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Abstract: Plants are in continuous conflict with the environmental constraints and their sessile nature
demands a fine-tuned, well-designed defense mechanism that can cope with a multitude of biotic
and abiotic assaults. Therefore, plants have developed innate immunity, R-gene-mediated resistance,
and systemic acquired resistance to ensure their survival. Transcription factors (TFs) are among the
most important genetic components for the regulation of gene expression and several other biological
processes. They bind to specific sequences in the DNA called transcription factor binding sites (TFBSs)
that are present in the regulatory regions of genes. Depending on the environmental conditions, TFs
can either enhance or suppress transcriptional processes. In the last couple of decades, nitric oxide
(NO) emerged as a crucial molecule for signaling and regulating biological processes. Here, we have
overviewed the plant defense system, the role of TFs in mediating the defense response, and that
how NO can manipulate transcriptional changes including direct post-translational modifications of
TFs. We also propose that NO might regulate gene expression by regulating the recruitment of RNA
polymerase during transcription.

Keywords: nitric oxide; transcription factors; gene regulation; plant defense; guard hypothesis

1. Challenges to Plants from Pathogens

Plants are the primary producers of the ecosystem and, due to their sedentary nature,
are exposed to various environmental adversities such as cold, heat, flood, salinity, and
drought. However, the greatest threat that plants face is the attack from phytopathogens,
herbivory, and human activity. Diseases caused by phytopathogens can drastically reduce
crop productivity and yield, which affect not only the production of food but also human
development [1]. Although technological advancements and scientific contributions have
dramatically reduced the losses in yield and productivity, plant diseases still contribute
about 20–30% loss in actual production every year [2,3]. This reflects a lack of knowl-
edge of disease management, the mechanisms behind epidemic development, and of the
causal agents.

Plant disease results from complex interactions between various biotic and abiotic
stressors, including pathogens, hosts, and the environment [4]. Plant pathogens employ
multiple approaches to ensure their success. Pathogenic bacteria access the host plant
via stomata, hydathodes, or wounds and proliferate in the intercellular space (called the
apoplast). Similarly, nematodes access the host plant by inserting a stylet directly into the
host plant cell, while pathogenic and symbiotic fungi and oomycetes penetrate plant cells by
inserting haustoria [5]. All these diverse pathogen types release effector molecules for their
survival. Therefore, a proper understanding of the causal agents and their mechanisms of
action is of paramount importance.
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2. Plant’s Strategy “Guard” and “Decoy” Models

Plants have a well-defined, fine-tuned defense mechanism that responds to environ-
mental threats and pathogen attack as demanded by their sessile nature. Recently, defense
strategies in plants that are induced by pathogens were reviewed in detail [6]. Here we will
briefly mention how a plant responds when a pathogen tries to invade it. Unlike mammals,
plants lack portable defenders or adaptive immune system and rely solely on the innate
immunity of each cell and systemic signals emerging from the site of infection [7,8]. There
are two main branches of plant defense: the first uses transmembrane pattern recognition
receptors (PRRs) that perceive signals from different pathogens and respond to microbial-
or pathogen-associated molecular patterns (MAMPS/PAMPs) like flagellin [9]; the second
branch functions inside the cell, using plant resistance (R) genes [7]. The effector molecules
of pathogens are recognized by NB-LRR proteins encoded by plant R genes, leading to
R-avr interactions that induce similar defense responses. This can be better explained by
the zigzag model of plant defense presented by Jones and Dangl [5]. According to their
model, in the first phase of plant defense response, PAMPs are recognized by plant PRRs,
leading to the activation of a defense process called PAMP-triggered immunity (PTI) that
can restrict further pathogen growth. In the second phase, the pathogens that succeeded
in releasing their effector molecules compromise the PTI, leading to a condition called
effector-triggered susceptibility. Recognition of effector molecules by the host cells causes
effector-triggered immunity (ETI), resulting in disease resistance and restricted pathogen
growth. This puts pressure on the pathogens to acquire additional effector molecules and
diversify these effectors to suppress ETI. The last phase of the defense response is critical:
if the pathogen is successful in adapting to the host R genes the plants will be unable to
defend themselves against infection.

The plants seem to be smarter here by not involving the R genes directly—a strat-
egy that is termed the “guard hypothesis” [7]. This hypothesis suggests that R proteins
recognize pathogen effectors indirectly. For example, RPM1-interacting protein 4 (RIN4)
is a plasma membrane–associated protein that is guarded by NUCLEOTIDE BINDING
SITE LUCIN RICH REPEAT (NBS-LRR) proteins [5]. It is manipulated by three different
types of bacterial effectors. Two effectors (type III), AvrRpm1 and AvrB, interact with
RIN4 and induce its phosphorylation [10]. This modification induce transcription of the
RPM1 NBS-LRR protein. A third effector, AvrRPt2, is a cysteine protease that cleaves
RIN4 at two different sites [10,11]. This cleavage induces the RPS2 NBS-LRR protein [12].
Both RPS2 and RPM1 require NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1)
protein, which interacts with RIN4 for resistance against Pseudomonas syringae. Interest-
ingly, functional genomics studies have suggested that RIN4 is not the only target of these
three effectors [13]. Reports suggest that an effector contributes to virulence by possible
manipulation of several other host targets. However, the contact of any of these targets with
the effectors is sufficient to activate plant R genes. It seems that RIN4 negatively regulates
the two NBS-LRR proteins, RPS2 and RPM1. But in rpm1rps2 (knockout for RPM1 and
RPS2) plants, the pathogen effectors AvrRPt2 and AvrRpm1 manipulate RIN4 to suppress
PTI [14]. Therefore, the plants use R proteins to guard against pathogens by interacting
with the released effectors.

Plant scientists, specifically those who have an interest in evolution, have proposed
another model to explain “guard” and “effector” interactions. They called it the “decoy
model” [15]. van der Hoorn and Kamoun [15] gave a realistic explanation of two opposing
yet unstable naturally selective forces on the guarded effector target. They explained that
plant R genes are polymorphic, suggesting the presence/absence of functional R genes
in different individuals of a plant population. In the absence of a functional R gene, the
binding affinity of the guardee to the effector is compelled to decrease by natural selection,
thereby avoiding detection and alteration by the effector. However, natural selection is
expected to favor guardees-effector interactions for better pathogen perception in the
presence of a functional R gene. They suggested that these two opposing pressures on
the same effector are an evolutionarily unstable situation that could be eased upon by
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the evolution of a host protein, which they termed the “decoy,” that could potentially
perceive the effector by the R protein without functioning in development or resistance to
disease [15].

3. Transcription Factors (TFs): Modulators of Gene Expression

TFs are regulatory proteins that are responsible for the mechanistic control of gene
transcription. Technically, they act as the on/off switch of gene expression and are respon-
sible for the activation and suppression of genes, thereby regulating their function. They
are transcribed in the nucleus, translated in the cytoplasm, and returned to the nucleus to
search for their targets in the genomic DNA; therefore, they are also called diffusible regula-
tory molecules [16]. Their re-entry into the nucleus is mediated by nuclear localization sites
found in the protein sequences of all TFs [16]. The TFs bind to specific DNA sequences,
called cis-regulatory elements or TF binding sites (TFBSs), in the promoter region of a gene
and have defined DNA-binding domains. TBFs may also be located in the intron region
and play regulatory roles. For example, in Arabidopsis thaliana, sequences for cis-regulatory
elements of the floral homeotic gene AGAMOUS (AG) are located in the second intron [17].
The second intron contains TFBs for two direct transcriptional activators of AG, i.e., LEAFY
(LFY) and WUSCHEL (WUS), and other putative regulatory elements. TFBs are usually
highly conserved and are crucial for DNA binding and used to classify TFs into various
groups or families [18], such as MADS, WRKY, or APETALA2/ethylene-responsive factors
(AP2/ERF). TFs can also be categorized based on their three-dimensional protein structure
and composition, such as basic helix-loop-helix (bHLH), helix-turn-helix, and zinc finger
proteins. Sequence-specific TFs are considered vital for the regulation of genes involved in
prokaryotic and eukaryotic cellular mechanisms [19]. In prokaryotes and eukaryotes, gene
regulation by TFs occurs through different mechanisms: in the former, TFs role is driven by
a single protein, while, in the latter, it is a combined process that requires multiple proteins
to coordinate and drive gene regulation. The binding of a TF to the promoter of a gene is
spatiotemporally dependent. Phillips [18] quoted an interesting example of β-globin (a
protein responsible for oxygen exchange in red blood cells) to explain this: the β-globin
gene is present in every human cell, but no cell type other than red blood cells expresses
this gene. Reddy, et al. [20] studied the beta-globin promoters of different cell types using
DNA footprinting. They found that TFs that could bind to beta-globin promoters were
only expressed in erythroblasts (immature red blood cells).

TFs have two domains: a DNA-binding domain and an effector domain that regulates
interactions with other TFs or proteins necessary for transcription. Most DNA-binding
domains are highly conserved within the members of the same family of TFs, while the
effector domains evolve more rapidly. TFs mediate many functions, including gene induc-
tion, gene repression, and response to signal transduction under various environmental
conditions. In this study, we will focus on the regulatory role of TFs in plant defense and
how NO plays a role in translating its bioactivity to recruit these TFs.

4. Regulatory Role of TFs in Plant Defense

The two interconnected branches of plant defense, PTI and ETI, are the major defense
strategies that plants use immediately after pathogen perception [6]. These strategies
require well-communicated signal transduction and fine-tuned regulation of gene expres-
sion [21–23]. TFs play a key role in innate plant immunity, primarily by regulating genes
involved in PTI, ETI, and hormone and phytoalexin synthesis and pathways. One of the
immediate responses to pathogen infection is transcriptional reprogramming. A study
using high resolution temporal transcriptomic analyses in Arabidopsis demonstrated that
approximately one-third of the genome showed differential expression in response to the
necrotrophic pathogen Botrytis cinerea immediately after infection [24]. Thus, transcrip-
tional reprogramming of the plant cell demands significant changes in gene expression to
favor defense over other metabolic processes such as growth and development [23]. Recent
studies also suggested that a metabolic shift is required to mediate the trade-off between
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growth and immunity to ensure proper resource allocation for plant survival [25–27]. Many
TF families have been reported to play key roles in transcriptional reprogramming. WRKY,
bHLH, AP2/ERF, NAM/ATAF/CUC (NAC), and MYB are the major plant TF families [28]
regulating various biological processes including plant defense.

4.1. WRKY TFs

The WRKY TFs often called “jack-of-various-trades” [29], are one of the largest TF
families in plants [30]. The detailed composition and mode of action of WRKYs are well
explored [30–33]. Here, we will focus on their functional roles, particularly in plant defense.

The regulatory role of WRKYs in plant defense has been extensively studied, par-
ticularly in the model plant Arabidopsis thaliana, and are reported to have both negative
and positive roles in the regulation of plant defense [34]. Reports suggested that WRKYs
regulate PAMP-signaling downstream of the mitogen-activated protein kinase (MAPK)
signaling cascade [35]. The MAPK cascade plays a vital role in various defense responses—
particularly, in sensing PAMPs or ETI [36]. For example, WRKY33 in Arabidopsis is reported
to have a role in resistance to necrotrophic fungal pathogens B. cinerea and Alternaria brassi-
cicola [37]. Recent reports using functional genomics revealed that WRKY33 is required
for MPK3/MPK6-induced camalexin biosynthesis [38]. They also showed that WRKY33-
and pathogen-induced camalexin production was compromised in wrky33 mutants. They
further suggested that WRKY33 is a pathogen-inducible TF that acts as a substrate for
MPK3/MPK6 to undergo phosphorylation and mutation. WRKY33 also binds to the
promoter of phytoalexin deficient 3 (PAD3), which catalyzes the final step in camalexin
biosynthesis [28], and to the promoters of 1-aminocyclopropane-1-carboxylic acid syn-
thases 2 and 6 (ACS2 and ACS6) in response to B. cinerea [39]. Global expression profiling
of wild type and susceptible wrky33 mutants in response to B. cinerea indicated differential
transcriptional reprogramming, suggesting that unidentified targets for WRKY33 might be
critical for establishing immunity to this necrotrophic pathogen [40]. Similarly, the closest
homolog of WRKY33 in Nicotiana benthamiana WRKY8 (NbWRKY8) is also phosphorylated
by MAPKs, resulting in the induction of defense-related genes. Furthermore, silencing
causes increased susceptibility to the oomycete Phytophthora infestans and the ascomycete
fungus Colletotrichum orbiculare [41].

WRKY TFs are also reportedly involved in ETI and interact with plant R proteins. For
example, in barley, mildew resistance locus A10 (MLA10) NB-LRR protein, which confers
resistance to powdery mildew, interacts with Hordeum vulgare WRKY1 (HvWRKY1) and
HvWRKY2 in the presence of the AVRA10 effector [42]. Both HvWRKY1 and HvWRKY2
repress basal defenses against the virulent fungus Blumeria graminis that causes powdery
mildew. Following infection by B. graminis (expressing AVRA10), MLA10 interacts with
HvWRKY1 and HvWRKY2 to activate the defense. Another study reported that rice panicle
blast 1 (Pb1), another NB-LRR protein, interacts with Oryza sativa WRKY45 (OsWRKY45),
mediating the resistance to rice blast caused by the fungus Magnaporthe oryzae [43]. Similarly,
in Arabidopsis, WRKY52, also called resistance to Ralstonia solanacearum 1 (RRS1), is a TIR-
NB-LRR protein with a WRKY domain that shows resistance to the bacterial pathogen
Ralsotonia solanacearum [44]. Using map-based cloning and natural variation analysis,
Narusaka, et al. [45] reported that RRS1 interacts with RPS4 for dual resistance toward
fungal and bacterial phytopathogens. Similarly, Arabidopsis WRKY8 (AtWRKY8) negatively
regulates basal defenses to Pseudomonas syringae pathovar tomato (Pst) while positively
regulating defense responses to B. cinerea [46].

4.2. bHLH TFs

The bHLH TF family reported in animals and plants in 1989 [47,48] and yeast in
1990 [49] comprised of a group of TFs characterized by the so-called “basic helix-loop-helix
(bHLH)” domain. The proteins with this domain are known for a broad spectrum of
functions that are reviewed in detail by Heim et al. [50]. Here we will briefly discuss their
role in plant defense. The bHLH domain comprises an N-terminal stretch of hydrophilic
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basic amino acids followed by an HLH domain predicted to have amphipathic α-helices
with an intervening loop in between, to form dimers [51]. In essence, bHLH TFs bind
with E-box sequences (CANNTG) in the promoters of their target genes with variation
in binding specificity [52,53]. Studies in mammals have shown that the conserved HLH
structure is critical for the formation of bHLH protein dimers [54]. The specificity for a
particular protein partner is determined by the α-helices. In Arabidopsis, the bHLH TF
family includes about 160 members (https://www.arabidopsis.org/browse/genefamily/
bHLH.jsp). However, only a few of them have been characterized in detail, which has
shown that the bHLH might not be directly involved in plant defense, but they have
an indirect connection by producing certain metabolites that are required during stress
conditions. For example, in Arabidopsis, IAA-LEUCINE RESISTANT3 (ILR3 or BHLH105)
represses the production of aliphatic glucosinolates and secondary metabolites produced
in response to wounding, insects, or other microbial pathogens [55]. Furthermore, they
interact with JA signaling pathway, thus regulating phytohormonal balance which is also
critical for plant defense [56]. Song et al. [57] identified members of the bHLH TF family
(bHLH3, bHLH13, bHLH14, and bHLH17) to be targeted by JASMONATE-ZEM-Domain
(JAZs). Using the loss of function mutants for these bHLH TFs, they showed that bHLH
mutants showed sensitivity to JA-inhibited root growth and an increase in JA-induced
defense against pathogen infection and insect attack. The transgenic plants overexpressing
bHLH13 or bHLH17 showed reduced JA-mediated responses [57]. Another bHLH TF,
HBI1 negatively regulates genes that are involved in plant immunity and inhibits PAMP-
induced growth arrest thus mediating the trade-off between growth and PAMP-triggered
immunity [26]. Similarly, another bHLH TF, ILR3 was reported to regulate iron deficiency,
glucosinolate biosynthesis, and pathogen response [55,58]. MYC2 another bHLH TF,
regulates a subset of plant defense responses in Nicotiana attenuate [59]

4.3. AP2/ERF TF

The AP2/ERF is another important plant-specific TF family that regulates stress re-
sponses in plants, mostly studied for responses to abiotic stresses [60]. Members of this
family are characterized by the presence of an AP2 DNA binding domain which com-
prises 40–70 conserved amino acids [60–62]. The AP2/ERF TFs regulate genes involved
in various biological processes including growth and development, hormone signaling,
stress responses both at transcriptional and post-translational levels [63–66]. Studies in-
volving gene expression profiling have shown that most AP2/ERF TFs have a low basal
expression and can be induced or reduced by external stress stimuli or hormonal imbal-
ance [67,68]. Some of the important AP2/ERFs include DEHYDRATION-RESPONSIVE
ELEMENT BINDING proteins (DREBs), members of the RAP2 family, and ABA INSENSI-
TIVE 4 (ABI4), etc. Reports suggested that AP2/ERFs are induced by the cis-regulatory
elements present in their promotors. These elements include HEAT SHOCK ELEMENT
(HSE), ETHYLEN INSENSITVE 3 (EIN3) BINDING SITE (EBS), LOW-TEMPERATURE
RESPONSIVE ELEMENT (LRT), and ABA Response Element (ABRE) [69].

Post-translational changes such as phosphorylation also affect the activity and abun-
dance of AP2/ERFs. Other studies have shown that phosphorylation affects AP2/ERF
protein stability and transactivity [69]. For example, in Arabidopsis, the positive regulator
of ABA signaling pathway SNF1-related protein kinases (SnRKs) interacts and phosphory-
lates RAV1 to constrain its transcription repression role [70]. Similarly, ERF6 and EFR104
are phosphorylated by mitogen-activated protein kinases (MAPKs) for positive regula-
tion of pathogen responses [71,72]. AP2/ERFs are also characterized in plant defense.
Mase, et al. [73] showed in Arabidopsis thaliana, by using a structural analog of AAL, a
phytotoxin produced by Alternaria alternata [74], that the MODULATOR of ALL CELL
DEATH 1 (MACD1), and AP2/ERF TF, was involved in ALL-induced cell death and acted
downstream of ethylene.

ERF is one of the large subfamilies of AP2/ERFs. In Arabidopsis thaliana, there are about
145 members of the AP2/ERF family [67]. Among them, about 65 members are identified
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as ERFs. Members of the ERF sub-family are characterized for their role in plant defense.
In tomato, the Pti4 and Pti5 (ERFs) are phosphorylated by Pto protein when challenged by
the virulent P. syringea. The Pst-induced phosphorylation increases Pti4 and Pti5 binding
to their target sequences in defense-related genes [75]. Similarly, tomato ERFs Pti4, Pti5,
and Pti6 when overexpressed in Arabidopsis, induced defense response, and contributed to
resistance against P. syringae [76]. In Arabidopsis constitutive expression of ERF1 has been
shown to increase resistance against several necrotrophic fungal pathogens. [77]. Besides,
the ERF1 is considered a point of integration between JA and ethylene signaling pathways.
A detailed review on the role of AP2/ERF TFs has reported that members of ERFs are
enriched in genes regulating disease resistance pathways [78] suggesting the significant
role of this subfamily in the regulation of plant defense responses.

4.4. MYB TF Family

MYB TF family is one of the largest and most functionally diverse families and is
conserved among all eukaryotes. They are also diverse in their structure and are classified
based on the presence of a conserved MYB domain that contains two or three imperfect
repeats (R1, R2, and R3). The structure, classification, and functional diversity of MYB TFs
have been well studied [79–82]. The first plant MYB TF was identified in Zea mays [83]. Since
then, MYB TFs in several other plant species, including Arabidopsis [84], have been reported.
Although MYB TFs are often implied to be a major player in flavonoid biosynthesis or
abiotic stress [85–89], the first MYB gene identified was the oncogene v-myb (initially called
mab or amv after the name of avian myeloblastosis virus but later renamed v-myb) from
the avian myeloblastosis virus [90–92]. Hence, their role in disease resistance cannot be
ignored.

Hypersensitive response (HR), a form of programmed cell death (PCD), is one of the
most effective defense strategies of the host plant in response to pathogen infection. MYB
TFs are reported to positively regulate the HR response. Daniel, et al. [93] showed that, in
response to avirulent pathogens such as Xanthomonas campestris pv campestris, AtMYB30
showed a rapid and transient expression. Functional genomics study using Arabidopsis
Isd mutants and their corresponding suppressor phx mutants, Daniel, et al. [94] reported
that MYB30 expression is likely more responsible for the initiation of the HR than for
its propagation. Furthermore, overexpression of MYB30 in transgenic plants accelerated
the HR following avirulent bacterial pathogen infection and caused HR-like responses to
virulent bacterial pathogens [95]. Raffaele, et al. [96] reported that AtMYB30 regulated
HR using long-chain fatty acids and their derivatives. Using microarray analyses of
Arabidopsis plants overexpressing MYB30 (MYB30 ox) or antisense (MYB30 as), they reported
that MYB30 putatively targeted genes encoding the four enzymes forming the acyl-coA
elongase complex that synthesizes very-long-chain fatty acids [96]. Reports have suggested
that AtMYB60 and AtMYB96 act through an ABA-signaling cascade, while AtMYB96-
mediated ABA signals induce pathogen resistance responses by inducing salicylic acid (SA)
biosynthesis in Arabidopsis [97]. Similarly, AtMYB102/AtM4 and AtMYB41 regulate plant
resistance toward the herbivorous insect, Pieris rape [98]. Some MYB TFs regulate both biotic
and abiotic stress; for example, AtMYB108, also called the Botrytis Susceptible 1 (BOS1),
which is an R2R3 type MYB [99]. MYB TFs are also reported to contribute to systemic
acquired resistance (SAR), a type of plant defense in which the signals broadcast from the
site of infection to systemic tissues to warn them of the pathogen attack. Segarra, et al. [100]
reported that defense pathways triggered by beneficial Pseudomonas and Trichoderma spp.
strains are very similar and that MYB72 functions as an early point of convergence in the
signaling pathways induced by these two different species of microorganisms.

However, it seems that MYB TFs are less studied for their role in plant defense
compared to other TF families. Microarray- and RNA-seq-mediated studies can be used to
identify the candidate MYB TFs that induce defense responses.
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4.5. NAC TF Family

The NAC TF family is a key plant-specific TF family. NAC TFs are characterized by
the NAC domain, which has a 150 amino acid conserved domain at the N-terminus, and a
diversified C-terminal transcription regulatory region (TR) [101]. Some NAC TFs also have
a transmembrane domain within the TR domain. The NAC domain has been sub-divided
into five sub-groups from A to E [102]. Genome-wide identification of TFs suggested the
presence of NAC TFs in many plant species [103–107].

Like other TFs, NACs also have the DNA-binding ability and can regulate abiotic
and biotic stresses, growth, and development. For example, cold-induced NTL6, a plasma
membrane-bound NAC TF that is involved in the proteolytic activation of the plasma
membrane in Arabidopsis [108], is reported to bind directly to the promoter of PR genes
to induce resistance against pathogens. Similarly, another NAC TF, ATAF1, that is in-
duced by drought, high salinity, ABA, methyl jasmonate, and wounding has multiple
functions in Arabidopsis [109]. Reports suggested that overexpression of ATAF1 not only en-
hances drought tolerance but also increases susceptibility to B. cinerea, suggesting possible
crosstalk between the stressors. Similarly, in rice, JASMONIC ACID 2 (JA2) and JA2-like
(JA2L), the two homologous NAC TFs are reported to mediate pathogen-induced stomatal
regulation [110], which are considered to be SA- and ABA-dependent processes. These
studies suggest that NAC TFs act as interlinking entities in signaling cascades in response
to multiple stressors.

Some NAC TFs also act as negative regulators in plant defense responses and are
targeted by pathogens to increase susceptibility. As an example, HopD1, a type III effector
from P. syringae, interacts with NTL9, a membrane-tethered protein at the endoplasmic
reticulum, to suppress ETI responses [111]. Similarly, in a study involving potato (Solanum
tuberosum), Block, Toruno, Elowsky, Zhang, Steinbrenner, Beynon and Alfano [111] showed
that two ER-associated Solanum tuberosum NTPs, StNTP1, and StNTP2, interact with an
RxLR effector from P. infestans to prevent the movement of TFs from the ER to the nucleus
and, in doing so, suppress defense responses. Similarly, a type III effector from P. syringae,
HopD1, interacts with membrane-tethered NTL9 to suppress ETI responses [111]. A
similar situation was also found in viral pathogenicity, where the TMV replicase protein
interreacted with ATAF2, which is an NAC TF, to suppress the basal host defense [112].

Other reports suggested positive regulation of plant defense by NAC TFs. Studies
involving RNAi, knockout (KO), and overexpression of genes suggested the role of NAC
TFs in various plant-pathogen interactions. NAC TFs are reported to positively regulate
plant defense responses by activating PR-related genes and inducing HR at the infec-
tion site [108,113–115]. The ATFAF1 and its ortholog in barley, HvNAC6, is reported to
positively regulate penetration resistance toward the biotrophic fungus Blumeria grami-
nis [114,115]. Thus, NAC TFs appear to be key elements in connecting signal transduction
cues from different stressors and can be used to relay between various stresses in plants.

5. Evolution of Signaling Molecules

The evolution of plants from unicellular organisms to complex multicellular structures
demanded the evolution of aerobic metabolisms such as respiration and photosynthesis.
These metabolic processes resulted in the generation of reactive oxygen species (ROS)
commonly known for causing oxidative damage to proteins, DNA, and other macro-
molecules such as lipids [116]. However, recent studies have indicated that ROS can act
as signaling molecules for regulating various physiological responses such as growth and
development [117], abiotic stress responses [118], plant responses to pathogens [119], and
stomatal regulation [120]. ROS are produced by the activation or reduction of oxygen and
includes the singlet oxygen (1O2), hydrogen peroxide (H2O2), superoxide radical (O2

−),
and hydroxyl radical (HO·) [121]. Other plant-like organisms constantly produce ROS
in organelles like chloroplast, mitochondria, and peroxisomes, as they are the sites for
aerobic metabolism. The generation of different ROS in plants is triggered by various



Int. J. Mol. Sci. 2021, 22, 522 8 of 23

environmental and biotic stressors such as drought, salinity, extreme temperature, nutrient
deficiency, and pathogen attack [121].

Production of reactive oxygen intermediates (ROIs), primarily O2
− and H2O2, collec-

tively termed as the oxidative burst at the site of attempted invasion, is one of the most
rapid responses of the plant following pathogen perception [122]. In plants, the oxidative
burst was first reported by Doke [123], who noticed the generation of O2

− following inocu-
lation with an avirulent strain of the fungal pathogen, Phytophthora infestans. However, a
virulent strain of the same pathogen was unable to induce O2

− generation. Since then, O2
−

production has been identified in various plant-pathogen interactions involving avirulent
bacteria, fungi, and viruses [124]. The most important aspect of these redox molecules is the
high reactivity caused by their short half-life. For example, the half-life of O2

− is less than
a second and is quickly dismutated either enzymatically by superoxide dismutase [125]
to H2O2 (a relatively stable molecule) or non-enzymatically [124]. Similarly, protonation
of O2

− can result in the production of hydroperoxyl radicals (HO2
−) that can convert

fatty acids to toxic lipid peroxides, resulting in membrane injury. Furthermore, H2O2
can undergo Fenton reactions in the presence of divalent metal ions such as Fe2+, thereby
producing the hydroxyl radical (OH•), which is the most reactive ROI that can induce lipid
peroxidation and damage to nucleic acids and proteins [124].

Plants have a sophisticated antioxidant system that involves antioxidants and an-
tioxidant enzymes along with other small molecules to detoxify these ROS or expel them
from the cell. Thus, continuous ROS generation and scavenging events are in operation
in plants. ROS scavenging is carried out by induction of non-enzymatic antioxidants
such as glutathione (GSH), ascorbate, flavonoids, and alkaloids—primarily by ascorbate
and GSH [116]. Reverse genetics studies have shown that mutants with perturbed levels
of ascorbic acid or GSH are hypersensitive to stress conditions [124]. Thus, a homeo-
static status is important for normal metabolism in the plant. An imbalance will lead to
oxidative damage.

6. The Era of Nitric Oxide (NO)

Initially reported in the 1980s as an endothelium-relaxing factor (EDRF) in the animal
system, NO, quickly gained the attention of scientists due to its tremendous signaling and
regulatory roles. The identification of NO as a potent endogenous vasodilator by Schmidt
and Walter [126] was a point of excitement and interest for biologists. Subsequent investi-
gations revealed that NO is a multifunctional effector that regulates various physiological
processes in mammals, including the relaxation of smooth muscles, neural communication,
immune regulation, and inhibition of platelet aggregation [126]. Further insights into the
functions of NO came after NO synthase (NOS), the enzyme responsible for NO production
was identified [127]. Moreover, studies on its chemical properties and chemistry have
contributed to understanding the mechanism of NO signaling.

The use of NO is not restricted to animals: in the last couple of decades, extensive
research has established the regulatory and signaling role of NO in plants as well. Ini-
tially identified in potato tuber tissue to induce phytoalexin accumulation, NO has been
known as the main player orchestrating various cellular processes, including regulation
of stomatal closure [128]; inhibition of the activity of certain enzymes [129]; reduction
of seed dormancy [130]; repression of floral transition [131]; activation of MAPK signal-
ing cascades [132]; stimulation of seed germination [133]; plant growth and pollen tube
re-orientation [134]; modulation of the cell cycle [135]); photorespiration and photosyn-
thesis [136]; regulation of plant responses to drought, salinity, and heavy metal stress
(reviewed by [137]); and regulation of phytohormonal signaling in plants. For example,
NO regulates gene expression involved in the JA signaling pathway [138]. Similarly, ethy-
lene and auxin interact with NO to regulate root growth and development [139,140]. In
addition, NO’s role in the SA pathway has been reviewed in detail [141]. The most impor-
tant regulatory role of NO is during plant defense [142], which we will discuss in detail
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later. However, the list of NO functions is ever-growing with the understanding of its
chemistry and signaling behavior.

7. NO Biochemical Properties, Synthesis, and Signaling

NO, one of the smallest diatomic molecules is a gaseous free radical with a compara-
tively short half-life. Combined with its neutral charge, NO promotes rapid membrane dif-
fusion and has several features that make it perfectly suited for cellular signaling [143,144].
NO has an unpaired electron that supports its high reactivity with oxygen (O2), transition
metals, thiols, and superoxide (O2

−). NO reacts with oxygen to produce various nitrogen
oxide molecules with different profiles [145]). The removal of the unpaired electron in NO
produces the nitrosonium cation (NO+), while the addition of an electron forms the nitroxyl
anion (NO–). These different forms of NO have different chemical reactivities [146]). NO in
the form of peroxynitrite (ONOO−) a particularly destructive molecule within biological
systems, reacts with ROIs in the presence of O2 [147].

The production of NO in animal systems is well understood. The major route for NO
production in animal systems is the conversion of L-arginine to citrulline in the presence of
NADPH and O2 by three isoforms of the nitric oxide synthase (NOS) enzyme (reviewed by
Alderton et al. [148]. It has been known for a long time that plants release NO [149,150].
Reports suggested that NO release correlates with the tissue nitrite level; therefore, it was
thought that NO is generated from the reaction between nitrites and plant metabolites [150].
Subsequently, researchers have shown that the release of NO is attributed to in vivo nitrate
reductase (NR) activity [151]. Several experiments exploring the idea of NO generation
concluded that NR reduces nitrite to NO [152–154]. Further research on the chemistry of NR
has shown that, in maize, the Km for nitrite is 100 µM and nitrate is a competitive inhibitor
with a Ki of 50 µM [154], suggesting that, under normal conditions where nitrate levels are
high and nitrite levels are low, NO production from NR would be low. However, under
anaerobic conditions when the nitrite levels are increased, NO production can be increased
100-fold [154]. As most of the focus related to NO production at that time was on NR, it
was considered the only enzyme involved in NO production and signaling [152,155,156].
However, there were also arguments against it [157,158].

L-Arginine analogs like N-nitro-L-arginine methyl ester (L-NAME) are inhibitors
used to block animal NOS. Similar approaches have shown that deploying L-NAME in
plants significantly reduces the production of NO, suggesting the presence of a similar
enzyme in plant systems [159]. This hints towards the presence of an arginine-dependent
NO production mechanism in plants analogous to the one present in animals [160–164].
This school of thought was supported by immunological experiments that suggested that
anti-mammalian NOS antibodies cross-reacted with plant proteins; however, proteomic
analyses revealed that these proteins are not related to NOS but are heat shock proteins
and glycolytic enzymes [163,165]. Although standard animal-like NOS enzymes have been
found in lower pants such as the alga Ostreocuccus tauri [166]), despite the completion
of several plant genomes and decades of research, a canonical plant NOS could not be
identified in higher plants. A gene in Arabidopsis (At3g47450) was reported to encode
AtNOS1 and had 16% similarity with a snail NOS [167]. A functional genomics study of
this gene using a T-DNA insertion mutant showed that this protein has a key role in NO
synthesis in Arabidopsis [167]. However, subsequent investigations showed that AtNOS1
was not directly involved in NO synthesis; rather, it was shown to be a GTPase and was
renamed as AtNOA1 for “NO-associated 1” [168]. The mystery remains and is a point of
interest for many plant biologists.

8. The Role of NO in Plant Defense

It is now a widely accepted fact that the most effective weapon of the plant against
pathogen attack is the intentional execution of infected cells, termed the HR [5,169,170].
This phenomenon is thought to restrict biotrophic pathogens’ invasion into other parts of
the host. However, despite the potential importance of this defense tactic, the underlying
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mechanism is largely unknown. Emerging evidence suggests that one of the immediate
responses of plants after pathogen perception is the generation of NO bursts [142,171]. In
plants, this phenomenon was first recorded in soybean during resistance (R) gene-mediated
defense against Pseudomonas syringe pv. glycinea expressing the avrA avirulence gene in a
soybean suspension culture [142]. Kinetic studies suggested that, during plant-pathogen
interaction, maximal NO accumulation occurred 4 to 6 h after R gene recognition [142,171].
Furthermore, the use of animal NOS inhibitors finally revoked pathogen-triggered NO
production [142,171]. Several reports suggested that, in plants, NO plays a major role in the
development of hypersensitive cell death and plant disease resistance. It is suggested that
HR-mediated cell death is dependent upon the balanced production of NO and ROS [172].

To elaborate on the HR, plant pathologists have compared it to the mechanistic
commonalities with the well-explored process of PCD, termed apoptosis. It would dilute
the subject matter to extensively discuss apoptosis here; however, several good reviews
have discussed it in detail [173–175]. Briefly, the key to apoptosis is the activation of
cysteine-dependent aspartate-specific proteases (or caspases) that have a wide range of
cellular targets [176]. Mur, et al. [177] have explained the relationship between NO and HR.
NO signaling is sometimes mediated by ROS; for example, NO in the presence of oxidative
damage may associate with the formation of potent peroxynitrite (ONOO−). Thus, NO can
influence apoptosis in several ways, including through ONOO−. Reports suggested that
high ONOO− levels can cause severe damage to nucleic acids [178] and that NO has the
potential to bind reversibly with the heme group in cytochrome oxidase to restrict electron
transport [179], resulting in increased O2

− and ONOO− production, which culminates in
cellular damage [180].

In plants, R/avr interactions leading to the HR share several commonalities with
animal apoptosis [181]. HR-mediated cell death and the associated calcium influxes result
in permeability transition pores and the release of cytochrome c in the mitochondria [182]).
Like in animals, balanced production of NO and ROIs is important for the induction of
cell death in plants [172]. However, unlike in animals where ONOO− has a key role in
apoptosis, reports suggested that plants are relatively resistant to this molecule [172] and
that H2O2 plays a key role in developing cell death during HR. In plants, NO interacts with
H2O2 rather than O2

− due to the acceleration of O2
− dismutation to H2O2 by superoxide

dismutase (SOD) [172]. This was confirmed by Zago et al. [183] who performed experiments
using transgenic tobacco lines with reduced catalase activity. They showed that, after
infiltration of NO under moderate light intensities, these transgenics accumulated H2O2,
and showed significantly increased cell death compared to wild type lines. In another
study, the transgenic lines containing a bacterial NO dioxygenase transgene that converts
NO to NO3 accumulated significantly less H2O2, suggesting that NO is required for H2O2
accumulation during HR [184]. However, the molecular mechanisms underlying the
interaction between NO and H2O2 remain unknown.

Emerging evidence suggests that NO not only helps in developing HR but also in
the establishment of disease resistance. The first direct link in this context was provided
by Delledonne et al. [142], who reported that infiltration of the NOS inhibitors L-NNA
and PBITU increased growth of the avirulent bacterial pathogens P. syringae pv. tomato
(Pst) DC3000 expressing the avrRPm1 avirulent effector, suggesting the role of NO in
R-gene-mediated disease resistance against pathogenic bacteria.

The controlled use of NO donors, in cell suspension cultures of tobacco plants, induces
the expression of defense-related genes, encoding pathogenesis-related protein 1 (PR1),
phenylalanine ammonia-lyase marker for phenylpropanoid biosynthesis, and SA mediated
signaling. Both genes play a valuable role in the growth and development of plants’ disease
resistance [142,171]. R proteins in plants, produced on pathogen recognition, trigger the
inducible defense response [7]. In the absence of R gene recognition, plants depend on
their basal resistance responses.

It has been proposed that NO functions in basal disease resistance that is triggered by
the recognition of lipopolysaccharides (LPS) [185], which exhibit a pathogen-associated
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molecular pattern (PAMP) [186]. Loss of AtNOA function diminished NO accumulation in
response to LPS, reduced defense-related transcript accumulation, and, most significantly,
compromised basal disease resistance against Pst DC3000 [187]. Collectively, these data
argue that NO has an important signaling function in basal disease resistance—at least
against bacterial pathogens.

9. NO and TFs

Due to its high reactivity and unique chemistry, NO and its derived redox-active
species are excellent biological messengers in plants and animals. Despite the impor-
tance of NO in various cellular processes, its mode of action remains poorly understood.
Scientists have tried to explain it using NO-mediated redox modifications that have the
potential to regulate protein function. One such mechanism is the post-translational
modification, in which an NO moiety is covalently attached to exposed cysteine thiols,
making S-nitrosothiols (SNOs) [188]. Reports suggested that, contrary to other signaling
cascades, NO functions by transferring its bioactivity through S-nitrosation (previously
called S-nitrosylation). After cGMP signaling, S-nitrosation is the most important feature of
NO [189] and plays a key role in cellular processes that modulate enzyme activity, protein
localization, and protein-protein interactions [190]. Several proteins regulating key phys-
iological processes have been reported to be S-nitrosated by NO, including NPR1 [190],
AtSABP3 [191], NADPH oxidase [192], and the auxin receptor TIR1 [193]. Besides, Lin-
dermayr, et al. [194] identified more than 100 other proteins as potential candidates for
S-nitrosation in Arabidopsis. Similarly, a site-specific proteomic study of atgsnor1–3 having
perturbations in Arabidopsis S-nitrosoglutathione reductase (AtGSNOR), thus having higher
SNO levels [170], showed 926 proteins and 1195 peptides that were S-nitrosated [195].

However, the question remains: how does NO regulate expression? The eukaryotic
gene expression is modulated by Pol II that require GTFs to bind to the promoter of a
gene to enhance or repress its expression. Thus, Pol II recruitment is one of the key events
of transcription processes. The TFs may also interact with other proteins and bind to
the promoter as a protein complex [189]. However, the DNA-binding affinity of TFs can
be altered by redox-mediated post-translational modifications (such as S-nitrosation or
phosphorylation) that have the potential to bring conformational changes into the pro-
tein structure and alter its function. For instance, S-nitrosation affects the structure and
DNA-binding activity of AtMYB30 in Arabidopsis [196]. Similarly, OxyR, a thiol-containing
transcriptional activator that, upon oxidation, regulates the expression of genes involved
in H2O2 detoxification, is modulated by S-nitrosation [197]. Studies by others have sup-
ported our argument by showing that S-nitrosation directly modifies several transcription
factors, including NF-κB, HIF-1 [198] zinc finger transcription factor SRG1 [199] bZIP TF
TGA1 [200]. Studies involving NO-mediated transcriptional changes have shown that
a substantial number of genes and TFs are regulated by NO. Changes in cellular redox
tone mediated by NO can regulate the expression of important genes and TFs such as
HY5, MYB, and Trx [189], suggesting that NO plays a role in the regulation of various
cellular processes via mechanistic control of transcriptional machinery. In the model plant
A. thaliana, transcriptional changes in response to NO have been studied using cDNA-
amplified fragment length polymorphisms [201], microarrays, real-time PCR [202,203],
and RNA-seq [204,205]. Transcriptome analyses in response to different NO donors have
shown differential expression of numerous genes. In an RNA-seq-based transcriptomic
approach using Arabidopsis roots and leaves, Begara-Morales et al. [204] showed a dif-
ferential expression of 3263 genes and 35 TFs after 3 h of 1 mM GSNO application. It
was interesting that, among the 35 differentially expressed TFs, 25 were from roots and
only 10 from leaves. Similarly, in response to 0.1 mM and 1 mM sodium nitroprusside
(SNP), Parani, et al. [203] showed differential expression of 422 genes in A. thaliana using
whole-genome microarray analysis. Recently, using high throughput RNA sequencing,
changes in the expression of about 6,436 Arabidopsis genes 6 h after infiltration of 1 mM
S-nitrocysteine (CySNO) were reported [205]. These included about 673 TFs representing
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a broad range of TF families. Gene ontology and MapMan analyses showed that these
genes were enriched in pathways like hormone signaling, protein degradation, and biotic
and abiotic stresses [206]. A list of top 20 differentially expressed TFs in response to 1 mM
CySNO is given in Table 1 which shows various biologically important TFs such as ABR1
that is expressed in response to ABA or osmotic stress, DREB2C involved in drought stress,
AtMYB3, that represses phenylpropanoid biosynthesis gene expression, and AtMYB48
involved in cold stress acclimation (Table 1). The differential expression of this huge num-
ber of genes by a single molecule could only be explained by the co-operation of a set
of TFs that could bind to a common region in the promoter of the regulated genes [189].
To find this, Palmieri et al. [189] searched for a common TFBS in the promoter region of
NO-regulated genes based on microarray analyses using Genomatix, Gene2Promoter, and
MatInspector. They found that eight families of TFBSs occur at least 15% more often in
the promoter region of NO-responsive genes compared to more than 28,000 Arabidopsis
genes. Among these, the majority were ocs element-like-sequences and WRKYs. The
above-mentioned evidence establishes the mechanistic control of gene transcription by
direct pos-translational modification of TFs, thereby affecting their DNA-binding affinity.
Table 1. List of top-20 up- and down-regulated transcription factors (TFs) that were differ-
entially regulated in response to 1 mM CySNO. Red and green color represents up- and
down-regulated TFs respectively [206].

Table 1. List of top-20 up- and down-regulated transcription factors that showed differential expression in response to
CySNO in RNA-seq based transcriptome.

Locus ID Name Log2 Fold Change Annotation

AT1G71520 - 10.8359 Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription
factor family. The protein contains one AP2 domain.

AT2G22760 bHLH 10.1887
Basic helix-loop-helix (bHLH) DNA-binding superfamily protein;
FUNCTIONS IN: DNA binding, sequence-specific DNA binding
transcription factor activity

AT1G22810 - 9.96553 Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription
factor family. The protein contains one AP2 domain.

AT1G43160 RAP2.6 9.70626
Encodes a member of the ERF (ethylene response factor) subfamily B-4 of
ERF/AP2 transcription factor family (RAP2.6). The protein contains one
AP2 domain.

AT5G64750 ABR1 9.68623
Expressed in response to ABA, osmotic stress, sugar stress and drought.
Mutants are hypersensitive to these stresses. May be involved in
regulation of ABA-mediated stress response.

AT3G53600 AT3G53600 8.79631 C2H2-type zinc finger family protein, involved in response to chitin,
regulation of transcription

AT4G29930 AT4G29930 8.39629 Basic helix-loop-helix (bHLH) DNA-binding superfamily protein

AT4G28140 - 8.20867 Encodes a member of the DREB subfamily A-6 of ERF/AP2 transcription
factor family. The protein contains one AP2 domain.

AT2G40340 DREB2C 7.70854
Encodes a member of the DREB subfamily A-2 of ERF/AP2 transcription
factor family. There are eight members in this subfamily including
DREB2A AND DREB2B that are involved in response to drought.

AT4G05100 AtMYB74 7.66846 Member of the R2R3 factor gene family.

AT5G01900 WRKY62 7.48636 Member of WRKY Transcription Factor; Group III

AT5G53290 CRF3 7.4745 Encodes a member of the ERF (ethylene response factor) subfamily B-5 of
ERF/AP2 transcription factor family.

AT5G01380 AT5G01380 7.40458 Homeodomain-like superfamily protein; CONTAINS InterPro
DOMAIN/s: SANT, DNA-binding (InterPro:IPR001005), MYB-like

AT4G37850 - 7.35975
Basic helix-loop-helix (bHLH) DNA-binding superfamily protein;
FUNCTIONS IN: DNA binding, sequence-specific DNA binding
transcription factor activity
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Table 1. Cont.

Locus ID Name Log2 Fold Change Annotation

AT1G52890 ANAC019 7.24886
Encodes a NAC transcription factor whose expression is induced by
drought, high salt, and abscisic acid. This gene binds to ERD1 promoter
in vitro.

AT3G06490 AtMYB108 7.15948 Putative transcription factor MYB108 (MYB108) mRNA,

AT1G22640 ATMYB3 7.12171 MYB-type transcription factor (MYB3) that represses phenylpropanoid
biosynthesis gene expression

AT3G50260 CEJ1 7.04121
Encodes a member of the DREB subfamily A-5 of ERF/AP2 transcription
factor family. The protein contains one AP2 domain. Involved in defense
and freezing stress responses.

AT4G27950 CRF4 7.03719
Encodes a member of the ERF (ethylene response factor) subfamily B-5 of
ERF/AP2 transcription factor family. The protein contains one AP2
domain. There are 7 members in this subfamily.

AT4G18170 WRKY28 7.00802 Member of WRKY Transcription Factor; Group II-c. Involved in the
activation of salicylic acid biosynthesis genes ICS1 and PBS3.

AT3G52910 AtGRF4 −4.95192

AT4G32280 IAA29 −4.88034
Encodes a member of the DREB subfamily A-4 of ERF/AP2 transcription
factor family. The protein contains one AP2 domain. There are 17
members in this subfamily including TINY.

AT5G03150 JKD −4.84552 Winged-helix DNA-binding transcription factor family protein;
FUNCTIONS IN: DNA binding; INVOLVED IN: nucleosome assembly

AT3G46130 ATMYB48-3 −4.80639

Encodes ICE2 (Inducer of CBF Expression 2), a transcription factor of the
bHLH family that participates in the response to deep freezing through
the cold acclimation-dependent pathway. Overexpression of ICE2 results
in increased tolerance to deep freezing stress after cold acclimation.

AT1G73830 BEE3 −4.50709

Encodes ICE2 (Inducer of CBF Expression 2), a transcription factor of the
bHLH family that participates in the response to deep freezing through
the cold acclimation-dependent pathway. Overexpression of ICE2 results
in increased tolerance to deep freezing stress after cold
acclimation.C144:C163

AT3G55734 MIR393B −4.48027

Similar to a putative transcription factor and transcriptional coactivators.
Repressor of GA responses and involved in gibberellic acid mediated
signaling. Represses GA-induced vegetative growth and floral initiation.
Rapidly degraded in response to GA.

AT1G64625 - −4.24715

AT4G30410 AT4G30410 −4.22033 BR enhanced expression 1 (BEE1); FUNCTIONS IN: sequence-specific
DNA binding transcription factor activity

AT1G11850 - −4.18487 Homeodomain-like superfamily protein; FUNCTIONS IN: DNA binding,
sequence-specific DNA binding transcription factor activity

AT4G36540 BEE2 −4.1675
B-box type zinc finger protein with CCT domain; FUNCTIONS IN:
sequence-specific DNA binding transcription factor activity, zinc ion
binding

AT1G49010 - −4.12299
Dof-type zinc finger DNA-binding family protein; FUNCTIONS IN:
DNA binding, sequence-specific DNA binding transcription factor
activity

AT4G14540 NF-YB3 −3.96951

Encodes a member of the KANADI family of putative transcription
factors. Together with KAN1, this gene appears to be involved in the
development of the carpel and the outer integument of the ovule.Along
with KAN1 and KAN4 appears to regulate the proper localization of
PIN1 in early embryogenesis.

AT3G11090 LBD21 −3.95739
NAC 014 (NAC014); FUNCTIONS IN: sequence-specific DNA binding
transcription factor activity; INVOLVED IN: multicellular organismal
development
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Table 1. Cont.

Locus ID Name Log2 Fold Change Annotation
AT1G21150 - −3.9351

AT3G61950 - −3.89039 Encodes a putative MYB domain containing transcription factor involved
in anthocyanin metabolism and radical scavenging.

AT2G05160 AT2G05160 −3.82318 Serine/threonine-protein kinase WNK (With No Lysine)-related

AT3G48550 - −3.79433 Encodes the longer of two splice variants of a transcription factor
involved in regulating starch metabolims in response to cold.

AT1G47655 - −3.79179
B-box type zinc finger protein with CCT domain; FUNCTIONS IN:
sequence-specific DNA binding transcription factor activity, zinc
ion binding

AT5G15830 bZIP3 −3.74044

AT5G23920 - −3.69122
Myb-like transcription factor family protein; CONTAINS InterPro
DOMAIN/s: SANT, DNA-binding (InterPro:IPR001005),
Homeodomain-like (InterPro:IPR009057)

10. Conclusions and Future Recommendations

Plants, the primary producers of the ecosystem, are under continuous threat from
several environmental adversities such as cold, heat, flood, salinity, and drought. Besides,
attack from phytopathogens is a serious problem that demands the immediate attention
of plant scientists. As part of their adaptation to their sedentary nature, plants have a
fine-tuned defense mechanism that responds to environmental constraints and pathogen
attack. The NO, initially reported in animal systems as an endothelium-relaxing factor,
gained the attention of scientists due to its tremendous signaling and regulatory roles.
Research reports in the last couple of decades have unraveled the role of NO in plant
defense. After pathogen perception, redox bursts result in the production of NO and ROS
inducing a downstream signaling cascade including the induction of HR response and
activation of pathogen-induced SA pathway (Figure 1). But how does NO regulate gene
expression? One of the mechanisms includes direct S-nitrosation of transcription factor
proteins by nitric oxide that results in significant changes in the structure of these proteins,
thereby affecting their ability to bind at their specific sites in the promoters of target genes.

Another possible mechanism may be via modification of the RNA polymerase II by
NO. All the eukaryotic genes are transcribed by RNA polymerase II (Pol-II) which is a
complex of 12 subunits (Rpb1-Rpb12). However, Pol-II cannot recognize the promoter se-
quence on its own, rather it requires general TFs (GTFs)—TFIIA, TFIIB, TFIID, TFIIE, TFIIF
and TFIIH [207,208] and are conserved across the eukaryotic species including plants [209].
These GTFs along with Pol II assemble in a defined order on the promoter of a target gene to
make a pre-initiation complex [210]. Histone integrity is crucial for maintaining these com-
plexes (to maintain its binding to the promoter) for proper functioning. Post-translational
modification (PTMs) including acetylation, phosphorylation, and methylation can cause
histone modification [211] and hence can hinder transcription. NO can also modulate
PTMs, the chief among them is S-nitrosation, therefore NO has the potential to mediate
RNA polymerase binding and regulate transcription possibly through S-nitrosation of one
or more of the Pol II subunits or GTFs. To support our argument, we analyzed the protein
sequence of Arabidopsis Rpb9, a core subunit of Pol II through GPS-SNO 1.0 [212] and found
that even using a high threshold, there was a strong prediction for possible S-nitrosation
of the cysteine residue (Cys 07) (Figure 2A). Further studying the 3D structure of Rpb9,
we found that the target Cys07 was also solvent-exposed (Figure 2B) making it a potential
target for S-nitrosation. However, detailed in vitro and in vivo investigations are required
to confirm this hypothesis. A combined approach, using genomics, transcriptomics, pro-
teomics, and metabolomics may be required to unravel the unexplored roles of NO in gene
transcription.
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