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Abstract: Thrombosis is a major comorbidity of obesity and type-2 diabetes mellitus (T2DM). Despite
the development of numerous effective treatments and preventative strategies to address thrombotic
disease in such individuals, the incidence of thrombotic complications remains high. This suggests
that not all the pathophysiological mechanisms underlying these events have been identified or
targeted. Non-esterified fatty acids (NEFAs) are increasingly regarded as a nexus between obesity,
insulin resistance, and vascular disease. Notably, plasma NEFA levels are consistently elevated in
obesity and T2DM and may impact hemostasis in several ways. A potentially unrecognized route of
NEFA-mediated thrombotic activity is their ability to disturb Zn2+ speciation in the plasma. Zn2+ is
a potent regulator of coagulation and its availability in the plasma is monitored carefully through
buffering by human serum albumin (HSA). The binding of long-chain NEFAs such as palmitate
and stearate, however, trigger a conformational change in HSA that reduces its ability to bind Zn2+,
thus increasing the ion’s availability to bind and activate coagulation proteins. NEFA-mediated
perturbation of HSA-Zn2+ binding is thus predicted to contribute to the prothrombotic milieu in
obesity and T2DM, representing a novel targetable disease mechanism in these disorders.

Keywords: diabetes; human serum albumin; insulin resistance; non-esterified fatty acids; obesity;
thrombosis; zinc

1. Introduction

Obesity and type-2 diabetes mellitus (T2DM) are two closely related disorders, the
former being associated with a high body mass index (BMI; >30 kg/m2) and the latter
with insulin resistance and inadequate glycemic control. Both conditions predispose
an individual to vascular complications [1–4]. Increased vascular risk in these diseases
is driven by the establishment of a hypercoagulable state of the plasma [5], which can
include the formation of intravascular obstructive blood clots (leading to heart attacks
and strokes). Such thrombi are formed secondarily to complex interactions between
platelets and coagulation proteins (comprising the cellular and protein arms of coagulation,
respectively). Both these aspects of coagulation are altered in obesity and T2DM; platelets
display hyperactivity, while coagulation proteins circulate at higher concentrations and
display enhanced activation, ultimately leading to the formation of compact fibrin networks
and impaired fibrinolysis [5,6]. Hypofibrinolysis also represents a key abnormality in obese
and diabetic patients and contributes to the adverse clinical outcome in this population [7,8].

In addition to an enhanced thrombotic state, obesity and T2DM are also associated
with derangements in lipid metabolism with resulting changes to the plasma lipid profile
of affected individuals [9,10]. Of particular interest is the impact of these disease states on
the levels of plasma non-esterified fatty acids (NEFAs). As a major reservoir of metabolic
energy, one of the primary components of cellular membranes and a precursor to numerous

Int. J. Mol. Sci. 2021, 22, 10140. https://doi.org/10.3390/ijms221810140 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8396-9332
https://orcid.org/0000-0003-4580-1840
https://doi.org/10.3390/ijms221810140
https://doi.org/10.3390/ijms221810140
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms221810140
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms221810140?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 10140 2 of 17

cellular effectors, plasma NEFA levels can be altered in a variety of disease states. Notably,
plasma NEFA levels are frequently elevated in obesity and T2DM [11–15], likely resulting
from imbalances between uptake and release of NEFAs by adipocytes. In particular, basal
fat cell lipolysis (the hydrolysis of triacylglycerol into fatty acids and glycerol) is elevated
in the obese state, resulting in greater release of NEFAs into the blood [16]. Enlarged and
metabolically stressed adipose tissue also loses the ability to adequately store fat over
time, resulting in greater migration of NEFAs towards ectopic tissues such as the liver
and skeletal muscle [17]. Elevations in plasma NEFA levels have relevant pathological
implications. Total NEFA concentration is closely related to insulin resistance, and NEFAs
may have a causative role in its onset [12,18,19]. Importantly, adipose tissue lipolysis is
inhibited by insulin [20], and so this mechanism to control NEFA release is also lost in the
diabetic state, likely causing further elevations in plasma NEFA levels.

Plasma NEFA levels are related to unfavorable prognoses in both stroke and cardio-
vascular disease [21–23] and are likely to contribute to the prothrombotic milieu in obesity
and T2DM. Several mechanisms by which NEFAs contribute to thrombosis have already
been proposed. These include their ability to induce endothelial dysfunction (and, thus,
contribute to atherosclerosis) [24], to alter platelet function [25], and to directly dysregulate
fibrin clot structure [26]. Additionally, recent findings also highlight the role of NEFAs
as indirect effectors of coagulation through their ability to impact zinc availability in the
plasma. Zinc is an essential regulator of coagulation, mediating multiple aspects including
platelet aggregation, fibrin clotting, and fibrinolysis [27]. Specifically, these effects are
mediated by the free aquo ion of Zn2+. Extracellular Zn2+ is bound by human serum
albumin (HSA), which serves as the major buffering agent of plasma Zn2+. HSA also
binds and transports NEFAs at several sites [28–30] and, importantly, pathophysiological
concentrations of these fatty acids (as documented in obesity and T2DM) perturb the ability
of HSA to bind and buffer Zn2+ [31]. As a consequence of this allostery, Zn2+ no longer
able to bind HSA has greater freedom to bind and activate clot-forming proteins. It is
predicted that sustained prothrombotic signaling by this Zn2+ fraction contributes to the
greater clotting risk observed in obesity and T2DM [32].

2. Zn2+ as a Regulator of Hemostasis

Thrombus formation is the result of hemostasis, a normal physiological process that
maintains blood vessel integrity and responds to and blocks vascular breach. The hemo-
static mechanism occurs through the actions of both cellular and soluble protein compo-
nents, namely, platelets and clotting factors, respectively. Platelet activation and aggre-
gation result in the formation of an initial platelet “plug” at the site of vascular damage.
In turn, protein clotting factors undergo sequential activation (through the coagulation
cascade), culminating in the generation of a fibrin network that stabilizes the platelet ag-
gregate [33]. These two systems (termed primary and secondary hemostasis, respectively)
are not separate but instead operate simultaneously, synergistically, and in a linked man-
ner [34,35]. Following early observations that zinc deficiency was associated with bleeding
and clotting impairments, research has since identified the Zn2+ ion as a ubiquitous agent
in the coagulation mechanism [27]. Importantly, free Zn2+ has a role in controlling both
platelet function and fibrin network formation both directly and indirectly (Figure 1).

The initial response to vascular damage is the attachment and activation of platelets at
the site of injury. Activated platelets subsequently aggregate together to form an occluding
platelet “plug” (primary hemostasis) to temporarily stop bleeding [35]. Platelets can
facilitate this process, along with the generation of fibrin (secondary hemostasis), through
the release of numerous pro-coagulant factors that originate from internal stores known as
dense and α-granules [35,36]. This latter granule type is the most abundant and is a major
store of Zn2+ within platelets (containing 40% of total platelet zinc content) [36–38]. Trauma
to the vasculature and subsequent loss of endothelial cells results in the presentation of
subendothelial molecules (such as collagen, fibronectin, and laminin [39–41]). This creates
anchorage sites, further enhanced by the deposition of plasma von Willebrand factor onto
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collagen, for platelets to bind [40,42]. Platelet adhesion activates platelets and begins a
myriad of processes such as morphological changes and platelet aggregation (through
activation of αIIbβ3 integrins [43,44]). Elevated cytosolic Zn2+, which can occur following
agonist binding to glycoprotein (GP) VI (a platelet receptor for collagen), has been shown
to promote these downstream effects along with dense granule release [45]. Consequently,
Zn2+ has been proposed as a secondary messenger within platelets [45]. Interestingly,
cytosolic Zn2+ is also elevated with agonist binding to the thromboxane receptor, a receptor
for thromboxane A2 (produced by activated platelets), suggesting that cytosolic Zn2+ may
be important in both the initial and later stages of platelet activation [45]. Activated platelets
mobilize their granules, which fuse with the plasma membrane and the open canicular
system (a unique membrane system made up of invaginations) to release their contents
into the extracellular space [46]. Transient elevations of free Zn2+ in the microenvironment
around a site of injury are driven by the release of Zn2+ from both activated platelets and
nearby damaged cells [38,47]. This free Zn2+ can be taken up by nearby resting platelets
and, depending on the concentration, can either directly activate platelets or potentiate
the response of platelets to other platelet agonists [48]. Circulating fibrinogen can also
be bound by neighboring platelets, through the now active αIIbβ3 integrin, linking them
together and facilitating thrombus formation and growth [49]. Zn2+, released from platelets,
further promotes aggregation by amplifying both the number of fibrinogen binding sites
and agonist-induced platelet aggregation [50–52].

Figure 1. The role of Zn2+ in hemostasis. Zn2+ is an important mediator of hemostasis, affecting several key aspects of
the process. Platelet activation and aggregation: Platelets bind to exposed subendothelial molecules and deposited von
Willebrand factor. When collagen and thromboxane A2 bind to platelet receptors, glycoprotein (GP) VI and thromboxane
receptor (TP), respectively, it is likely that a cytosolic increase in Zn2+ results, from α-granules, leading to platelet shape
change, granule release, and activation of αIIbβ3. Platelets bind fibrinogen (fg) through their activated αIIbβ3 integrin to
aggregate, a process enhanced by Zn2+. Granule release causes increases in extracellular Zn2+, potentiating and activating
nearby platelets. Coagulation cascade: Zn2+ can directly or indirectly modulate the activity of several coagulation factors.
Pro-coagulant effects by Zn2+ include the facilitation of the intrinsic pathway through enabling FXII binding to platelet and
endothelial surfaces and, in the presence of phospholipid vesicles, attenuating the inhibitory action of activated protein
C (APC) on FVa. Anti-coagulant effects by Zn2+ include the direct inhibition of FXa production through FVIIa binding,
increased binding of protein S to FXa (attenuating its activity) and, in the presence of Ca2+, promotion of APC generation.
The coagulation cascade is highlighted in blue, red and purple to illustrate the intrinsic, extrinsic and common pathways
respectively. Clot stability and fibrinolysis: Zn2+ promotes thrombus longevity by attenuating components of the fibrinolytic
system. Created with BioRender.com (accessed 27 August 2021).

BioRender.com
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During secondary hemostasis, the platelet plug (the final product of primary hemosta-
sis) is stabilized using an interlaced fibrin mesh, which is itself the final product of the
coagulation cascade. The coagulation cascade is initiated through two pathways, intrinsic
and extrinsic, which merge into a common pathway to facilitate a thrombin spike and, con-
sequently, fibrinogen to fibrin conversion [35]. The intrinsic pathway starts with activation
of factor (F) XII, which can occur through autoactivation on negatively charged molecules
and surfaces [53]. This includes artificial surfaces, activated platelets, or endothelial cells
(with Zn2+ an essential cofactor for the former two surfaces) [27,53–56]. Alternatively,
Factor XII can be activated through the contact activation system, with Zn2+ again a cofac-
tor in the interaction between high-molecular-weight kininogen (HMWK) and FXII with
endothelial cells [57,58]. The pathway continues with FXIIa converting FXI to FXIa, which
occurs when FXI binds onto the platelet surface (an interaction enhanced by Zn2+) [59,60].
FXIa can then activate FIX, allowing the intrinsic tenase complex to be formed, which
subsequently activates FX to meet the extrinsic pathway [60]. In the extrinsic pathway, as
blood flows out the damaged site, the circulating FVII encounters tissue factor (TF) and
forms the activated complex TF-FVIIa, which can then activate FX [60]. Ultimately, the two
coagulation pathways converge and result in thrombin generation, enabling the cleavage of
fibrinogen to form fibrin, with Zn2+ able to bind to both [60,61]. Interestingly, the absence
of the intrinsic coagulation pathway (through congenital FXII deficiency) does not prevent
hemostasis and has been implicated in thrombosis (where mice deficient in FXII- or FXI,
factors of the intrinsic pathway, displayed a protective effect against thrombosis) [62].

Multiple facets of clot stability, generation, and degradation can be affected by the
presence of Zn2+, which decreases fibrin generation time, reduces fibrin stiffness, and
produces thicker fibrin fibers [63,64]. Though this last feature can render a thrombus more
susceptible to fibrinolysis, Zn2+ can inhibit this process by reducing tissue-type plasmino-
gen activator (tPA)-mediated plasminogen activation, and the activity of plasmin [63,64].
Additionally, promotion of the heparin-thrombin-fibrin complex by Zn2+ can shield throm-
bin from inactivation by antithrombin (since heparin binding to both antithrombin and
thrombin is required for the latter’s inhibition) and enable further fibrin generation to
occur [65].

Finally, it is noted that the hemostatic contributions of Zn2+ are not solely of a proco-
agulant nature. Indeed, coagulation can also be attenuated by Zn2+ through its action on
several proteins, altering their affinities and activities. Zn2+ promotes the interaction of
HMWK and FXII with GPIbα, a subunit of the GPIb-V-IX complex, resulting in reduced
thrombin binding to GPIbα [66,67]. Though thrombin (a potent platelet agonist) can ac-
tivate platelets without binding GPIbα, it is thought that the maximal effect of thrombin
requires this interaction [67]. Additionally, Zn2+ amplifies the anti-coagulant effects of
protein S, inhibits the pro-coagulant FVIIa, and has a varying coagulant effect on activated
protein C (depending on other components present; Figure 1) [27]. Overall, however,
several notable observations give prominence to the role of Zn2+ as an important effector
of coagulation. This includes the ability of Zn2+ to regulate platelet aggregation, to act as
a cofactor in the coagulation cascade, and to directly alter the properties of the platelet-
fibrin thrombus. Given these considerations, the availability of Zn2+ in plasma must
be adequately controlled to prevent improper activation of Zn2+-mediated coagulation
pathways.

3. Control of Plasma Zn2+ Availability and the Impact of NEFAs

The task of buffering (and transporting) Zn2+ in the blood is overwhelmingly per-
formed by human serum albumin (HSA) [68]. HSA folds into three homologous domains (I,
II, and III) and each domain is formed by two subdomains (A and B). HSA is the dominant
protein in adult plasma (~40 mg mL−1 [69]) and is reported to bind 75–85% (9–14 µM)
of the Zn2+ circulating in the blood [70]. This makes HSA the major regulator of Zn2+

“speciation” in the plasma, where speciation refers to the state in which Zn2+ is present
(bound or unbound; and, if bound, to which partner molecule(s)). HSA possesses two
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Zn2+-binding sites that have been experimentally identified, namely, site A and B. Site A
has been recognized as the primary Zn2+-binding site to HSA (with a KD of 100 nM), while
site B is the secondary site (with a KD in the mid-micromolar range) and is unlikely to
contribute greatly to Zn2+ binding in vivo [68]. Site A is located at the interface between
domains I and II and includes His67 (from domain I) and His247 and Asp249 (from domain
II) [71,72]. It has been suggested that site B may also be an interdomain site, composed
of residues His9, Asp13 (from domain I), and Asp255 (from domain II) by our previously
elucidated structures of Zn2+-bound human and equine serum albumin [72].

HSA has a highly dynamic structure, and this dynamicity endows the HSA molecule
with considerable binding versatility. In the blood, the protein acts as a repository in which
a large variety of endogenous and exogenous molecules may be stored and transported [73].
The binding, transport, and release of its cargos are strongly dependent on HSA conforma-
tion, which itself is readily influenced by numerous physiological and pathophysiological
conditions including pH, endogenous molecules, and post-translational modifications [74].
Notably, in diabetes, the properties of HSA have been shown to change in a manner that
impacts its Zn2+-binding ability [75]. Poor glycemic control (in both types I and II diabetes)
causes a marked increase in glycated HSA levels with concomitant change to both HSA
structure and circulatory half-life [76–80]. Using spectrometric and calorimetric approaches,
a reduced affinity for Zn2+ has been demonstrated in glycated HSA [75], potentially due
to local unfolding of the protein (in subdomain IIA, which harbors two of the three Zn2+-
binding residues). Furthermore, a comparison of 11.5% and 65.5% glycated HSA (which
are in the pathophysiological range [81]) revealed the affinity of the latter for Zn2+ to be
2.3-fold lower [82].

In addition to its role as the primary Zn2+ carrier, HSA is also the principal transporter
of NEFAs in the blood. There are at least seven NEFA-binding sites (FA1-7) on HSA that
have been identified by crystallographic studies. These sites are asymmetrically distributed
across its three domains, with FA2 (domain I/II interface), FA4, and FA5 (both domain
III) considered as the highest-affinity sites [28,29]. Under normal physiological conditions,
HSA binds between 0.1–2 molar equivalents (mol. eq.) of NEFAs, depending on metabolic
demand. However, HSA is capable of binding much higher NEFA concentrations (up to
6 mol. eq.) in certain pathological conditions, which include T2DM and cardiovascular
disease [73]. Multiple studies have demonstrated the ability of NEFAs to influence the
ligand-binding properties of HSA [30,83–86]. Notably, recent evidence has indicated that
NEFA binding to the FA2 site prevents Zn2+ binding at site A, leading to a considerable
reduction in Zn2+ binding affinity (as summarized in Figure 2A,B). NEFA binding at the
FA2 site requires the interaction of residues from both domains I and II. In particular, the
methylene tail of the NEFA molecule makes contract with predominantly hydrophobic
residues in sub-domains IA and IB. The carboxylate end, meanwhile, is anchored by
residues Arg257 and Ser287 from sub-domain IIA and Tyr150 from sub-domain IIB [29]. In
apo-HSA, the two half-pockets in the two domains are ~10 Å apart [32,87]. Accommodation
of a NEFA molecule requires a substantial domain–domain movement to bring them
together. The resulting conformation change also affects subdomain IA and moves the
Zn2+-coordinating nitrogen of His67 (domain I) approximately 8 Å away from its initial
position in the proximity of His247 and Asp249 (domain II), too far to form a viable Zn2+-
binding site. Thus, NEFA binding at the high-affinity site FA2 prevents coordination of any
previously bound Zn2+ ion [31,32]. The ability of different NEFAs (octanoate (C8:0), laurate
(C12:0), myristate (C14:0), palmitate (C16:0), palmitoleate (C16:1-cis), and stearate (C18:0))
to influence Zn2+ binding to HSA has been examined through competition experiments
using isothermal titration calorimetry (Figure 2C,D). Addition of up to 5 mol. eq. of
octanoate had little effect on Zn2+ binding to HSA (it is too short to elicit the conformational
switch), but a change was seen with laurate and longer-chain saturated NEFAs, where
the results suggested a reduction in the stoichiometry of site A with increasing NEFA
concentrations [88].
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Figure 2. Influence of fatty acids on HSA structure and zinc binding. (A). X-ray crystal structure of HSA with zinc bound
(PDB: 5IJF). Zinc binds in a tetrahedral geometry at site A involving the side chains of His67, His247, and Asp249. (B). X-ray
crystal structure of HSA with myristate bound (PDB: 1BJ5). The binding of myristate at the FA2 site causes movement of
zinc-binding residue His67 away from His247 and Asp249. (C). Isothermal titration calorimetry showing the effect of fatty
acid loading on zinc binding to HSA. In the experiments 1.5 mM ZnCl2 was titrated into 60 µM HSA, in the presence of
either 0 (black), 3 (blue), 4 (green), or 5 (red) mol. eq. of myristate in a buffer containing 50 mM Tris, 140 mM NaCl, pH 7.4.
(D). Bar chart representing the availability of binding site A in the presence of 4 mol. eq. of various fatty acids. All except
octanoate had large effects on Zn2+ binding to the protein. Data for parts C and D were taken from Sobczak et al. [88].

4. Impact of NEFAs on Zn2+–Protein Interactions

NEFAs are clearly capable of reducing the Zn2+-binding ability of HSA. Moreover,
recent evidence from Coverdale et al. has demonstrated that this allosteric interaction
is sufficient to alter the speciation of Zn2+ in plasma [31]. Metalloproteomic analysis
of fractionated plasma (in the absence and presence of 5 mol. eq. myristate relative to
HSA) revealed the concentration of Zn2+ in HSA-containing fractions to be reduced in
myristate-treated plasma, with a shift to proteins with higher molecular weight. Thus, it is
likely that in conditions of obesity and T2DM (where plasma NEFA levels are consistently
elevated) Zn2+ speciation is chronically disrupted. Altered Zn2+ speciation and, hence,
dynamics brought about by elevated plasma NEFA may ultimately have the potential
to trigger and/or potentiate thrombotic events, thus constituting a novel mechanism of
thrombosis in obesity and T2DM. Zn2+ ions not able to bind to HSA may drive thrombus
formation by acting on fibrin clot formation and lysis directly, for example, by increasing
the rate of clot formation (thus enhancing clot stability) or by delaying clot lysis through
attenuation of plasmin-mediated fibrin degradation [32]. A rise in non-HSA-bound Zn2+

may also increase Zn2+ uptake/flux by endothelial cells, leukocytes, and platelets via
zinc transporter proteins [32,48,89]. For platelets, this small elevation in free Zn2+ may
be enough to sensitize them to other agonists and cause inappropriate activation [48].
Additionally, in the event of reduced Zn2+ binding by HSA, it is likely this Zn2+ binds other
plasma proteins including those that mediate thrombosis in a Zn2+-dependent manner.
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There are several coagulation-related, Zn2+-binding plasma proteins that may bind
an increased proportion of Zn2+ when HSA-Zn2+ interactions are compromised by NEFA
binding. These include plasminogen, plasmin, tPA, fibrinogen, factor XIII, and histidine-
rich glycoprotein (HRG) [31,38,63,90]. The last three proteins, in combination with HSA,
are all constituents of α-granules and their local plasma levels transiently increase locally
at the surface of activated platelets [38,91]. HRG is particularly relevant as Zn2+ modu-
lates its affinity toward other coagulation proteins, impacting their functioning. HRG is
relatively abundant in human plasma (ca. 1.5 µM), although this value is often elevated in
cardiovascular disease [92,93]. HRG is well suited to binding divalent metal ions owing to
its histidine-rich region, which possesses 10 binding sites for Zn2+ (KD = 1.63 × 105) [94].
These considerations make it a likely candidate protein to bind Zn2+ prevented from bind-
ing to HSA by elevated NEFAs. Furthermore, modelling of Zn2+ speciation has supported
the hypothesis that HRG can pick up HSA-free Zn2+ [94]. Finally, both these a priori and
modelling assumptions are supported by the Coverdale et al. study, which found greater
levels of Zn2+ present in HRG-containing plasma fractions upon addition of myristate [31].
HRG has several important binding partners that regulate homeostatic processes, such
as activated Factor XIIa, plasminogen, fibrinogen, fibrin, and heparin. HRG can regulate
coagulation through these interactions and, importantly, these interactions are enhanced in
the presence of Zn2+ [95–97]. HRG can counter the anticoagulant effects of heparin, upon
binding, by reducing the availability of heparin for antithrombin, thereby enabling throm-
bin activity to continue [95]. Interestingly, heparin neutralization can also be achieved
through its complexation with fibrinogen and, notably, this interaction is also enhanced in
the presence of Zn2+. Fibrinogen binds Zn2+ with a KD of 9 µM and it, therefore, may rep-
resent another possible Zn2+-binding partner when plasma NEFA levels are elevated [98].
Thus, reduced Zn2+ buffering may also enhance thrombotic risk in the obese and diabetic
states through enhanced complexation of HRG-heparin and/or fibrinogen-heparin with
resulting impairment to heparin-mediated anti-coagulation [32].

To fully understand the impact of NEFAs on Zn2+-dependent coagulation, further
work is required to fully elucidate changes in plasma Zn2+ speciation in the presence
of elevated NEFAs’ concentrations. Some approaches have been developed to examine
such “speciomic” changes in metals in complex systems such as plasma. Laser ablation-
inductively coupled plasma mass spectrometry in combination with 2D-polyacrylamide
gel electrophoresis can be used to analyze the proportion of Zn2+ associated with specific
proteins following separation on a gel. This approach has already been successfully em-
ployed to examine the association of different metals with metalloproteins in plasma [99].
Similarly, proteins bound to individual metals can be identified through chromatographic
fractionation (under near-native conditions) using gel filtration and/or ion-exchange chro-
matography. The individual proteins in fractions can be subsequently identified by gel
electrophoresis/mass spectrometry and metal concentrations within fractions by induc-
tively coupled plasma mass spectrometry, with individual metal–protein interactions
inferred from principal component analyses of the resulting data [100]. Such methods may
be employed to identify plasma coagulation proteins that bind a higher proportion of Zn2+

in the presence of high concentrations of NEFAs.

5. Evidence for the Zn2+-NEFA Switch as a Thrombotic Mechanism

There is indirect evidence available that suggests altered Zn2+ dynamics may play
a role in thrombotic disease. Such evidence includes the observation that analbumine-
mia (HSA deficiency) is associated with hypercoagulability [101]. While this is likely to
be a result of a combination of factors, including altered concentrations of coagulation
proteins, it is apparent that this would impact plasma Zn2+ availability (potentially increas-
ing the proportion of Zn2+ able to bind coagulation proteins) and, thus, Zn2+-dependent
hemostasis. In the opposite manner, it can be assumed that conditions that would po-
tentially decrease the availability of Zn2+ for coagulation proteins should beneficially
impact cardiovascular health. It is noted that many effective medications for diabetes
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have chelating properties [102–105] and, thus, it is conceivable that chelation of Zn2+ from
prothrombotic proteins by these agents contributes in their ability to lower cardiovascular
risk. Additional support for this assumption may be provided by recent findings from
the trial to assess chelation therapy (TACT). Chelation therapy involves the intravenous
or oral administration of chelating agents to remove metal ions from the blood. The use
of chelation therapy remains controversial and, up until 2002, no large-scale clinical trial
had existed that could independently ascertain whether the practice impacted favorably
on cardiovascular risk in certain groups [106]. TACT was employed to study the safety
and efficacy of EDTA-based chelation in a post-myocardial infarction (MI) population.
Treatment involved 40 weekly infusions with either the active chelating agent or a saline
solution [107]. Overall, participants receiving the chelation infusion had an 18% reduced
risk of reaching the primary endpoint (a composite of death from any cause, myocardial
infarction, stroke, coronary revascularization, and hospitalization for angina) compared
to those receiving the placebo infusion (p = 0.035) [108]. Approximately one-third of the
patients studied in TACT had T2DM and, intriguingly, this subgroup was shown to derive
the most benefit from the EDTA-based infusions. Indeed, the risk of the combined primary
endpoint was reduced by 41% in T2DM patients receiving EDTA infusion compared to
those receiving the placebo (p < 0.001). There was additionally a 52% relative reduction in
the risk of recurrent MI (p = 0.015) and a 43% relative reduction in the risk of death from
any cause (p = 0.011) [109]. This reported benefit may conceivably occur, at least in part,
through chelation of non-HSA-bound Zn2+ and prevention of its binding to clot-forming
proteins.

Several pieces of evidence suggest that NEFA-mediated alterations in Zn2+ speciation
represent a potential contributory mechanism for thrombosis in obesity and T2DM. Our re-
cent work suggests NEFA and Zn2+ can act synergistically in homeostatic processes relating
to platelet aggregation, fibrin clotting, and fibrinolysis [88]. The evidence of this synergism
has come largely from ex vivo and in vitro approaches. Indeed, we recently addressed
the question of whether NEFAs alter fibrin clot formation and lysis in a Zn2+-dependent
manner using turbidimetric studies that utilized either purified proteins (fibrinogen and
HSA) or plasma, with clotting initiated by the addition of thrombin in both systems. Irre-
spective of the system studied, the maximum absorbance (indicative of the size and density
of the clot formed) increased with Zn2+ at concentrations of 20–100 µM, with the addition
of myristate having a synergistic effect on this parameter [88]. Moreover, turbidimetric
analysis of plasma samples taken from age- and sex-matched groups of individuals with
T2DM and controls (without diabetes) was performed, and the plasma concentrations
of major NEFA species in the samples were measured using GC-MS. Clot density was
significantly higher in the diabetic cohort, which also had significantly higher plasma
NEFA concentrations. The positive association between clot density and NEFA concen-
tration thus mirrored the effect of NEFAs on clot parameters observed in turbidimetric
assays. The NEFAs myristate, palmitate, linolenate (18:3), oleate (18:1c9), cis-vaccenate
(18:1c11), stearate, eicosapentaenoate (20:5), and arachidonate (20:4) were elevated in the
T2DM group. The concentrations of myristate, palmitate, oleate, cis-vaccenate, and stearate
positively correlated with maximum absorbance, supporting the concept that elevated
NEFA levels contribute to increased thrombotic risk in T2DM, potentially through mis-
handling of plasma Zn2+. In the same study, the effects of Zn2+ and NEFAs on platelet
aggregation were examined in vitro. The presence of myristate (but not octanoate, which
does not significantly affect Zn2+-binding to HSA) increased maximum aggregation in
a concentration-dependent manner (addition of 4 mol. eq. myristate significantly in-
creased maximum aggregation in platelets-in-plasma) and this effect was potentiated by
the addition of (100 µM) Zn2+. Most crucially, addition of the metal chelator N,N,N′,N′-
tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) abolished not only the effect of
Zn2+ but also that of the NEFA. This provides strong evidence that the effect of NEFA
on platelet aggregation was mediated by its ability to displace Zn2+ from HSA. Thus, it
appears likely that the allosteric mechanism that mediates cross-talk between Zn2+ and
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NEFA binding first identified in simple model systems operates in real plasma [94,110], that
NEFAs induce changes in Zn2+ speciation [31], and that these changes drive prothrombotic
events in obesity and T2DM [88].

6. NEFAs a Target for Therapy

Reduced Zn2+ buffering by NEFAs represents a likely pathophysiological mechanism
linking elevated plasma NEFA levels to increased risk of thrombotic complications in
obesity and T2DM. Thus, lowering plasma NEFA concentrations in these groups is likely
to be of great clinical usefulness. Removal of excess adiposity via caloric restriction and
physical activity is an established method of improving cardiovascular health among
obese and diabetic obese individuals [111]. Appropriate exercise and nutrition impact
favorably on cardiovascular risk markers including lipid profile and, importantly, a diet-
and exercise-mediated return to metabolic normality is predicted to lower plasma NEFA
levels. Bariatric surgery in obese individuals also leads to marked decreases in plasma
NEFAs after 6 months [112–115]. In addition to these strategies, it may be possible to
leverage the pleiotropic actions of current diabetes medications, given that treatment with
these agents also has the potential to lower plasma NEFA concentrations.

One aspect of T2DM treatment involves the pharmacological management of diabetic
dyslipidemia in which lipid-lowering drugs including statins and fibrates are commonly
employed [116]. The ability of these agents to lower the incidence of cardiovascular
events is supported by numerous randomized clinical outcome studies [117]. Their clinical
benefit has been mainly attributed to their ability to impact on total plasma cholesterol
(TC), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) concentrations.
However, it is apparent that these drugs also influence plasma NEFA levels and thus
it is possible that they could be used to “normalize” elevated NEFA concentrations in
obesity and T2DM. Statins are the most employed agents for the treatment of diabetic
dyslipidemia. These drugs decrease plasma cholesterol levels by competitively inhibiting
hydroxymethylglutaryl-CoA reductase, the principal rate-limiting enzyme in cholesterol
biosynthesis. Statins also lower plasma cholesterol levels indirectly by increasing the
expression of LDL receptors on cell surfaces, resulting in greater LDL uptake. Additionally,
a recent meta-analysis has shown that these agents can significantly lower total plasma
NEFA levels in individuals with T2DM, metabolic syndrome, or dyslipidemia [118]. Fibric
acid derivatives or fibrates are employed secondarily to statin therapy. These agents act
primarily by activating the peroxisome proliferator-activated receptor-alpha, (PPAR-α)
which leads to an increase in NEFA oxidation and decreased triglyceride synthesis in the
liver [119]. Several studies have investigated the effect of fibrate treatment on total plasma
NEFA levels in different populations, which included individuals with various metabolic
derangements (healthy subjects and subjects with T2DM, hypolipoproteinemia, hyperinsu-
linemia, hypertriglyceridemia, glucose intolerance, or metabolic syndrome) [120–134]. In
all studies, plasma NEFA levels were found to be either unchanged or reduced except for a
single study [128], in which fibrate treatment increased NEFA levels in individuals with
hypertriglyceridemia and glucose intolerance.

Normalizing blood glucose concentrations represents another goal in the management
of diabetes. This aspect of management involves the use of antihyperglycemic drugs
such as metformin, sodium-glucose cotransporter 2 (SGLT) inhibitors, and glucagon-
like peptide 1 (GLP-1) receptor agonists. Metformin is often the first choice of glucose-
lowering drugs for T2DM patients. The drug improves insulin sensitivity by inhibiting
gluconeogenesis in the liver [135]. Most studies, however, do not recognize any effect of
metformin on plasma NEFA concentrations [136–139] and, thus, this agent is an unsuitable
candidate for lowering NEFA levels in diabetic and obese diabetic patients. Interestingly,
the ability of metformin to confer true cardiovascular benefit has come into question
in recent years [140,141]. Meta-analyses have shown metformin was unable to confer
significant benefit to all-cause mortality, cardiovascular mortality, MI, peripheral vascular
disease, or stroke in T2D patients. GLP-1 receptor agonists and SGLT-2 inhibitors are two
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new classes of antihyperglycemic drugs that are both very effective at lowering blood
glucose levels [142]. Additionally, these drugs also have numerous pleiotropic actions
that may endow them with NEFA-lowering properties [143,144]. Glucagon-like peptide 1
(GLP-1) receptor agonists stimulate release of insulin from the pancreas in response to oral
and intravenous glucose [145]. The GLP-1 agonist liraglutide has been demonstrated to be
superior to placebo in reducing the primary composite of time to death, non-fatal MI, and
non-fatal stroke in high-risk cardiovascular patients [146]. Two recent meta-analyses have
additionally demonstrated that liraglutide beneficially influences lipid status in T2DM
patients, causing significant reductions in TC, LDL, triglycerides (TG), and NEFAs [147,148].
Like GLP-1 receptor agonists, SGLT-2 inhibitors help to regulate glycemic control. These
agents stimulate glycosuria (the excretion of glucose into the urine) by inhibiting SGLT-
2-mediated glucose reabsorption in the proximal tubule of the kidneys [145,149]. T2DM
patients treated with the SGLT-2 inhibitor empagliflozin have a reduced risk of the primary
composite outcome of cardiovascular disease-related death, non-fatal MI, and stroke
compared to T2DM patients receiving placebo [150]. Importantly, SGLT-2 inhibitors are
predicted to lower plasma NEFA levels, given their ability to activate PPAR-α and, thus,
promote fatty acid oxidation in a similar manner to fibrates [151].

Alternatively, it is noted that this prothrombotic mechanism could be targeted more
specifically by employing inhibitors that selectively bind to the FA2 site of HSA in a manner
that prevents NEFA binding but does not disrupt Zn2+ binding to site A. These inhibitors
would, thus, protect the Zn2+-binding capacity of HSA at high NEFA concentrations, while
still allowing the protein to carry NEFAs via its other binding sites. Importantly, prior to
any potential therapeutic use, these molecules should first be used to assess the degree to
which the NEFA-Zn2+ switch contributes to the prothrombotic state in obesity and T2DM.
Indeed, to clarify the relevance of this mechanism, inhibitors directed against the FA2 site
could be tested using coagulation assays in animal models. In particular, the potential
protective effects of these molecules on fibrin clot formation/lysis and platelet function in
the presence of different Zn2+ and NEFA concentrations should be ascertained. A summary
of the mechanisms by which NEFAs impact on HSA-bound Zn2+ and how these may be
targeted are shown in Figure 3.
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Figure 3. Potential Zn2+-mediated thrombotic routes in obesity and T2DM and targets for therapy. Altered lipid metabolism
in obesity and T2DM results in elevated NEFA levels in the blood. NEFA binding at the FA2 site of HSA prevents
procoagulant Zn2+ ions from binding at site A. The Zn2+ unable to bind HSA is redistributed among the cellular and protein
components of the homeostatic mechanism, resulting in thrombotic events. This mechanism of thrombosis can be targeted
by using lipid- and glucose-lowering drugs, which lower plasma NEFA levels. Therapeutics with chelating properties
may also have potential to prevent free Zn2+ ions interacting with homeostatic components. FA2 inhibitors could also be
developed to restore Zn2+ buffering by HSA. Created with BioRender.com (accessed on 13 September 2021).

7. Conclusions

Current evidence indicates that plasma NEFAs impact Zn2+ speciation via an allosteric
mechanism (occurring at the FA2 site) on HSA in obese and T2DM disease states. In ad-
dition to the established mechanisms of NEFA-induced thrombogenesis, this dynamic is
likely to contribute to thrombotic complications observed in these diseases. Further work
is needed to identify the impact of certain NEFAs on Zn2+-HSA binding, particularly unsat-
urated NEFAs that have not yet been investigated in this context. In addition, mixtures of
NEFAs that represent in vivo concentrations (in health and disease) should be investigated.
Zn2+ is an important regulator of hemostasis and acts through multiple mechanisms to
control coagulation. Knowledge of specific pathways through which it can act has come
from in vitro and ex vivo studies. It is unclear which specific proteins or pathways may
be activated by non-HSA-bound Zn2+ in vivo. However, methods exist to explore Zn2+

speciation in relevant systems to better understand which are of the most significance in
thrombotic disease. Specific control of plasma NEFA levels, Zn2+ availability, or, indeed,
Zn2+-dependent coagulatory processes are largely overlooked as pharmacotherapeutic
strategies to limit cardiovascular events in at-risk populations. While appropriate nutrition
and exercise are potential approaches to lower plasma NEFAs, a future strategy may be
to exploit the pleiotropic effects of currently marketed drugs for the treatment of obesity
and T2DM, given that many of these agents show NEFA-lowering properties outside of
their primary mechanism of action. Additionally, when designing new obesity and T2DM
therapeutics, greater focus should be placed on the ability of these drugs to control NEFA
levels in addition to more established risk markers such as cholesterol, HDL, and LDL.
Insights from TACT have revealed a potential benefit of chelation to cardiovascular health
in high-risk groups and, therefore, future therapies for obesity and T2DM could also make
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use of compounds with chelating properties. These agents may exert their beneficial effect
by blocking non-HSA-bound Zn2+ from interacting with components of hemostasis. Finally,
more specific strategies that selectively target NEFA binding to FA2 or Zn2+-mediated
interactions between macromolecules can potentially be developed. Such agents could be
useful for the treatment or management of thrombotic complications and be employed
as tools in studies designed to assess the degree to which NEFA-mediated alterations in
plasma Zn2+ dynamics contribute to thrombotic disorders in high-risk groups.
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