performance is still not satisfactory and this could
be due to the high degree of heterogeneity among HCC cases. Therefore, the recogni-
tion of novel prognostic biomarkers from large scale omics data and the establishment
of more accurate prognostic models could dynamically recapitulate the biological pro-
gression of HCC and may have a superior predictive accuracy than conventional ongoing
parameters. Recently, numerous studies with gene expression, microRNAs and methyla-
tion profiling have shown great potential in prognosis prediction and staging systems of
HCC [50–54]. The main goal of this strategy is to stratify patients into homogeneous
prognosis clusters, which then can provide the bases for the option of most appropriate
interventions. Although several studies have been conducted, many perspectives still
remain unexplored. A prediction model that can reliably classify HCC patients into ho-
mogeneous groups with respect to the PFS time can be of particular importance in the
context of HCC where the disease progression is still not entirely definable by conventional
prognosis parameters in the attempt to recapitulate prognosis and treatment response.

The present study aimed to identify efficient prognostic markers to stratify HCC
patients according to their epigenetic features involved in tumor pathogenesis and pro-
gression. We applied a combination of Machine Learning algorithms that performed
a supervised features selection (i.e., Boruta, RFE) on methylation data to increase the
chances of catching CpG markers related to the PFS [55,56]. The subsets of probes obtained
were used to train RF models to select the best predictive model resulting in a final 34
CpGs-based model.

One of the advantages of RF is the built-in variable importance measure that ranks
the features with respect to their relevance for prediction. This is performed calculating
the Gini Importance (Mean Decrease in Impurity—MDI) [57] or the Permutation Impor-
tance (Mean Decrease in Accuracy—MDA) that can correct the Gini importance bias [58].
However, techniques that estimate the variable importance are not able to capture patterns
of dependency between features and response; they only represent the strength of this
dependency as a single number, and the obtained results can be difficult to interpret [59].

Consequently, to evaluate the size and direction of the relationship between the
34 CpG features and the PFS, but also to investigate their prognostic impact, we firstly
performed the univariate Cox regression analysis of the final 34 markers and then, we
established a 4-CpG-based prognostic model for HCC. The signature was validated using
the internal left-out testing set, indicating the stability of this model in terms of ability to
stratify HCC patients into high and low risk groups for early cancer progression. To assess
the adequacy and the clinical advantages of our signature over currently used parameters,
we performed a decision curve analysis proving that our method showed a significantly
improved performance when compared to in-use conventional clinical parameters (i.e.,
preoperative AFP levels and AJCC pathologic stage), thus indicating a more powerful
and dynamic reflection of HCC heterogeneity. This was true either if the 4 CpG signature
was considered alone or in combination with well-recognized prognosis parameters. The
dataset considered in this analysis is the most comprehensive collection of multi-omic data
from HCC cases [53]. Unfortunately, we were not able to find larger datasets to integrate
our analysis. This could be considered as a limitation even if in the attempt to address
the lack of an independent validation set, we followed the recommendations described in
Shi et al. [60]. The approach presented here relies on the analysis of methylation data.
This design has several advantages: the DNA methylation level can be easily accessible in
circulating tumor DNA (ctDNA) allowing a noninvasive ‘liquid biopsy’; unlike methods
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based on somatic alterations analysis in ctDNA, methylation methods do not need the
identification of somatic mutations in the tumor; the collection of peripheral blood to
obtain cfDNA is less invasive compared with tumor biopsy. However, further studies are
needed to validate the feasibility of using the defined CpG sites from ctDNA to guide a
personalized approach for HCC patients.

Our CpGs signature comprises the methylation level of 4 CpG sites (Table 2), of which
the cg08889930 was also correlated with MCM2 expression (Figure 3); this site likely repre-
sents the methylation status of MCM2 gene and so an indicator of MCM2 expression. High
risk for progression is driven by a lower level of cg08889930 methylation that results in an
overexpression of MCM2, which in turn is associated with cancer progression and poor
prognosis [43]. Aberrant DNA methylated-differentially expressed genes and pathways
in HCC have been previously reported [61,62]. Our epigenetic Machine Learning model
better discriminated among previously reported methylated genes, pointing out MCM2
methylation as a key point to define risk of progression for HCC patients. MCM2 belongs
to the minichromosome maintenance (MCM) protein complex which is involved in the
initiation of DNA replication and DNA unwinding [42]. MCM2 is a subunit/component
of the hexameric protein complex that consists of MCM2-7 and directly interacts with
MCM5 [63]. In vitro studies indicate that MCM2 silencing inhibits cell proliferation by
affecting the G1/S transition and conversely the overexpression of MCM2 promotes cell
proliferation in lung cancer cells [64]; moreover, MCM2 knockdown inhibits cell migration
in lung cancer cells. Notably, during the last few years, several studies have evaluated the
action of in use treatments against MCM2. In particular, MCM2 is a therapeutic target of
Trichostatin A in colon cancer cells [65], MCM2 has been proposed as therapeutic target
of lovastatin in human non-small cell lung carcinomas [66], the combination of MCM2
silencing and carboplatin treatment may represent a novel therapeutic strategy to treat
ovarian cancer [67]. Here we propose that the CpG site cg08889930 could represent the
methylation status of the MCM2 gene and consequently the expression level of MCM2.
Its mehylation level could serve not only as prognostic marker to evaluate HCC patient
progression but also as predictive marker to evaluate the efficacy of a therapeutic interven-
tion. Another important implication is that the MCM complex offers a fascinating target
for drug development in HCC, since it is an essential replication factor that couples DNA
replication to both cell cycle progression and checkpoint regulation [68].

Information relative to the potential implication for the development of novel ther-
apies [11,69], was also highlighted by the transcriptome analysis for the HCC patients
stratified according to the proposed 4-CpG signature. In particular, from the functional
enrichment analysis, we found that upregulated genes in the context of the high risk HCC
patient group are implicated in important pathways Figure 8C) such as extracellular matrix
(ECM) receptor interaction, cell cycle, cytokine receptor interaction and hematopoietic cell
lineage. Of note, we also found that MCM2 is upregulated in patients belonging to the
high risk group and this could be at least in part recapitulated by the enrichment of genes
involved in the control of DNA replication, cell division and cell cycle (Figure 8). One of
the most common features of cancer is cell cycle deregulation which leads to unscheduled
proliferation and genomic instability. In humans, the cell cycle is controlled by a subfamily
of cyclin-dependent kinases (CDKs) and several modulators [70]. Results indicate that
CDK1 is the only CDK that is essential for cell cycle progression [71]. Here, the high risk
HCC patient group has been found to be characterized by the upregulation of several
effectors that play a role within the CDK1 network and that are usually upregulated in
cancer (Figure 8). Overexpression of CDK1, MCM2, E2F2, PLK1, CCNB1/2, BUB1, BUB1B,
CDC25 has been associated with aberrant proliferation in many cancer types [72] including
HCC [73]. This could be of interest for the designing of inhibitors of cell cycle protein
pathways to be used as anticancer drugs.

One of the major constituents of the environment is the extracellular matrix (ECM).
The ECM supervises crucial processes like intratumoral signaling, transport mechanisms,
metabolisms and immunogenicity. For its activity, the ECM has been associated with
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tumor establishment, disease progression and therapy resistance in several tumors [74].
The ECM aberration plays also a role in the carcinogenesis and progression of HCC [75].
In this context, the overexpression of ECM-receptor interactor accelerates liver cancer
cell metastasis in vessel and settlement in metastatic sites [76]. In the present study, we
found a high expression of some upregulated ECM interactors (Figure 8C) that have been
correlated to migration and invasion (LAMC2, FRAS1) [77,78], drug resistance (ITGB8) [79]
and proliferation (LAMA1) [80].

Tumor progression is promoted by the crosstalk of different cells populations within
the tumor microenvironment (TME) and this communication is guaranteed by the release
of key mediators such as cytokines and chemokines. These signaling molecules and
their receptors affect multiple processes including tumor cell proliferation, invasion and
metastasis, tumor immune response and angiogenesis [81]. In this context, in the high
risk HCC patient group, the most upregulated genes within the cytokines-chemokines
network were CXCL5, CXCL17 and IL20RA (Figure 8C). CXCL5 overexpression promotes
HCC cell proliferation, invasion and intratumoral neutrophil infiltration [82]. Moreover, a
high CXCL17 expression and a higher rate of tumor-infiltrating CXCL17-expressing cells
have been found to be associated with unfavorable prognosis in HCC patients [83].

The downregulated genes in high risk HCC patients include several metabolic genes,
drug metabolism genes, transporters and carriers genes (Figure 7). This scenario has
important implications for the choice of an appropriate chemotherapy or an appropriate
adjuvant chemotherapy. Until 2007, no effective therapies were available for HCC patients
that failed to be treated with locoregional approaches. Between 2007 and 2016, sorafenib
was the only systemic drug approved for advanced HCC. Currently, palliative treatment
strategies in patients with advanced HCC comprise new pharmacological therapies based
on inhibitors of tyrosine kinases (TKIs) like sorafenib and regorafenib, but also classical
chemotherapeutic agents and novel immunotherapy strategies [84]. However, several
mechanisms of chemoresistance (MOC) [9] can significantly affect the response of HCC
patients to the currently used pharmacological treatments. We found that patients at high
risk of progression are characterized by the deregulation of some genes involved in mecha-
nisms of chemoresistance (SLC22A1, SLCO1B3, ABCG2, CYP3A4). SLC22A1 is a member of
the solute carriers (SLC) family, a collection of proteins that play an essential role in the
uptake of anticancer drugs. Loss of SLC22A1 in the plasma membrane of tumor cells results
in a reduction of sorafenib uptake, that has been correlated with less favorable prognosis
of HCC patients treated with this drug [85]. Furthermore, restoring SLC22A1 expression
results in an improved receptivity of sorafenib in HCC cells [86]. Another dowregulated
gene is SLCO1B3, a component of a family of genes that plays a role in the transport
of TKIs drugs. SLCO1B3 accomplishes the uptake of cabozantinib [87], clears sorafenib
glucuronidated metabolites [88] and its downregulation in HCC patients contributes to
chemoresistance [89]. The ATP-binding cassette ABCG2 plays a crucial role in sorafenib
efflux and higher ABCG2 expression has also been correlated with chemoresistance in
HCC and reduced overall survival in HCC patients [90]. In our study, high risk HCC
patients are characterized by the downregulation of the gene ABCG2, so in this case the
higher expression level could mainly affect the sorafenib behavior in low risk HCC patients.
Several CYPs genes are deregulated in high risk patients including crucial genes such as
CYP3A4, CYP2C9, CYP1A2 (Figure 7C). Deregulated expression of these genes involved in
drug and xenobiotics metabolism may affect prodrug activation or drug inactivation, both
leading to a lower bioavailability of the functional drug. Sorafenib, regorafenib, cabozan-
tinib and lenvatinib are metabolized by CYP3A4 through an oxidation process [91–93].
Downregulation of CYP3A4 in HCC microsomes leads to a significantly altered sorafenib
metabolism in the liver tumor tissue of HCC patients [94].

5. Conclusions

In conclusion, starting from the methylation profile of primary HCC specimens,
we used a novel combination of Machine Learning algorithms to capture early tumor
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progression features and to focus on relevant CpG sites. These final features laid the
foundations for the development of a prognostic model for early HCC progression based
on 4 CpG sites that showed a significantly improved performance over conventional
clinical parameters. Notably, we proposed the oncogenic MCM2 gene as a methylation-
driven gene of which the representative CpG site cg08889930 could serve as a predictive
marker of therapeutic interventions. Finally, we provided evidence that our model is
capable to classify HCC patients into high and low risk for progression groups. Thus, this
predictive tool may enhance the management of patients at high risk of progression and
the development of personalized treatment for HCC patients.
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Appendix A

Table A1. Clinical and etiological features of the HCC cases entering the study cohort.

Variable Allset (n = 374)

Age (mean ± SD) 59.4 ± 13.5
PFS (%)

G6M 259 (69.3)
L6M 115 (30.7)

Gender (%)
Male 253 (67.6)
Female 121 (32.4)

Race (%)
White 187 (50)
Asian 160 (42.8)
Black 17 (4.5)
Not reported 10 (2.7)

Alcohol consumption (%)
Yes 118 (31.6)
No 256 (68.4)

Hepatitis (%)
Hepatitis B 107 (28.6)
Hepatitis C 56 (15)

Other (%)
Hemochromatosis 6 (1.6)
Non-Alcoholic Fatty Liver
Disease 20 (5.3)

No History of Primary Risk
Factors 111 (29.7)

Other 12 (3.2)

Table A2. Correlation of CpG methylation and matched gene expression. Abbreviations: r = Pearson correlation coefficient;
Adj. p-value = Benjamini–Hochberg adjusted p-value.

CpG Gene r Adj. p-Value Interpretation Direction

cg08889930 MCM2 −0.57 4.00× 10−32 moderate negative
cg18755783 SPG20 −0.42 3.00× 10−16 moderate negative
cg04197548 DNAJC9 −0.27 1.00× 10−6 weak negative
cg27321942 RPL13A −0.25 8.70× 10−6 weak negative
cg19377250 SLC12A9 −0.21 3.10× 10−4 weak negative
cg21884421 IGDCC3 −0.21 3.00× 10−4 weak negative
cg22392666 LGI4 −0.21 3.00× 10−4 weak negative
cg07196761 PAAF1 −0.19 8.40× 10−4 negligible negative
cg26152983 MAGEF1 −0.19 8.40× 10−4 negligible negative
cg05567269 TJP1 −0.17 2.40× 10−3 negligible negative
cg02360980 LTK −0.16 6.00× 10−3 negligible negative
cg04907173 POLA2 −0.16 6.00× 10−3 negligible negative
cg22392666 FXYD7 −0.15 7.30× 10−3 negligible negative
cg01500402 MLST8 −0.14 1.60× 10−2 negligible negative
cg26789453 ERP29 −0.13 2.40× 10−2 negligible negative
cg24639100 DNAJC14 −0.11 6.70× 10−2 negligible negative
cg11567854 NR4A1 −0.09 1.30× 10−1 negligible negative
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Table A2. Cont.

CpG Gene r Adj. p-Value Interpretation Direction

cg26789453 TMEM116 −0.09 1.30× 10−1 negligible negative
cg11889692 TMEM63C −0.08 1.70× 10−1 negligible negative
cg26305174 TRIP6 −0.08 2.00× 10−1 negligible negative
cg02606058 FBXL8 −0.07 2.90× 10−1 negligible negative
cg17178175 NFE2L2 −0.06 3.80× 10−1 negligible negative
cg22539431 SND1 −0.03 6.50× 10−1 negligible negative
cg08889930 TPRA1 0 9.70× 10−1 zero zero
cg26305174 SLC12A9 0 9.70× 10−1 zero zero
cg16224163 LPP 0.02 6.90× 10−1 negligible positive
cg02675527 PAX8 0.03 6.40× 10−1 negligible positive
cg24130561 DICER1 0.03 6.40× 10−1 negligible positive
cg01256987 GXYLT1 0.04 5.20× 10−1 negligible positive
cg02606058 TRADD 0.04 5.50× 10−1 negligible positive
cg25143247 PACRG 0.17 2.40× 10−3 negligible positive

Table A3. Univariate Cox analysis of the 34 final selected CpG. Abbreviations: HR = hazard ratio; CI = confidence interval;
Adj. p-value = Benjamini–Hochberg adjusted p-value.

CpG Gene Coeff. bi HR [exp(bi)] HR 95%CI p-Value Adj. p-Value
cg16224163 LPP-AS2, LPP −1.970 0.14 (0.06–0.35) <0.0001 0.0007
cg24130561 DICER1 −2.773 0.06 (0.02–0.24) <0.0001 0.0007
cg08889930 MCM2, TPRA1 −2.031 0.13 (0.05–0.38) 0.0002 0.0015
cg12961607 SRSF7 −1.428 0.24 (0.11–0.51) 0.0002 0.0015
cg07196761 COA4, PAAF1 −2.640 0.07 (0.02–0.29) 0.0002 0.0016
cg22539431 SND1 −1.907 0.15 (0.04–0.49) 0.0018 0.0103
cg26789453 ERP29, TMEM116 −1.176 0.31 (0.14–0.69) 0.004 0.0193
cg01256987 GXYLT1 −1.485 0.23 (0.08–0.67) 0.0073 0.0278
cg06496272 AC005682.5, SNORD93 −1.204 0.30 (0.13–0.72) 0.007 0.0278
cg11889692 TMEM63C, RP11-463C8.4 1.075 2.93 (1.27–6.74) 0.0115 0.0389
cg26152983 MAGEF1 −0.930 0.39 (0.19–0.82) 0.0126 0.0389
cg15975806 . −0.915 0.40 (0.18–0.88) 0.0224 0.0586
cg17178175 NFE2L2 −0.843 0.43 (0.21–0.88) 0.0213 0.0586
cg02606058 FBXL8, TRADD −1.719 0.18 (0.04–0.82) 0.0269 0.0639
cg24639100 DNAJC14, RP11-762I7.5 −1.514 0.22 (0.06–0.85) 0.0282 0.0639
cg04197548 DNAJC9 −1.058 0.35 (0.13–0.91) 0.0319 0.0679
cg01500402 MLST8 −1.471 0.23 (0.05–0.99) 0.048 0.0959
cg04458670 ICE1 −0.771 0.46 (0.2–1.06) 0.0676 0.1276
cg19377250 SLC12A9 −1.086 0.34 (0.1–1.1) 0.0715 0.128
cg05567269 TJP1 −0.912 0.40 (0.14–1.15) 0.0887 0.1507
cg22392666 LGI4, FXYD7, CTD-2527I21.4 1.298 3.66 (0.73–18.38) 0.115 0.1847
cg27321942 SNORD-32A,34,33,35A, RPL13A −0.891 0.41 (0.13–1.26) 0.1195 0.1847
cg02360980 LTK 0.605 1.83 (0.83–4.05) 0.1354 0.2001
cg24332685 ATP6V1G2-DDX39B, DDX39B −0.510 0.60 (0.29–1.23) 0.162 0.2294
cg05990312 . −0.606 0.55 (0.22–1.33) 0.1816 0.247
cg04907173 POLA2 −0.761 0.47 (0.14–1.56) 0.2168 0.2835
cg18105612 RP6-65G23.5 −0.396 0.67 (0.34–1.34) 0.2611 0.317
cg26305174 TRIP6, SLC12A9 −0.694 0.50 (0.15–1.64) 0.2518 0.317
cg02675527 PAX8, PAX8-AS1 −0.460 0.63 (0.27–1.5) 0.2965 0.3476
cg18755783 SPG20-AS1, SPG20 0.202 1.22 (0.57–2.65) 0.6077 0.6888
cg21884421 IGDCC3 0.153 1.17 (0.55–2.48) 0.6915 0.7584
cg11567854 NR4A1 0.192 1.21 (0.36–4.05) 0.7549 0.7719
cg25143247 PACRG 0.253 1.29 (0.23–7.13) 0.7718 0.7719
cg27570661 . −0.196 0.82 (0.22–3.09) 0.7719 0.7719
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Table A4. Top 25 upregulated and downregulated genes in high risk patients compared to low risk patients. Abbreviations:
FC = fold change; FDR = false discovery rate (Benjamini–Hochberg).

Upregulated Genes Downregulatd Genes
Gene Log2 FC FDR Gene Log2 FC FDR

CHGA 4.35 2.17× 10−24 CYP1A2 −3.56 2.76× 10−22

CA9 3.95 1.17× 10−24 CYP3A4 −2.91 2.30× 10−18

DMBT1 3.91 2.00× 10−26 C15orf43 −2.85 9.56× 10−18

UCHL1 3.75 1.18× 10−37 INS-IGF2 −2.84 2.23× 10−11

HMGA2 3.53 1.13× 10−15 SLC6A2 −2.79 8.92× 10−08

HAVCR1 3.51 2.76× 10−22 LUZP2 −2.72 5.82× 10−14

AGR2 3.29 2.70× 10−11 HAMP −2.64 1.34× 10−16

MUC5B 3.25 1.90× 10−14 AQP6 −2.33 2.96× 10−10

CXCL5 3.14 3.34× 10−17 ECEL1 −2.32 7.64× 10−08

SLC7A10 3.09 1.74× 10−14 CRHBP −2.29 8.14× 10−20

CLDN18 3.06 3.68× 10−17 WNT3A −2.28 7.03× 10−07

UGT1A7 3.05 6.82× 10−12 RGSL1 −2.26 4.54× 10−08

IL20RA 3.03 3.14× 10−13 CLEC4G −2.19 1.31× 10−12

MEP1A 2.97 8.12× 10−16 FCN2 −2.12 9.01× 10−12

WNT7B 2.95 7.85× 10−15 CYP1A1 −2.08 6.53× 10−10

CDH17 2.84 9.89× 10−14 STAB2 −2.07 5.00× 10−11

CHGB 2.65 4.34× 10−09 WBSCR17 −2.02 2.13× 10−10

ALDH3B2 2.64 3.55× 10−12 RSPO3 −2.00 5.77× 10−10

SLC34A2 2.64 3.15× 10−10 MT1G −1.98 1.49× 10−09

MMP1 2.63 1.36× 10−25 CYP26A1 −1.96 3.24× 10−12

MMP10 2.57 1.34× 10−14 COLEC10 −1.92 4.44× 10−15

MMP12 2.57 7.72× 10−16 RSPO2 −1.88 1.08× 10−06

CHRNA1 2.52 2.30× 10−15 HEPN1 −1.87 4.50× 10−05

SCG3 2.50 2.17× 10−14 TG −1.85 5.41× 10−13

AFP 2.46 1.71× 10−11 SAA2 −1.84 1.15× 10−08
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Figure A1. Alpha-fetoprotein boxplot of risk groups. Preoperative alpha-fetoprotein levels are
reported on the Y-axis as base-2 log scale of preoperative alpha-fetoprotein value.
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