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Abstract: Recent experimental studies proved the presence of the triplet spin state in atomically
precise heptauthrene nanostructure of nanographene type (composed of two interconnected triangles
with zigzag edge). In the paper, we report the computational study predicting the possibility of
controlling this spin state with an external in-plane electric field by causing the spin switching. We
construct and discuss the ground state magnetic phase diagram involving S = 1 (triplet) state, S = 0
antiferromagnetic state and non-magnetic state and predict the switching possibility with the critical
electric field of the order of 0.1 V/Å. We discuss the spin distribution across the nanostructure,
finding its concentration along the longest zigzag edge. To model our system of interest, we use the
mean-field Hubbard Hamiltonian, taking into account the in-plane external electric field as well as
the in-plane magnetic field (in a form of the exchange field from the substrate). We also assess the
effect of uniaxial strain on the magnetic phase diagram.

Keywords: heptauthrene; nanographene; Hubbard model; graphene magnetism; magnetic phase
diagram; spin switching

1. Introduction

Electric field control of magnetism lies at heart of the developing spintronics [1].
For this purpose, a variety of materials and a wide range of physical mechanisms have
been employed [1–4], with emphasis put on the nanostructures. A natural route to syn-
thesis of reproducible nanostructures is resorting to molecular systems. As a consequence,
an emerging field is molecular spintronics [5–7], utilizing molecules for information stor-
age and processing. Another platform attracting significant attention of researchers and
boosting hopes for technological progress is graphene, a unique flat material. Development
of graphene-based spintronics is a highly promising perspective [8–10]. In addition to the
unique properties of two-dimensional graphene sheets, various forms of nanographenes
(graphene nanoflakes), being actually polyaromatic hydrocarbons [11–14], constitute po-
tentially promising candidates for the applications in the field of spintronics. Such systems,
at the cross-section of physics and chemistry, combine the advantages of molecular systems
(such as a chemical route to synthesis of fully reproducible nanostructures) and the unique
properties and potential of graphene. In addition, the presence of edge in nanographene
offers an additional possibility of modifying a wide range of its properties to reach the
desired behaviour.

The constant progress in synthesis of graphene nanostructures with well-defined edges
of specific geometry [15,16] invigorates further the interest in studies of the graphene nanos-
tructures. Such progress, resulting in achievement of atomic precision within the bottom-up
strategy of synthesis, involves both graphene nanoribbons [17,18] and nanographenes of
diverse shape and edge form [19], including triangulene [20–23], triangulene dimers [24],
rhombene [25], hexagons [26], nanostars [27] and triangulene rings [28] or chains [29]
as well as doped nanographenes [30]. The atomic precision in shape gives the oppor-
tunity to take advantage of geometry-dependent electronic states in the nanostructures.
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The ability to control the geometry precisely also provides control over the magnetism
in graphene nanostructures: the topic which has attracted significant attention since its
emergence [31–34]. One of the most interesting structures are those which exhibit the
ground state with nonzero spin [31,34], due to unequal number of carbon atoms belonging
to two interpenetrating sublattices (as predicted by Lieb theorem [35] and refined by further
works [36]). Gaining control over the geometry of nanographenes paved the way towards
effective design and engineering of the magnetic nanographenes with desired proper-
ties [26,37] (including the possibility of assembling analogous structures with scanning
probe [38]).

In order to gain the control over the nanographene magnetism, the effect of the electric
field on the electronic structure of the graphene nanostructures has to be studied. The most
desired property is the switching of the total spin of the nanostructure under the influence
of the field between non-zero value and zero value. The total spin equal to zero can either
correspond to the fully non-magnetic (NM) state or can describe an antiferromagnetic
(AFM) alignment of magnetic moments. As a consequence, switching between all the
mentioned states can be highly interesting. Numerous computational works aimed at
capturing the spin switching effect can be mentioned. First of all, the triangular zigzag-
edged graphene nanoflakes attracted significant attention of theorists in various contexts
related to their magnetism [32,39–41]. This is due to the predicted presence of the edge
electronic state exhibiting magnetic polarization (the zigzag edge of graphene [42,43]).
As a result, the control over the magnetism in triangular zigzag-edged nanoflakes with
electric fields was extensively discussed in Refs. [44–50]. The phenomenon of magnetic
depolarization of a ferromagnetic triangular zigzag-edged graphene nanoflake with a
significant electric in-plane field has been investigated in Ref. [51]. The electric field-
modified optical properties of triangular zigzag-edged nanostructure were discussed in
Ref. [52].

The electric field-controlled magnetic properties of other nanographenes also attracted
the attention, including rectangular nanostructures [53,54], armchair-edged systems [55],
or bow-tie graphene nanoflake with zigzag edge investigated in Ref. [56] or circular
graphene quantum dots in Ref. [57]. Finally, bilayer structures should be mentioned, such
as triangular structures [58–60], rectangular structures [61,62], or other bilayers [63]. In
addition, the electric field-modified optical properties of various graphene nanoflakes were
studied in Ref. [64]. Another studied graphene-like systems with electric field-controllable
magnetic properties are, for example, stanene nanoribbons [65,66].

However, the fundamental issue from the point of view of nanographene molecular
systems application in spintronics is synthesis with atomic precision and undoubtable
microscopic confirmation of the presence of magnetically polarized states predicted by
the theory. Only such factors permit the progress and motivate further studies of the
magnetic phenomena in nanographenes. In the context of spin manipulation in graphene
nanostructures, the important experimental results are present in the recent literature.
For example, Ref. [67] for nanoribbon-like structures can be mentioned, revealing the
Kondo physics emerging due to the existence of localized magnetic moments at the edge
of graphene nanostructure. However, even smaller and more regular nanostructures
were investigated in this context. The presence of the spin-triplet state, with total spin
equal to S = 1, has been recently proved and studied experimentally in such molecular
nanographenes as triangulene [68] and heptauthrene [69] (the latter one composed of two
triangular units).

The results recalled above provide a strong motivation for studying the effect of the
electric field on the S = 1 state and the possibility of its switching to S = 0. In particular,
they encourage undertaking the computational predictions of the spin switching possibility
in small nanographene molecules synthesized recently. Such studies would guide experi-
mental research of key importance for development of nanographene-based spintronics.
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Taking into account the motivation sketched above, in the present paper, we perform
computations aimed at prediction of the magnetic phase diagram of heptauthrene nanos-
tructure immersed in in-plane electric field to verify the possibility of spin switching. As a
particular result, we find the possibility of switching the spin between S = 1 and S = 0
value using the electric field of moderate strength and emphasize the importance of the
field orientation for this effect. In addition to the S = 0 NM state, we predict the presence
of AFM state in the nanostructure. The spin density for magnetic states is found to be
distributed primarily along the longest zigzag edge of the molecule. In our calculations,
we account for the possible presence of magnetic exchange field from the substrate (due to
proximity effect), and we characterize its importance for spin switching effect, parallel to
the effect of the electric field. We also address the issue of influence of uniaxial strain on
the predicted properties.

In the next part of the paper, we describe the theoretical method used for computation
of the magnetic properties of heptauthrene. The following section contains the extensive
presentation of the numerical results. Finally, we offer discussion and concluding remarks.

2. Methods

The schematic view of the heptauthrene nanostructure, being a system of interest
in the present work, is shown in Figure 1. The orientation of the external electric field is
marked, together with an arbitrary in-plane magnetic field leading to the Zeeman splitting
of the energy states (possibly originating from the exchange field due to proximity effect
with substrate). Filled and empty circles in Figure 1b denote two graphene sublattices
of the nanoflake, denoted by A and B. The structure has unequal number of C atoms in
both sublattices, so that NA = 15 (majority sublattice) and NB = 13 (minority sublattice).
According to Lieb theorem [35], when the electronic spectrum of the structure obeys the
half-filling condition, this imbalance gives rise to non-zero spin at the ground state, equal
to S = |NA − NB|/2 = 1 (see also Ref. [33]).

Figure 1. (a) View of the full heptauthrene nanostructure, consisting of carbon atoms (larger balls) and hydrogen atoms
(smaller balls) [70]; (b) schematic view of the heptauthrene nanostructure with carbon atom positions marked with circles.
Open and filled circles indicate the majority and minority carbon sublattice, respectively. Two triangles connected with
a central dimer of carbon atoms are encircled with dashed lines. The labels of carbon sites at the longest zigzag edge are
shown. The directions of in-plane electric fields and in-plane magnetic field are marked.

The geometry of the heptauthrene nanostructure resembles a pair of interconnected
triangular structures. The dashed lines illustrate the division of the nanoflake to such
two non-overlapping triangular parts, with the central dimer connecting the triangles left
unassigned to any of them (this division is mentioned here just for the purpose of further
discussion of magnetizations of both triangles and has no effect on the theoretical modeling
of the system, which is treated as a single entity).

In order to describe the magnetism in the presented nanostructure, we employ the
formalism based on the Hubbard model incorporating the external electric and magnetic
field, and we solve the model within mean-field approximation. Such an approach, built
on the grounds of the Hubbard model, was applied in the literature to study the mag-
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netism of geometrically confined graphene [34]. It is remarkable that the good qualitative
agreement between the mean-field based model and Quantum Monte Carlo simulations
has been found [71]. In addition, the approach was confronted successfully with ab-initio
calculations [72,73]. The approach has also been confronted with the experimental data
regarding the predicted energy gap in nanoribbons [74]. What is even more important
is that this model was used to predict the electronic properties of recently synthesized
nanographenes, and its outcome was successfully compared to the scanning tunneling
microscopy characterization of the nanostructures [22,23,37,68].

The model Hamiltonian takes the following form:

H =− ∑
〈i,j〉,σ

ti,j

(
c†

i,σcj,σ + c†
j,σci,σ

)
+ U ∑

i

(〈
ni,↑
〉
ni,↓ +

〈
ni,↓
〉
ni,↑
)
−U ∑

i

〈
ni,↑
〉〈

ni,↓
〉

+ 2∆ ∑
i

sz
i + eEx ∑

i,σ
xini,σ + eEy ∑

i,σ
yini,σ. (1)

The core of the Hamiltonian is the tight-binding part, which describes electronic
hopping between nearest-neighbouring sites denoted by 〈i, j〉 with hopping energy equal
to ti,j. For the structure with ideal geometry, all the hopping integrals are taken as equal
to t = 2.8 eV. If the presence of the strain is taken into account, the following relation is
used [75,76]:

ti,j = t e
−β

(
di,j
d0
−1
)

, (2)

where the exponent β = 3 and di,j is the length of the bond between carbon atoms at
nearest-neighbour positions i and j for given strain (while the value for ideal unstrained
geometry is d0, assumed to be equal to 1.42 Å). The bond length for bonds extending only
along the x-direction (armchair direction) is di,j = d0(1 + εx), while, for the remaining

bonds (along zig-zag direction), it is di,j = (d0/2)
√
(1 + εx)

2 + 3
(
1 + εy

)2. In the formulas,
εx and εy stand for the uniaxial strain in the x- or y-direction, respectively.

The operator c†
i,σ(ci,σ) creates (annihilates) an electron with spin σ = ↑, ↓ at site

i = 1, ..., N, where N = 28. The further part of the Hamiltonian describes the coulom-
bic interactions between the electrons in the spirit of mean-field Hubbard model, where U
(taken as U/t = 1.3 after [69]) accounts for the coulombic interaction energy between
opposite-spin electrons housed at the same site. The presence of the magnetic field,
in a form of the exchange field (originating from the substrate due to the proximity
effect [77–81]) acting on z components of spins sz =

(
ni,↑ − ni,↓

)
/2, is introduced by

the parameter ∆. The components of the electric field along the x- and y-directions (see
Figure 1) are denoted by Ex and Ey, respectively. The coordinates of the individual sites
equal to xi and yi (taking into account the rescaling by the factors (1 + εx) and

(
1 + εy

)
if

an uniaxial strain is present), while e is the elementary charge. The Hamiltonian resem-
bles the model which we have used in the studies of graphene nanoflakes in the external
field [53,61].

The solution of the model is obtained by the self-consistent diagonalization of spin-
up and spin-down Hamiltonians (singled out from Equation (1)) and calculation of the
average numbers of electrons at all sites, 〈ni,σ〉 (as described in full detail in our Ref. [53]).
The half-filling condition for the Hubbard model is accepted, so that the presence of the
fixed number of electrons equal to the number of the carbon atoms is assumed. All the spin-
up and spin-down electron numbers, N↑ and N↓, are tried (constrained with the condition
N↑ + N↓ = N) to achieve the minimization of the ground-state enthalpy of system 〈H〉.
The procedure leads to the self-consistent determination of the charge distribution in the
nanostructure and the single-electron energy eigenstates of the Hamiltonian (1).
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The phase diagrams discussed in our work concern primarily the total spin of the
nanostructure, which is a sum of spin densities at individual sites, S = ∑N

i=1
〈
sz

i
〉
=(

N↑ − N↓
)
/2. However, in order to search for the AFM phases with S = 0, sublattice

resolved magnetizations can also be discussed, being SA,B = ∑
NA,B
i=1

〈
sz

i
〉
, with S = SA + SB.

The AFM phase would be then characterized by SA = −SB. To supplement the picture of
magnetization distribution, the spins of triangles 1 and 2 (encircled with dashed lines in
Figure 1), S1,2 = ∑i∈ triangle 1,2

〈
sz

i
〉
, can also be discussed (note that the central dimer of

carbon atoms lying on the symmetry axis of the structure is excluded from both triangles).
The NM phase has vanishing spin density at all the sites forming the structure.

The next part of the paper presents the results obtained with the help of the above-
described formalism. They concern primarily the ground-state phase diagrams of the
heptauthrene nanostructure, both based on the total spin and including the AFM orderings.
Moreover, spin distribution as well as the field dependence of the magnetizations and the
single-electron energy states are discussed to accompany the investigation of the phases.

3. Results

The present section reports the results of our calculations, performed according to the
methodology described in Section 2.

The general aim of the study is to examine the external electric field-induced transition
between the singlet and the triplet spin state of the nanoflake. Therefore, the phase
diagrams showing the spin state as a function of the external fields are of primary interest.

3.1. Magnetic Phase Diagrams

In principle, the field components along the x- and y-axis can be considered as separate
control variables, as the nanographene would be gated using two orthogonal pairs of gates.
Figure 2 shows the phase diagrams in polar coordinates as a function of the strength and
orientation of the electric field, for various values of possible exchange splitting energy
in panels Figure 2a–d. The electric field magnitudes up to 1 V/Å are covered and the
field parallel to the x-axis (see orientation in Figure 1b) corresponds to the polar angle
equal to 0. The discrete rotational symmetry is clearly reflected in the phase diagrams.
The solid lines delimit the phases with various values of the total spin of the nanoflake.
In addition, within the phase with vanishing total spin, an antiferromagnetic orientation
of spins is possible, and the boundary of this phase is marked with the dotted lines.
In Figure 2a, the case of absent exchange splitting is shown. For a weak electric field, the
ground state of triplet character, with S = 1, is the stable state. If the field takes the x
orientation, such state is most robust to the field increase; moreover, it first changes to
the AFM state with S = 0 and then, for a significantly stronger electric field, to the totally
non-magnetic state. On the contrary, the y orientation of the electric field causes switching
to the non-magnetic state for a much weaker field and severely limits the AFM ordering
stability range. Further increase of the electric field with such orientation can also switch
the state of the system back to S = 1 and then to S = 2, and this sort of behaviour is
not seen for fields oriented along the x-axis in the studied range. In general, the stability
range of the low-field state with S = 1 has an elliptic-like shape, and the ellipse is strongly
elongated along the x-direction. The presence of exchange splitting of ∆ = 100 meV, shown
in Figure 2b, significantly improves the stability of the triplet state when the field is oriented
along the x-axis, at the cost of reducing the AFM stability range. When the field is acting in
the y-direction, the AFM state is completely absent and the cross-over takes place directly
to the totally non-magnetic state (also for a slightly higher field than for the case shown
in Figure 2a). In contrast to the behaviour of the low-field S = 1 state stability range,
the boundary between the S = 0 and high-field S = 1 state is only weakly influenced
(shifted to lower field). The state with S = 1 present for stronger E fields becomes more
stable at the cost of the state with S = 2. Further increase in exchange splitting ∆ (shown in
Figure 2c,d) causes the stability range of S = 1 low-field state to expand anisotropically,
mainly along the Ex direction, whereas the boundary between S = 0 and S = 1 state at
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higher Ey fields is almost unchanged. The state with higher spin, S = 2, tends to expand
its stability range for stronger Ey fields. All the described features are easily visible in
Figure 2c for ∆ = 150 meV and in Figure 2d for ∆ = 200 meV. The phase diagrams shown
in Figure 2 clearly indicate the role of the electric field orientation in the switching between
the S = 1 and S = 0 state.

Figure 2. The ground-state magnetic phase diagram for the electric fields of magnitude not exceeding 1 V/Å and arbitrary
in-plane orientation. Four values of exchange energy are selected: 0 meV (a), 100 meV (b), 150 meV (c), and 200 meV
(d). The borders of phases with various values of total spin S are marked with solid lines. The dashed lines delimit the
antiferromagnetic (AFM) and non-magnetic (NM) phase for S = 0.

In order to investigate more precisely the ground-state phase diagram of heptauthrene
nanographene, we plot the boundary between the low-field state with S = 1 and the state
with S = 0 as a function of Ex and Ey component of the electric field in Figure 3. Three
values of exchange splitting energy (∆ = 0, 100 and 200 meV) are compared. It is clearly
visible that application of the electric field along the longest edge of the nanostructure
(y-axis) permits the switching to the S = 0 state using the field of approximately 0.1 V/Å,
whereas the field applied only along the symmetry axis of the nanostructure has to be
approximately three times stronger to produce the same effect when no exchange splitting
is present. It is interesting that, applying some field in the y-direction, the critical value
of Ex necessary to switch the state can be tuned down to the desired value, so that both
field components can lie approximately in the range of 0.1 V/Å. If ∆ energy is increased,
the critical field for switching increases much slower for the case of Ey than in the case of
Ex. However, even in the presence of large exchange splitting, the critical field Ex can be
reduced by application of Ey only moderately higher than for the case of ∆ = 0.
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Figure 3. The phase diagram showing the borders between the state with S = 1 and the state with
S = 0 as a function of the electric field along the x-direction and along the y-direction, for three
values of exchange energy.

The influence of exchange splitting energy on the critical field for cross-over between
the low-field S = 1 state and S = 0 state can be followed in details in Figure 4, where
the critical field (either Ex for Figure 4a or Ey for Figure 4b) is plotted as a function of ∆.
In Figure 4a, a few constant values of Ey are selected, and it is visible how the increasing
exchange splitting ∆ very effectively stabilizes the S = 1 state, whereas applying the y-axis-
oriented electric field acts in the opposite direction, extending significantly the stability
range of S = 0 state. The behaviour of the critical field Ey as a function of ∆ can be tracked
in Figure 4b for several values of Ex. Here, the exchange splitting also expands the range
of S = 1 state, but this time the critical field Ey is much less sensitive to ∆ than Ex was
in Figure 4a. For low Ex, the dependence of Ey on exchange splitting is linear, while for
stronger Ex it linearises for larger values of ∆ where the presence of the state with spin
S = 1 is enforced at low Ey. Figure 4 convinces readers that the critical field Ey is much
less sensitive to the presence of the exchange splitting than Ex.
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Figure 4. The phase diagram showing the borders between the state with S = 1 and the state with S = 0 as a function of the
exchange energy and electric field along the x-direction (a) and along the y-direction (b), for various values of electric field
along the other direction.

As it has been already mentioned, the state with S = 0 can be either of AFM nature,
with non-zero spin densities of opposite signs at both carbon sublattices, or of a totally
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NM nature. The detailed stability range of the AFM state is plotted in Figure 5, where the
stability ranges of S = 1, S = 0 AFM state and S = 0 NM state are marked. The solid lines
depict the border directly between the S = 1 and S = 0 NM state, while the dashed lines
mark the transition between S = 1 and S = 0 AFM and the dotted lines denote the border
between S = 0 AFM and NM state. The panels Figure 5a–d are prepared for the increasing
values of the exchange splitting, ranging from 0 (Figure 5a), through 20 meV (Figure 5b),
50 meV Figure 5c and up to 100 meV (Figure 5d). It can be noticed that the border between
S = 0 AFM and NM state is insensitive to the presence of exchange splitting and only the
stability range of S = 1 phase expands when ∆ increases, thus replacing the S = 0 AFM
phase at low fields Ex. For ∆ values exceeding 100 meV, the AFM phase is completely
displaced by S = 1 phase. In the absence of the exchange splitting, the stability range of
AFM phase is as wide as for the S = 1 phase when Ey = 0 and the electric field is applied
along the x-direction. If the electric field is applied along the y-axis, the stability range
of AFM phase is marginal and the borders of S = 1, S = 0 AFM, and S = 0 NM states
almost touch at Ex = 0. If some exchange splitting is switched on, a sort of triple point
emerges in the phase diagram. Namely, at low Ex, increasing the field Ey causes switching
directly from S = 1 to S = 0 NM, while for stronger Ex the S = 0 AFM state emerges in
between the previously mentioned states. The position of the triple point, in which S = 1,
S = 0 AFM, and S = 0 NM states are stable, slides along the AFM-NM border, as it can be
followed in the further panels of Figure 5c,d.
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Figure 5. The phase diagram showing the borders between the state with S = 1 and the AFM and NM states with S = 0 as
a function of the electric field along the x-direction and along the y-direction, for four values of exchange energy: 0 meV (a);
20 meV (b); 50 meV (c); and 100 meV (d). The solid lines delimit S = 1 and S = 0 NM state; the dashed lines delimit S = 1
and S = 0 AFM state; the dotted lines delimit S = 0 AFM and NM state.

The results presented above assume lack of strain in the studied structure. However,
the deformation of heptauthrene nanoflake with respect to the ideal geometry can arise,
either due to the interaction with the substrate or as a consequence of the presence of an
electric field. In order to assess the strain effect on the critical fields necessary for switching
between the S = 1 and S = 0 state, we have simulated the effect of uniaxial strain in



Int. J. Mol. Sci. 2021, 22, 13364 9 of 19

the structure either along the x- or along the y-direction. The corresponding results are
shown in Figure 6. For the plots, the absence of exchange field is assumed, and the electric
field is applied only along one direction: x-direction for Figure 6a and y-direction for
Figure 6b. The negative sign of strain corresponds to compressive strain, whereas the
positive sign introduces tensile strain; the considered magnitude does not exceed 0.1.
For both studied field and strain directions, the dependence of the critical field on strain
follows a non-linear convex function. The compressive strain along x-directions tends
to increase the critical field Ex in quite a visible manner, whereas the effect of the tensile
strain, consisting in reduction of the critical field, is much less pronounced. The situation
for electric field and strain along the y-direction is quite the opposite. The tensile strain εy
causes the field Ey to increase, whereas the effect of the compressive strain is to limit the
critical field (the latter effect is less pronounced than the former one). The overall effect of
the strain on the critical field along the y-direction is much weaker than for the case of the x-
direction. Let us emphasize that the range of strains considered in the calculations reported
in Figure 6 is quite large. The issue of electrostrictive deformation of nanographenes has
been subject to a Density Functional Theory-based study [82] (including a benzene ring
and phenanthrene molecule). It has been predicted that the C-C bond deformation in
hydrocarbon structures is rather limited (below 0.2%) even in the field of 1 V/Å. Therefore,
the magnetic phase diagram predicted on the basis of the model not assuming the presence
of the strain seems to provide a reliable physical picture.
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Figure 6. The dependence of the critical electric field along the given direction on the strain along the same direction: (a) x
direction and (b) y direction, in the absence of other fields. The critical field corresponds to switching between S = 1 and
S = 0 state.

3.2. Spin Distribution and Energy States

After analysis of the phase diagrams, it is interesting to investigate the spin density
distribution across the nanostructure for the particular magnetic states (see also Figure 2c
in Ref. [69]). As it follows from the above discussion, the state in the absence of the electric
and magnetic field is a S = 1 state. The spin distribution for this case is plotted in Figure 7a.
It follows that spin density is concentrated at the outer atoms of the longest zigzag edge
of the structure, in concert with a general expectation that this kind of edge favours the
magnetic polarization [42]. Moreover, the state is actually of a ferrimagnetic nature, as sites
belonging to both sublattices show the opposite sign of magnetic polarization (with very
weak polarization of the minority sublattice). The spin distribution along the zigzag edge
can be further traced in details in Figure 8 (where site number equal to 0 corresponds
to the carbon atom belonging to the central dimer connecting two triangles—see the site
labels in Figure 1b). The case of ∆ = 0 and Ey = 0 is shown in Figure 8a. When Ex field is
applied (like Ex = 0.4 V/Å in Figure 7b), the nanoflake switches to the AF state with total
spin equal to 0. In addition, in this case, the spin density is distributed dominantly along
zig-zag edge, but this time it is much less uniform in magnitude, as it can be confirmed
by Figure 8a. In particular, there is no noticeable spin density at the central carbon dimer
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connecting the two triangles. Therefore, spin density at both triangles is well separated.
The application of the field along the x-direction does not spoil the symmetry of the spin
density distribution with respect to the nanostructure symmetry axis. The magnitudes
of spin density at individual sites are reduced with respect to the triplet case. Of course,
further increase in Ex leads to continuous reduction of the spin densities and, then, to the
totally non-magnetic state with no local spin polarization (as illustrated in Figure 9a). Let
us stress that the local spin distributions for the state with S = 1 are insensitive to the
electric field up to the critical field; on the contrary, the spin densities for AF state change
in a continuous manner with the field. The effect of switching the spin state from S = 1
to S = 0 under the influence of the electric field applied along the y-direction is shown
in Figure 7c,d and also in Figure 8b, at the fixed electric field of Ex = 0.3 V/Å and ∆ = 0.
The whole process progresses in analogous manner as in the case of switching with the
field oriented along the x-direction.

Figure 7. Spin density distribution across the nanostructure for various values of the electric field,
in the absence of the exchange energy: Ex = 0, Ey = 0 (a); Ex = 0.4 V/Å, Ey = 0 (b); Ex = 0.3 V/Å,
Ey = 0 (c); Ex = 0.3 V/Å, Ey = 0.05 V/Å (d). Red and blue colours mark two antiparallel spin
orientations. The radius of the circle is proportional to the spin density (the scale is shown at the
bottom of the plot).

The behaviour of the individual components of the total magnetization also deserves
separate interest. First, the total spin can be considered as a sum of spin densities at carbon
sites belonging to two sublattices: the sublattice A with 15 atoms and sublattice B with
13 atoms. On the other hand, the total magnetization is a sum of the magnetizations
of both triangles forming the nanostructure and the magnetization of the central dimer
interconnecting the triangles (where, for practical analysis, the dimer magnetization could
be omitted). Let us remind readers that the schematic view of the nanostructure is shown in
Figure 1. The dependence of the total magnetization as well as its mentioned components
on the electric field Ex in the absence of exchange splitting and electric field Ey can be
followed in Figure 9a. Below the critical field Ex, the total magnetization is equal to 1
(as required by S = 1 state) with two triangle magnetizations parallel and slightly lower
than 1/2 (equal to 0.453), as the central dimer spin is not included. The majority sublattice
takes the magnetization of 1.393, whereas the minority one has the total magnetization
of −0.393. The values give flavour of the ferrimagnetic character of S = 1 state. If the
field Ex is increased below the critical field, the triangle magnetizations remain almost
constant, whereas the sublattice components decrease slightly in their magnitudes, keeping
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the total magnetization equal to 1. At the critical field, the total magnetization value and
the component values change discontinuously. For Ex exceeding the critical field, both
sublattices have magnetizations equal to zero, whereas the magnetizations of triangles
become opposite in orientation and keep non-zero magnitude of 0.354 (which is slightly
reduced with respect to the value taken at S = 1 state). This magnitude is then contin-
uously reduced when Ex increases and, finally, it vanishes when the system switches to
the S = 0 NM state. The analogous dependence of the magnetizations on Ex is shown in
Figure 9b in the presence of the exchange splitting equal to 100 meV and in the absence
of the Ey electric field. The whole physical picture is essentially similar to the case shown
in Figure 9a and only the critical field for switching between S = 1 and S = 0 AFM
state is increased by the presence of ∆. The critical field for transition between AFM
and NM state is unchanged. The effect of increasing electric field Ey on the magnetiza-
tions in the presence of Ex = 0.3 V/Å and in the absence of exchange field is shown in
Figure 9c. In the low-field state S = 1, the sublattices take the magnetizations 1.351 and
−0.351, respectively, while both triangles indicate the magnetization of 0.454. Both sub-
lattice and triangle magnetizations remain fairly constant when the electric field Ey is
varied. For Ey exceeding the critical value, the switching to S = 0 AFM state occurs. Again,
the total sublattice magnetizations vanish and the triangle magnetizations continuously
decrease to reach zero at the transition from AFM to NM state. The process of switching
from S = 0 AFM to S = 1 state by increasing the exchange splitting ∆ in the presence of the
electric field Ex = 0.4 V/Å can be tracked in Figure 9d. It is visible that all the discussed
magnetizations remain constant when the exchange splitting is varied within the stability
range of a given state. For AFM state, the total sublattice magnetizations vanish and both
triangles show the opposite sign of magnetizations with the magnitude of 0.326, therefore
significantly reduced with respect to the value of 1/2. For S = 1 state above the critical
exchange splitting energy, the majority sublattice takes the magnetization of 1.316 and the
minority one of −0.316, adding up to S = 1. Both triangles exhibit parallel magnetizations
slightly lower than 1/2 (equal to 0.455).
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The magnetic properties of the nanostructure in question can be related to the be-
haviour of the individual, single-electron energy states under the influence of the external
field. Figure 10 presents the dependence of the energies of the highest occupied and low-
est unoccupied energy states on the external electric field or exchange energy. In all the
panels, solid lines mark the states occupied by electrons, whereas dashed lines refer to the
unoccupied states. Moreover, the blue color is for lower energy for given spin orientation,
while the red one denotes the higher energy for given spin orientation. The arrows mark
the spin orientation assigned to the given energy state (two arrows pointing in opposite
directions correspond to spin-degenerate state). The influence of the electric field Ex in
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the absence of Ey and ∆ can be followed in Figure 10a. In the S = 1 state at low electric
field Ex, two states with spin up are occupied and two states with spin down are empty.
Please note that all the states with energy lower than plotted in Figure 10a are occupied by
the electrons (with equal number of non-degenerate states with spin up and spin down).
At the critical electric field Ex, the energies change in discontinuous manner and the states
become spin-degenerate (even though the state is AFM, not NM). At the point of further
transition from S = 0 AFM to NM state, the energies are continuous (with just a jump
in the derivative). It must be noticed that all the plotted energies originate from the self-
consistent diagonalisation of the mean-field Hubbard Hamiltonian (1) at the half-filling
condition. Even though they represent single-particle energy states, the eigenvalues would
change after adding or subtracting the electrons from the system (i.e., charge doping).
Moreover, the discontinuous behaviour of the Hamiltonian eigenvalues does not imply
the discontinuity of the total energy (being the sum of the energies of the occupied states);
the total energy is continuous at the transition from S = 1 to S = 0 state—see the similar
discussion in our work Ref. [53]. The panel Figure 10a can be correlated with the plot in
Figure 9a showing the behaviour of the magnetizations in the same conditions. The analo-
gous sequence of transitions as in Figure 10a can be tracked in Figure 10b in the presence of
finite exchange energy amounting to 100 meV. Below the critical field Ex in the S = 1 state,
the situation is similar to the case of ∆ = 0. At the critical field when the state switches
from S = 1 to S = 0, the energies vary discontinuously, but, in the S = 0 AFM state, they
remain spin-splitted (what results from ∆ > 0). This splitting is also visible for the S = 0
NM state. Two states of lower energy (spin-up and spin-down) are occupied, while two
states of higher energy become empty. The plot Figure 10b reflects the conditions for which
we prepared Figure 9b.
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energy ∆ for Ex = 0.4 V/Å and Ey = 0. Vertical dotted lines mark the points at which the state changes.
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The effect of increasing electric field Ey in the absence of exchange energy ∆ and
for finite field Ex = 0.3 V/Å can be followed in Figure 10c. The low-field state is S = 1,
with significant spin-splitting of the energy states (with both occupied states having up
orientation of spin and two empty spin-down states). When the state switches to S = 0
AFM, the energy eigenvalues exhibit discontinuous change; two states with opposite
spin and lower in energy are occupied, two analogous states with higher energies are
empty. The spin-splitting of the states continuously decreases when Ey is increased and
the states become spin-degenerate exactly at the field when the system shows cross-over
to the S = 0 NM state. In the NM state stability range, the states remain spin-degenerate.
The described behaviour can be confronted with the behaviour of magnetizations in
Figure 9c. The influence of the increasing exchange energy ∆ is illustrated in Figure 10d
for the finite field Ex = 0.4 V/Å. The state at ∆ = 0 is S = 0 AFM state and the energy
states are spin-degenerate at that point. Increasing the exchange energy causes the linear
increase in energy difference between spin-up and spin-down states (with one pair of
states occupied and one pair empty). At the critical value of ∆, where S = 1 state emerges,
the energies jump discontinuously and the spin-splitting (the energy difference between
the spin-up and spin-down state) increases significantly. The behaviour of magnetizations
for analogous conditions is shown in Figure 9d. It can be observed that, at S = 0, the
AFM state, the energy states can be either spin-degenerate or spin-splitted, depending
on the interplay of ∆ and both components of the electric field. In S = 0 NM state, the
energy eigenstates are spin-splitted only if ∆ > 0 and, for S = 1, the spin-splitting is
always present.
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4. Discussion

After presentation of our computational predictions of the magnetism in the heptau-
threne molecule and its sensitivity to the external electric field, some related issues might
be mentioned below and some future research directions can be drawn.

The first issue would be related to the reliability of the model used for computations of
the magnetic phase diagram. In this context, it might be mentioned first that the Hubbard
model in mean-field approximation has been used in Ref. [69] to simulate the density of
states distribution across the heptauthrene nanostructure, which has been successfully
compared with the results of scanning tunneling microscopy experiment. In addition,
an identical model formalism has been utilized with analogous aim in other studies related
to molecular graphene nanostructures with zigzag edges and the consistency between its
outcome and the scanning tunneling microscopy results has been found [22,23,37,68]. In
particular, the consistency of exchange interaction energies between the Hubbard model-
based calculations and the scanning tunneling spectroscopy experiment was found [37].
Therefore, the mean-field Hubbard model which we use in our study is a reliable tool in
characterization and prediction of magnetism in graphene nanostructures.

It might be mentioned that the presence of the in-plane electric field might cause some
deformation of the nanostructure, constituting the manifestation of the electrostriction.
Such effect has been studied theoretically [82] and only a very limited influence of the
fields up to 1 V/Å has been found for the hydrocarbon molecules. This fact had been
attributed to the absence of dangling bonds (as the effect in identical structures but without
hydrogen atoms saturating the dangling bonds was significantly enhanced). Much larger
electrostrictive deformation has been found in carbon nanotube structures [82,83], reaching
the value of about 10% for the fields of the order of 0.4 V/Å [83]. However, carbon
nanotubes constitute very different systems than planar nanographenes. As a consequence,
we do not expect the fundamental influence of the electrostrictive deformation of the
graphene nanoflake on the calculated magnetic phase diagram. It can be also noted that
the detailed deformation of the nanoflake might also be influenced by its interaction with
the substrate.

In the context of application of the electric field to the studied structure, it should
be recalled that characterization of nanographenes with scanning tunneling microscopy
techniques involves the interaction with the electric field in the vicinity of the tip [84].
The tip-related electric field may reach high values (of the order of V/Å) and extends in a
significant range around the tip [84]. Therefore, it also can, in principle, deform the studied
nanostructure.

Let us comment that the parameter ∆ which we introduce in our theoretical model
to account for the spin-dependent energy splitting can originate not from the external
magnetic field itself but primarily from the exchange field coming from the ferromagnetic
substrate. We mention here that the splitting of S = 1 energy state slightly less that 2 meV
was measured in heptauthrene at the external magnetic field of 3 T [69]. Taking into account
this result, the exchange splitting having the significant impact on the phase diagram might
be expected rather as a consequence of interaction with the magnetic substrate [85]. Let us
note that the values of exchange parameter in the Hamiltonian of graphene on magnetic
insulators are predicted to reach even hundreds of meV [78]. It needs to be emphasized
that the value of ∆ parameter in Hamiltonian (1) should not be regarded as equivalent
directly to the value of spin-splitting of the individual energy state for S = 1 (as visible
in Figure 10), as the energy levels come from the diagonalization of the full Hamiltonian
including all the contributions.

An important issue from the point of view of experimental validation of the predic-
tions and of the possible applications is the stability of the predicted spin polarization
(focused mainly at the edge of the nanostructure). The stability might be discussed both in
the context of the thermal excitations at finite temperature [86] and the possible influence
of the electrodes providing the electric field on the magnetic edge ordering [87]. Never-
theless, the experimental results of Ref. [74] can be recalled here, as the room-temperature
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measurements of the energy gap in nanoribbons revealed the splitting attributed to the
presence of the magnetic ordering. Moreover, in heptauthrene nanostructure investigated
in our paper, the Kondo resonance has been identified by means of the scanning tunneling
spectroscopy [69], which provided sound confirmation of the presence of the spin triplet
state. Furthermore, the possibility of influencing the magnetic state by addition of a hydro-
gen atom found in Ref. [69] also proved the existence of magnetic orderings in the studied
nanosystem. In addition, the issues with potential bistability of edge magnetization in
graphene nanostructures in the presence of the electric field can be mentioned [88]. All
these factors would inspire some further investigations.

The application of the in-plane electric field to the discussed nanostructure would
require gating of the structure. The small in-plane extension of the nanostructure should
limit the screening of the in-plane electric field (the factor not included in the present study),
thus facilitating the switching process. On the other hand, our study was performed for
the assumption of charge neutrality, meaning the half-filling of the energy levels of the
nanostructure with a fixed number of electrons (equal to the number of carbon atoms).
Coupling to the gates would cause electron tunneling process and vary the electron number
in the structure, resulting in charge doping. Charge doping would also result from the
interaction with the substrate. This factor would also shape the magnetic phase diagram
and would inspire separate study aimed at evaluating its importance.

The geometry of the graphene nanosystem placed between the gates would also turn
the attention to the transport properties and the possibility of tuning them by altering
the spin state. The structure of heptautherene would remind readers of a sort of double
quantum dot with switchable spin states of both triangles. The transport properties of
various graphene-based quantum dots and analogous systems attracted some theoretical
attention so far [89–94] and certainly this direction of research would also include the
heptauthrene nanosystem.

Finally, the possible extensions of our theoretical model for the studied molecule might
include study of the influence of proximity-induced spin-orbit coupling [95] on the phase
diagram of the system, permitting the presence of non-collinear magnetic phases (see,
for example, Refs. [96–98]). This factor would possibly enrich the magnetic phase diagram
and provide an additional route to manipulation of magnetism with the electric field.

5. Conclusions

In the paper, we have investigated the influence of the external electric field and
magnetic exchange field on the magnetic phase diagram of heptauthrene nanostructure.
The study was inspired by successful synthesis of the atomically precise nanostructure [69]
and scanning tunneling microscopy characterization of its electronic states, consistent
with the Hubbard model-based calculations. The study Ref. [69] confirmed the presence
of the triplet ground state with S = 1 in the absence of the external fields. The above-
mentioned facts serve as motivation for characterization of the magnetic phase diagram of
heptauthrene using a mean-field based Hubbard model and for studying the possibility of
exploiting the magnetoelectric phenomena to control the magnetic state with the in-plane
electric field. Such possibility is of importance for the spintronic applications.

The possibility of switching the nanostructure to the state with S = 0 by applying the
electric field even of the order of 0.1 V/Å has been predicted. The pronounced directional
anisotropy of the critical electric field has been found (with the lowest field needed to
change the state when applied along the longest edge of the structure). Moreover, the pos-
sibility of lowering the critical field in one direction when applying a constant field in the
perpendicular direction has been postulated. The presence of AFM state (with the spins of
two triangles pointing in the opposite directions) was predicted within the stability range
of the S = 0 phase. The exchange field (in-plane magnetic field) was found to stabilize the
S = 1 state at the cost of the S = 0 state. Whilst the spin densities within S = 1 state are
predicted to be insensitive to the electric fields, they decrease continuously if the field is
increased in the stability range of the S = 0 AFM state. The effect of the uniaxial strain on
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the critical electric fields has been sketched, with more pronounced importance of strain
along the x-direction.

The calculations are based on the mean-field Hubbard model, capturing the essence
of electronic correlations responsible for the magnetism in graphene nanostructures and
used to interpret the experimental results for nanographenes [22,23,37,68] and other sys-
tems [74]. Therefore, it can be regarded as a useful and reliable tool to predict the nature
of the magnetic behaviour of the graphene nanostructures [99], which can be effectively
characterized experimentally using scanning tunneling microscopy techniques. Moreover,
the paper would motivate further studies, for example employing density functional theory
methods, focused on the heptauthrene nanostructure deposited on particular substrates
and the detailed behaviour of such system in the external field.
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