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Abstract: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder
affecting subjects (premutation carriers) with a 55-200 CGG-trinucleotide expansion in the 5′UTR
of the fragile X mental retardation 1 gene (FMR1) typically after age 50. As both the presence of
white matter hyperintensities (WMHs) and atrophied gray matter on magnetic resonance imaging
(MRI) are linked to age-dependent decline in cognition, here we tested whether MRI outcomes
(WMH volume (WMHV) and brain volume) were correlated with mitochondrial bioenergetics from
peripheral blood monocytic cells in 87 carriers with and without FXTAS. As a parameter assessing
cumulative damage, WMHV was correlated to both FXTAS stages and age, and brain volume
discriminated between carriers and non-carriers. Similarly, mitochondrial mass and ATP production
showed an age-dependent decline across all participants, but in contrast to WMHV, only FADH2-
linked ATP production was significantly reduced in carriers vs. non-carriers. In carriers, WMHV
negatively correlated with ATP production sustained by glucose-glutamine and FADH2-linked
substrates, whereas brain volume was positively associated with the latter and mitochondrial mass.
The observed correlations between peripheral mitochondrial bioenergetics and MRI findings—and
the lack of correlations with FXTAS diagnosis/stages—may stem from early brain bioenergetic
deficits even before overt FXTAS symptoms and/or imaging findings.

Keywords: aging; cognition; brain; MRI; volume; white matter hyperintensities; mitochondria;
bioenergetics; peripheral blood monocytic cells; FMR1

1. Introduction

The onset of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkin-
son’s disease (PD), Huntington’s disease (HD), fragile X-associated tremor/ataxia syn-
drome (FXTAS), among others, is believed to be multifactorial; however, older age is the
greatest risk factor [1–3]. Thus, it is likely that cellular and molecular changes associated
with aging and/or premature senescence would promote neuronal abnormalities and
degeneration. Among them, perturbation of cellular energy metabolism and mitochondrial
biogenesis are commonly associated with aging. These changes in energy metabolism have
been partly explained by decreased sensitivity to glucose signaling, uptake, and utiliza-
tion [4] resulting in major metabolic disorders, which are also well-known contributors to
neurodegeneration.
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Given that the brain is ~2% of the body weight but accounts for 20% of the energy
consumption in humans [5,6], it is not surprising that a decline in mitochondrial bioen-
ergetics often results in neuropsychiatric deficits [7]. The brain’s high energy demand is
met mainly by mitochondria-dependent glucose metabolism [8]. As such, neurons are the
cells most vulnerable to reduced glucose supply due to their high energy demand. Energy
failure is followed by an imbalance in the redox status and hyperexcitability, neuronal
necrosis or apoptosis with dire consequences to brain trauma and neurodegeneration [9].
The mechanisms of age- and disease-dependent impaired energy production in the brain
that significantly lower cognitive function and increase the risk for developing neurodegen-
eration are yet to be identified [10]. For instance, a significant reduction of glucose uptake
in the brain is detected in prodromal [11–14] as well as symptomatic [15–17] stages of
familial AD, suggesting that abnormalities in neuronal energy metabolism and subsequent
energy depletion are the earliest pathophysiological conditions prior to the onset of overt
clinical manifestations of AD. The same phenomenon has also been observed in other
neurodegenerative diseases such as HD and FXTAS [18–24]. Consistent with this premise,
mitochondrial dysfunction, impairment of oxidative phosphorylation, and reduced glucose
metabolism have been shown to be early pathological alterations in AD [25,26]. Concomi-
tantly to energy depletion, both reduced glucose uptake and mitochondrial dysfunction
may cause a robust generation of reactive oxygen species (ROS), which would be an addi-
tional insult leading to accelerated damage in neurons [27–29], as oxidative damage is a
known contributor to neurodegenerative processes [30–33].

Indeed, several dietary and pharmacological interventions have been designed to
modulate cellular metabolism with anti-aging purposes as well as for slowing the pro-
gression of neurodegeneration. Among these, caloric restriction [34–37], administration of
resveratrol [38] and metformin [39], and electroacupuncture [40] have recently emerged as
promising therapeutic strategies with a common underlying mechanism, specifically the
activation of SIRT1 and/or AMPK pathways and inhibition of mTOR signaling, leading to
a slowing of the aging process and a decrease of the incidence of age-related neurodegener-
ation [41–43].

Our team was the first to report mitochondrial dysfunction as a common feature in
biological samples including primary skin fibroblasts, peripheral blood monocytic cells
(PBMCs), serum/plasma and postmortem brain tissues from carriers of the FMR1 pre-
mutation (defined as a moderate (55–200) CGG repeat expansion in the FMR1 gene) with
and without FXTAS [23,24,44–46] as well as in murine models of the premutation [47].
However, to our knowledge, no study to date has characterized the putative correlation
between biomarkers of neuronal or brain aging, associated with cognitive decline, and
peripheral mitochondrial bioenergetic status. Only one other study reported a positive
correlation between brain white matter hyperintensities (WMHs) scored from MRI and
improved mitochondrial outcomes in Epstein-Barr virus (EBV)-transformed lymphoblasts
in carriers of the premutation with and without FXTAS [48]. Such correlation may have
resulted from the use of EBV-transformed lymphoblastoid cell lines (lymphoblast cell
line or LCL). Despite the fact that cultured fibroblasts and LCL have been found to be
extremely useful in the diagnosis of mitochondrial disorders [49,50], both systems have
the disadvantage that the mitochondrial defect may or may not be expressed to the level
that matches those of the primarily affected organ or tissue. Dissimilarities between these
cell types rely on the fact that values for respiratory chain-deficient LCL are not nearly
as elevated as they are for cultured skin fibroblasts. Because LCL are a transformed cell
line, they do not go into the semiquiescent state of confluence, and have a constantly high
ATP demand that tends to keep the redox states in a rather oxidized condition, confound-
ing the detection of high lactate-to-pyruvate ratios for respiratory chain defects [49]. In
addition, upon EBV transformation, LCL have been found to have higher mitochondrial
biogenesis than lymphocytes [51], loss of methylation near the trinucleotide expansion of
the myotonic dystrophy protein kinase gene [52], and higher formation of complex mtDNA
arrangements [53], among other issues [54–59].
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The presence and early detection of mitochondrial dysfunction, before the onset
of overt clinical symptoms, would allow physicians to detect early signs of aging or
premature aging in individuals at risk of developing neurodegeneration. This concept is
based on the difference between the chronological age (based on the date of birth) and
the biological one (internal clock). To address this gap in knowledge in the context of
the neurodegenerative disease FXTAS, we sought to correlate brain volume (BV) and
white matter lesions quantified using the WMH volumes (WMHV)—which were already
reported as affected in carriers of the premutation [60]—with mitochondrial outcomes from
terminally differentiated, non-proliferating peripheral blood mononuclear cells (PBMCs).

Our study indicates the feasibility of correlating MRI imaging with some peripheral
bioenergetic markers, thereby providing the potential to identify those cases with early
signs of premature aging and a potentially worse prognosis.

2. Results
2.1. Demographic Characteristics of Participants Included in This Study

This study enrolled 103 individuals (16 non-carriers, mean age (SD) 50 (18) years,
range 24–73 years; 87 premutation carriers, mean age (SD) 63 (12) years, range 24–85 years)
with available MRI studies and bioenergetic analyses of PBMCs except for 7 non-carriers
who had only mitochondrial function assessment. About half of the participants were
female (non-carriers: 4/16 (25%), premutation carriers: 42/87 (48%)). Premutation carriers
were grouped by FXTAS stage, which was scored by a trained physician (RJH) based on
the severity of movement and gait impairments (stage 1: subtle or questionable signs,
stages 2–6: clear tremor/balance problems with minor to severe interference of daily
living; [61]). Premutation carriers at FXTAS stage ≤ 1 were included under the PFX-group
(N = 24, 6 males and 18 females, mean age (SD) 49 (13) years, range 24–71 years) whereas
those at the FXTAS stages ≥ 2 were grouped into PFX+ (N = 63, 39 males and 24 females,
mean age (SD) 69 (8) years, range 53–85 years).

2.2. Smaller Brain Volume in Premutation Carriers Compared to Non-Carriers, and Higher
WMHV in Carriers with FXTAS Stages ≥ 2

Multiple linear regression analysis was conducted to examine the effects of age, group
(i.e., FXTAS status), sex, and age-by-group interaction on individual MRI outcomes. Brain
scaling factor was included as a covariate for MRI outcomes to control individual differ-
ences in cranial size. The regression analyses revealed significant correlations between age
and WMHV (directly) (β = 0.05 ± 0.011 log(mL), false discovery rate (FDR) < 0.001) and be-
tween age and BV (inversely) (β = −3.18 ± 0.62 mL, FDR < 0.001), while controlling for sex
and group. There was also a sex difference in WMHV indicating that females had smaller
WMHV than males (females = 3.32 ± 3.83 mL, males = 13.3 ± 16.9 mL, FDR = 0.01). How-
ever, in a post-hoc analysis including premutation carriers only in the regression analysis,
the sex-differences in WMHV were not significant after adding FXTAS stage as a covariate
(p = 0.06). Compared with non-carriers, PFX− exhibited smaller BV (β = −52.2 ± 24.4 mL,
FDR = 0.05) with no difference in WMHV (β = 0.005± 0.45 log(mL), FDR = 0.99) after adjust-
ing for age and sex. In contrast, PFX+ exhibited significantly higher WMHV and smaller BV
compared with both non-carriers (βWMHV/βBV = 1.54 ± 0.52 log(mL)/−86.8 ± 28.6 mL,
both FDRs = 0.007) and PFX− (βWMHV/βBV = 1.53 ± 0.36 log(mL)/−34.7 ± 19.6 mL,
FDR < 0.001/0.09; Table 1, Figure 1A,B).

2.3. Lower Overall Oxygen-Linked ATP Production Fueled by Succinate in Premutation PBMCs
but Higher with Glycerophosphate as Substrate in Carriers with FXTAS Stages ≥ 2

Multiple linear regression analysis was conducted to examine the effects of age,
group, sex, and age-by-group interaction on individual mitochondrial outcomes. Of
the 11 mitochondrial outcomes tested in PBMCs, 6 (all log transformed) revealed sig-
nificant age-dependent decreases across the 3 diagnostic groups (β = −0.035 to −0.021,
FDR < 0.001–0.008). Among these were two markers of mitochondrial mass (citrate syn-
thase, and cytochrome c oxidase or Complex IV activities), oxygen-linked ATP production
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by various segments of the electron transport chain sustained by NADH-, FADH2-, and
alpha-glycerophosphate-linked substrates; and oxygen-linked ATP production fueled by
glucose and glutamine (Table 1).

Oxygen-linked ATP production sustained by succinate (FADH2-linked respiration),
was lower in carriers, regardless of FXTAS diagnosis, compared to non-carriers after age-
adjustment (PFX− vs. non-carriers/PFX+ vs. non-carriers: β = −0.57/−0.55, FDR = 0.10)
(Figure 1C, left panel). ATP production sustained by alpha-glycerophosphate was higher in
PFX+ as a group compared to PFX− after age-adjustment (β = 0.64, FDR = 0.10; Figure 1C,
right panel) suggesting either a decreased activity of the malate-aspartate shuttle or in-
creased fatty acid oxidation to sustain the ATP demand. No sex differences were observed
for peripheral mitochondrial outcomes in non-carriers. Unexpectedly, due to the X-linked
nature of the disorder, no significant sex differences were observed for the carriers either.

Table 1. Effect of age and FXTAS stage diagnoses on MRI outcomes and peripheral mitochondrial bioenergetics.

Measures N

Age PFX− vs. Controls PFX+ vs. Controls PFX+ vs. PFX−
β

(SD) P FDR β **
(SD) P FDR β **

(SD) P FDR β **
(SD) P FDR

MRI

WMHV
(log)

96 0.050
(0.011)

<0.001 <0.001 0.005
(0.45)

0.99 0.99 1.54
(0.52)

0.004 0.007 1.53
(0.36)

<0.001 <0.001

BV (ml) 96 −3.18
(0.62)

<0.001 <0.001 −52.2
(24.4)

0.035 0.046 −86.8
(28.6)

0.003 0.007 −34.7
(19.6)

0.08 0.09

Mitochondria

CS * 103 −0.026
(0.006) <0.001 <0.001 −0.46

(0.24) 0.06 0.18 −0.30
(0.23) 0.20 0.39 0.16

(0.22) 0.45 0.61

NADH-dep.
ATP prod. * 102 −0.021

(0.006) 0.001 0.008 −0.47
(0.23) 0.045 0.16 −0.25

(0.22) 0.26 0.46 0.22
(0.21) 0.30 0.47

FADH2-dep.
ATP prod. * 103 −0.027

(0.006) <0.001 0.001 −0.57
(0.24) 0.020 0.10 −0.55

(0.23) 0.020 0.10 0.03
(0.22) 0.91 0.94

GP * 97 −0.032
(0.007) <0.001 <0.001 −0.62

(0.28) 0.029 0.12 0.012
(0.27) 0.97 0.97 0.64

(0.26) 0.016 0.10

CCO * 102 −0.035
(0.008) <0.001 <0.001 −0.22

(0.21) 0.31 0.47 −0.44
(0.22) 0.051 0.17 −0.22

(0.21) 0.20 0.39

Basal * 95 −0.031
(0.008) <0.001 <0.001 −0.52

(0.30) 0.08 0.23 −0.17
(0.29) 0.55 0.68 0.35

(0.27) 0.19 0.39

RCRu * 95 −0.003
(0.005) 0.51 0.65 −0.27

(0.18) 0.14 0.35 −0.38
(0.18) 0.03 0.13 −0.11

(0.16) 0.49 0.64

SRC * 95 0
(0.004) 0.92 0.94 0.03

(0.16) 0.85 0.93 −0.14
(0.15) 0.35 0.51 −0.17

(0.14) 0.22 0.41

PL/ROS * 95 0.001
(0.005) 0.88 0.94 0.27

(0.20) 0.19 0.39 0.31
(0.20) 0.12 0.33 0.04

(0.18) 0.83 0.93

IRC 95 0.001
(0.003) 0.69 0.79 −0.09

(0.10) 0.35 0.51 −0.13
(0.10) 0.16 0.38 −0.04

(0.09) 0.64 0.75

RCR 95 −0.006
(0.007) 0.38 0.53 −0.30

(0.29) 0.30 0.47 −0.43
(0.28) 0.13 0.33 −0.13

(0.26) 0.62 0.75

In bold, significant with FDR ≤ 0.10. BV, brain volume; WMHV, white matter hyperintensity volume; CS, citrate synthase; NADH-dep.
ATP prod., NADH-dependent ATP production; FADH2-dep. ATP prod., FADH2-dependent ATP production; GP, α-glycerophosphate-
sustained ATP production; CCO, cytochrome c oxidase; basal, glucose-Gln-sustained ATP production; RCRu, respiratory control ratio
under uncoupling conditions; SRC, spare respiratory capacity; PL/ROS, proton leak/reactive oxygen species; IRC, index of respiratory
capacity; RCR, respiratory control ratio. *, indicates the application of log-transformation prior to statistical analysis. **, presents contrast
coefficients of the group comparisons in the regression models.
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Figure 1. Group differences and correlations between age, brain volumes and mitochondrial outcomes in premutation
carriers at FXTAS stages 0 and 1 (PFX−), FXTAS stages 2–5 (PFX+), and non-carriers (NC) (A) White matter hyperintensity
(WMH) volume. (B) Whole brain volume. (C) Peripheral mitochondrial ATP production by PBMCs sustained by succinate
(left panel) and glycerophosphate (right panel).

2.4. Age-Dependent Negative Correlation between WMHV and Oxygen-Linked ATP Production,
and Positive Correlation between Brain Volume and ATP Production and Mitochondrial Mass in
the Premutation Carriers

Semi-partial correlations between mitochondrial outcomes and MRI data (while con-
trolling for cranial size) were tested in the cohort constituted by the 87 premutation carriers.
Among the 11 mitochondrial outcomes, ATP production fueled by succinate and glucose-
glutamine showed significant negative correlations with brain WMHV (FADH2-dependent
oxygen consumption/basal r = −0.26/−0.33, FDR = 0.08/0.03). Both FADH2-dependent
ATP production and markers of mitochondrial mass, namely citrate synthase and Complex
IV activities, were correlated positively with BV (r = 0.25–0.32, FDR = 0.03–0.08; Table 2,
Figure 2). More importantly, no differences with sex were observed. When age was in-
cluded as a covariate, all correlations between mitochondrial outcomes and MRI data were
no longer significant, indicating age as the main driver of the correlations between MRI
findings and peripheral mitochondrial outcomes.
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Table 2. Semi-partial correlations between mitochondrial outcomes and volumes of WMHs and whole brain in premutation
carriers controlling cranial size in MRI data.

Mitochondrial Outcomes N Semi-Partial r P FDR N Semi-Partial r P FDR

With log white matter hyperintensity volume With whole brain volume

Citrate synthase activity * 87 −0.227 0.036 0.13 87 0.249 0.021 0.08

NADH-linked ATP production * 86 −0.172 0.115 0.25 86 0.158 0.149 0.33

FADH2-linked ATP production * 87 −0.264 0.014 0.08 87 0.246 0.023 0.08

Glycerophosphate-linked ATP
production * 79 −0.091 0.427 0.67 79 0.064 0.576 0.63

Cytochrome oxidase activity * 86 −0.176 0.107 0.25 86 0.323 0.003 0.03

Glucose-Gln-fueled ATP
production * 81 −0.330 0.003 0.03 81 0.213 0.058 0.16

RCRu * 81 −0.023 0.842 0.84 81 0.098 0.385 0.61

SRC * 81 −0.105 0.354 0.65 81 0.020 0.862 0.86

PL/ROS * 81 −0.040 0.727 0.84 81 −0.070 0.540 0.63

IRC 81 0.026 0.819 0.84 81 0.082 0.470 0.63

RCR 81 −0.060 0.599 0.82 81 0.135 0.231 0.42

In bold, FDR ≤ 0.10. *, indicates the application of log-transformation prior to statistical analysis. Abbreviations: see under Table 1.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 2. Correlation between peripheral mitochondrial outcomes and volumes of WMHs and whole brain in premutation 

carriers. (A) Correlations between WMHV and mitochondrial ATP production sustained by succinate (left panel) and 

glucose-Gln (right panel). (B) Correlations between whole brain volume and mitochondrial ATP production sustained by 

succinate and mitochondrial mass (CCO and citrate synthase activities). Two outliers for glucose-Gln sustained ATP pro-

duction and one outlier for CCO activity (with very small values) were removed from the analyses. CCO, cytochrome c 

oxidase. 

Consistent with the above results, and with the premise that age is considered the 

greatest risk factor in neurodegenerative disorders [1–3] and FXTAS mainly affects 

premutation carriers older than 50 years, the correlations between FXTAS stage (as proxy 

for the impact of tremor and ataxia has on daily activities [61]) and MRI/mitochondrial 

measurements were analyzed with only those carriers aged 50 y and above (N = 74, 40 

males, 34 females). In agreement with the concept that increases in WMHV are core fea-

tures of FXTAS pointing to cumulative brain damage, only WMHV, adjusted for age, sex, 

and cranial size, showed a significant correlation with FXTAS stage (β = 0.42 ± 0.097, p < 

0.001; Figure 3). None of the mitochondrial outcomes or BV showed significant correla-

tions with FXTAS stage (p > 0.15; Supplementary Table S1). 

Figure 2. Correlation between peripheral mitochondrial outcomes and volumes of WMHs and whole brain in premutation
carriers. (A) Correlations between WMHV and mitochondrial ATP production sustained by succinate (left panel) and
glucose-Gln (right panel). (B) Correlations between whole brain volume and mitochondrial ATP production sustained
by succinate and mitochondrial mass (CCO and citrate synthase activities). Two outliers for glucose-Gln sustained ATP
production and one outlier for CCO activity (with very small values) were removed from the analyses. CCO, cytochrome
c oxidase.
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Consistent with the above results, and with the premise that age is considered the
greatest risk factor in neurodegenerative disorders [1–3] and FXTAS mainly affects pre-
mutation carriers older than 50 years, the correlations between FXTAS stage (as proxy for
the impact of tremor and ataxia has on daily activities [61]) and MRI/mitochondrial mea-
surements were analyzed with only those carriers aged 50 y and above (N = 74, 40 males,
34 females). In agreement with the concept that increases in WMHV are core features
of FXTAS pointing to cumulative brain damage, only WMHV, adjusted for age, sex, and
cranial size, showed a significant correlation with FXTAS stage (β = 0.42 ± 0.097, p < 0.001;
Figure 3). None of the mitochondrial outcomes or BV showed significant correlations with
FXTAS stage (p > 0.15; Supplementary Table S1).
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white matter for a 69-y-old male carrier at FXTAS stage 3 relative to the female carrier shown in panel (A). (C) A coronal
view of the FLAIR image showing periventricular WMHs at the posterior horn of the lateral ventricles for the same female
carrier as it is in (A). (D) A coronal view of the FLAIR image showing periventricular WMHs extending to the white matter
in the right parietal lobe as well as bilateral WMHs in the middle cerebellar peduncle in the same male carrier as in (B).
(E) Correlation between WMHV and FXTAS stage in male and female carriers aged 50 years and older.

3. Discussion

WMHs in the middle cerebellar peduncle and cerebral white matter, along with
generalized brain atrophy, are core radiological features of FXTAS and, as such, used
as criteria for FXTAS diagnosis [62,63]. Mitochondrial dysfunction, demonstrated in
several biological samples of premutation carriers with and without FXTAS, has been
recognized as an early marker of FMR1 premutation even without overt signs of clinical
symptoms [18,19,21,22,64]. Here, for the first time, we examined the putative correlations of
WMHV and BV with several outcomes of peripheral mitochondrial bioenergetics between
FMR1 premutation carriers and non-carriers in a relatively large cohort (87 carriers vs.
16 non-carriers).

In the context of MRI findings, both WMHV and BV correlated with FXTAS morbidity
as WMHV was significantly higher and whole BV was lower in PFX+ (at FXTAS stages ≥ 2)
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compared with both PFX− (at FXTAS stages ≤ 1) and non-carriers (after adjusting for
age, sex, and cranial size; FDR < 0.001–0.09). Only BV was smaller in PFX− (FDR = 0.05)
compared with non-carriers (Table 2, Figure 1B). The smaller BV in PFX− relative to non-
carriers is consistent with our previous cross-sectional study using a larger dataset of males
(142 non-carriers and 109 PFX, aged 8–81 years), which reported accelerated BV decrease in
PFX− compared with non-carriers [65]. We also showed significant changes in WMHV and
BV with age across all participants (FDR < 0.001) in agreement with other studies [66–70].

WMHV was also lower in females than males (FDR = 0.01) regardless of the premu-
tation status. However, in a post-hoc analysis including only premutation carriers, this
significance was no longer observed after adding FXTAS stage as a covariate, suggesting
that WMHV is mainly impacted by FXTAS progression. These findings are consistent
with an early study that reported increased WMHV in PFX+ compared with both PFX−
and non-carriers of the same sex but, contrary to our findings, no differences in WMHV
were identified between sexes [71]. This discrepancy may originate from the uneven sex
distribution of carriers across FXTAS stages, females being more numerous than males
at lower FXTAS stages (75% females vs. 25% males at stages 0 and 1) and males being
more numerous than females at higher FXTAS stages (11.5% females vs. 88.5% males at
stages 4 and 5).

In contrast to the lack of significant differences recorded for WMHV in PFX− com-
pared with non-carriers, PFX− and PFX+, both showed lower peripheral oxygen-linked
ATP production sustained by succinate than non-carriers after age-adjustment (Table 1).
Furthermore, within the premutation carriers, PFX+ exhibited higher oxygen-linked ATP
production fueled by glycerophosphate than PFX− after age-adjustment (Table 1). These
results may have two significant biological implications. First, it is possible that periph-
eral changes in mitochondrial bioenergetics associated with FMR1 premutation are early
changes of the disease that precede the development of WMHs in the brain and continue
to accompany not only the onset but also the progression of FXTAS. This is consistent
with the deficits in oxidative phosphorylation and reduced glucose metabolism shown
as early pathological alterations in Alzheimer’s disease, another neurodegenerative con-
dition [25,26]. Secondly, some of the subjects at higher FXTAS stages may be increasing
the flux of fatty acids to offset the decline in ATP levels or production and/or overcome a
deficit in the malate-aspartate shuttle. Although the higher values of oxygen-linked ATP
production fueled by glycerophosphate by the PFX+ group compared with PFX−might
seem beneficial, the fact that not all electron transport chain segments’ activities follow the
same direction of change is more indicative of an altered protein handling (proteotoxicity),
which is associated with impaired mitochondria-nuclear crosstalk [72] and mitochondrial
unfolded protein response [73]. In addition, while in most tissues (including PBMCs)
deficits in glucose metabolism via pyruvate dehydrogenase can be tolerated by utilizing
other substrates to provide energy (e.g., glycerophosphate), this up-regulation might not
improve brain energy homeostasis as fatty-acid oxidation in this organ is negligible [74,75].

The observation of a significant age-dependent decline in citrate synthase activity in
PBMCs across carriers and non-carriers agrees with one of our earlier studies performed
with a smaller number of participants (30 premutation carriers vs. 12 NCs; [23]). It is also
consistent with another study showing a clear drop in citrate synthase activity in PBMCs
between 16 and 20 and 46 and 55 years of age, remaining at a low, constant value through
66–89 years of age [76]. While in non-carriers the decrease in citrate synthase activity was
mirrored by a decline in Complex IV activity (Spearman r = 0.6002, p = 0.0031) pointing to an
overall decline in mitochondrial mass, no statistically significant correlation was observed
between these outcomes in carriers (Spearman r = 0.1912 and 0.1040, p = 0.1542 and 0.2584
respectively for carriers without FXTAS and with FXTAS), suggesting a shrinkage of the
mitochondrial matrix (or the TCA cycle) with respect to the electron transport chain.

Importantly, peripheral mitochondrial ATP production fueled by succinate or glucose-
glutamine correlated negatively with brain WMHV (semi-partial r = −0.26 and −0.33,
FDR = 0.03–0.08), and mitochondrial mass and succinate-fueled oxygen-linked ATP pro-
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duction correlated positively with BV (semi-partial r = 0.25–0.32, FDR = 0.03–0.08) when
combining all premutation carriers (Table 2, Figure 2A,B). However, these correlations
were no longer significant when age was included as a covariate implicating a critical
role for age in mediating the associations between brain imaging findings and peripheral
mitochondrial outcomes. This model also suggests that in patients with FXTAS, the decline
in bioenergetics (function) is maintained across stages preceding the development of more
detrimental phenotypes as indicated above.

The question of whether peripheral bioenergetic changes may reflect or be predictive
of CNS mitochondrial deficits with links to WMHV and BV changes deserves a separate
discussion. There is a clear overlap of features between premutation phenotype and
mitochondrial diseases, including WMHs in both cerebral and cerebellar white matter in
mitochondrial diseases and FXTAS [62,77,78]. Cerebellar atrophy, particularly affecting
children, is another core feature of mitochondrial dysfunction [77]. Consistently, we have
reported abnormal developmental trajectory of cerebellar volume in PFX− aged 8 to 81
years and significant cerebellar atrophy in PFX+ compared with both PFX− and NCs [65].
However, WMHs have not been observed in children with the premutation, suggesting
that the detrimental effect of mitochondrial bioenergetic changes on the central nervous
system (CNS) may not be as severe in children with the premutation relatively to children
with mitochondrial disorders. However, both conditions (mitochondrial disorders and
FXTAS) are clearly associated with energy deficits and cellular oxidative damage from
reactive oxygen species [46]. Nonetheless, the current study provides direct evidence
linking CNS imaging changes associated with the premutation phenotype represented
by white matter damage and brain atrophy and reduced peripheral mitochondrial mass
and ATP production. At the mechanistic level, our findings of mitochondrial dysfunction
in the premutation may be explained by recent reports on fragile X syndrome’s models
(contrary to the premutation, there is no detectable FMR1 gene or FMRP protein expression
in males and reduced FMRP expression in females), in which FMRP was found to regulate
mitochondrial mRNA expression and energy homeostasis (murine model), and energy
metabolism and mitochondrial function (Drosophila model) [79,80]. A recent study by our
team provides further support for proteotoxicity and altered unfolded protein response
at the core of the bioenergetic deficits in FXTAS [18,22,81,82], as sulforaphane-mediated
normalization of these processes recovered mitochondrial function [82].

4. Materials and Methods
4.1. Research Participants

We included adults who participated in the genotype-phenotype study of families
with fragile X from 2013 through 2019 with the availabilities of both MRI and blood
samples (except for 7 non-carriers who did not undergo MRI). Written informed consent
was obtained from all participants before participation in line with the Declaration of
Helsinki. The study was approved by the Institutional Review Board of the University of
California Davis Medical Center (Genotype-Phenotype Relationships in Fragile X Families,
IRB Number 254134) and all methods were performed in accordance with their guidelines
and regulations. FXTAS stage was scored by a trained physician (RJH) based on the
severity of movement and gait impairments (stage 1: subtle or questionable signs, stages
2–6: clear tremor/balance problems with minor to severe interference of daily living) [61].
Premutation carriers at FXTAS stages ≤ 1 were combined into the non-FXTAS group
(PFX−) whereas those at FXTAS stages ≥ 2 formed the FXTAS group (PFX+).

4.2. PBMCs Preparation

Blood (5–7 mL) was collected in BD Vacutainer Cell Preparation TubesTM (Becton-
Dickinson, Franklin Lakes, NJ, USA) and processed according to the manufacturer’s
recommendation within less than 1 h from blood collection. Most samples were collected
between 9 and 11 a.m. Lymphocytes were isolated as previously described [22].
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4.3. Mitochondrial Outcomes

Chemicals and biochemicals: EDTA, EGTA, sodium succinate, mannitol, sucrose, and
HEPES were all purchased from Sigma (St. Louis, MO, USA). Tris-HCl, glycine, sodium
chloride, and potassium chloride were purchased from Fisher (Pittsburg, PA, USA). Bovine
serum albumin (fatty-acid free) was obtained from MP Biomedicals. All other reagents
were of analytical or higher grade.

For polarographic determination of ATP-linked oxygen uptake of intact or perme-
abilized cells, we used a set-up of two Clark-type oxygen electrodes with two cham-
bers [21,24,64,83–88]. The semipermeable membrane is changed the day before the experi-
ment is planned to avoid unwanted cell debris that may have become attached to it. The
membrane is hydrated a day before (for no less than 8 h) to facilitate oxygen diffusion.
Washes of the chamber are done with 70% ethanol, and 3 washes of dd water. The calibra-
tion of the electrode entails the recording of zero oxygen concentration (with dithionite)
and air-saturate solution (used for functional studies) warmed up at the temperature at
which the experiments are run. The calibration is run in duplicates with <10% CV. The
oxygen concentration in the calibrating solution is calculated with the atmospheric pressure
(barometer) and ambient temperature (thermometer). Additions to the chamber are done
by using Hamilton syringes to avoid increasing oxygen concentrations throughout the
evaluations. The chamber is constantly stirred with a Teflon-coated minibar to ensure a
homogenous diffusion of substrates and oxygen. Washes with 70% ethanol are warranted
after using rotenone, antimycin or FCCP, which tend to stick to the plastic walls of the
chamber. ATP-driven oxygen uptake is usually done in duplicates at a given cell con-
centration (which was calculated before starting this protocol). All enzymatic assays are
performed within the hour of collecting the blood sample and run in parallel with controls.
Reproducibility is ensured by running a subset of samples previously tested in parallel
with new batches of samples.

Activities of Complexes I–V in digitonin-permeabilized lymphocytes were determined
by polarography essentially as described before [22,88]. Briefly, an aliquot (1.0–2.0 × 106)
of lymphocytes was added to the chamber equipped with a Clark-type Hansatech oxygen
electrode at 20–22 ◦C in 0.3 mL of buffer containing 0.22 M sucrose, 50 mM KCl, 1 mM
EDTA, 10 mM KH2PO4, and 10 mM HEPES, pH 7.4. Oxygen consumption rates were
evaluated in air-saturated solutions in the presence of (i) 1 mM ADP plus 1 mM malate-
10 mM glutamate followed by the addition of 5 µM rotenone; (ii) 10 mM succinate followed
by the addition of 1 mM malonate; (iii) 1 mM α-glycerophosphate followed by the addition
of 3.6 µM antimycin A; and (iv) 10 mM ascorbate and 0.2 mM N,N,N′,N′-tetramethyl-
p-phenylenediamine followed by the addition of 1 mM KCN (activity of Complex IV).
Activities of individual electron transport chain (ETC) segments were evaluated as the
difference of oxygen uptake recorded before and after the addition of specific inhibitors.
Most mitochondrial inhibitors and uncouplers were stored at −80 ◦C as concentrated stock
solutions (high mM) in DMSO to prevent unwanted oxidation or degradation. Quality
control checks were performed with beef heart submitochondrial particles and results were
compared to data collected over the years.

Oxygen consumption was also evaluated in intact cells using a Clark-type oxygen
electrode (Hansatech, King’s Lynn, UK) as previously described [23,89]. ATP-linked oxygen
uptake (or State-3-dependent oxygen uptake) was calculated as the difference between basal
and oligomycin-induced State 4 oxygen uptake rates; State 4o is the residual respiration
after inhibition of ATP synthesis with the ATPase-specific inhibitor 0.2 µM oligomycin;
maximal respiratory capacity, or State 3u, is described as the oxygen uptake rate in the
presence of 2 µM of the uncoupler carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone
(FCCP); respiratory control ratio (RCR) was calculated as the ratio between States 3 and 4o;
index of respiratory capacity (IRC) was calculated as the difference between State 3 and
State 4o normalized by that of State 3u. Mitochondrial proton leak (PL)/ROS production
was calculated from the oligomycin-resistant oxygen consumption rates and normalized
by basal respiration in the presence of 10 mM glucose-2 mM glutamine in RPMI-1640.
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Citrate synthase activity was evaluated spectrophotometrically with a Tecan Infinite
M200 microplate reader at 412 nm as described before by using 2.5 to 3 × 105 cells [22].
All cell pellets destined for this activity were tested within the hour of blood extraction.
If stored, the pellets were supplemented with proteolytic inhibitors (4-benzenesulfonyl
fluoride hydrochloride, EDTA, bestatin, E-64, leupeptin, aprotinin, from Sigma) and kinase
and phosphatase inhibitors (sodium orthovanadate, sodium molybdate, sodium tartrate,
imidazole, cantharidin, (-)p-bromolevamisole oxalate, calyculin A, from Sigma) and stored
at −80 ◦C.

4.4. MRI Acquisition and Processing

MRI scans were acquired on a Siemens Trio 3T MRI scanner equipped with a 32-
channel head coil (Siemens Medical Solutions, Erlangen, Germany). One-millimeter
isotropic T1-weighted scans were collected covering the whole brain using the magnetiza-
tion prepared rapid gradient-echo (MPRAGE) sequence in 192 sagittal slices with repetition
time (TR) of 2170 ms, echo time (TE) of 4.82 ms, and 7◦ flip angle. Fluid attenuated inver-
sion recovery (FLAIR) images for quantifying WMHV were acquired in 104 sagittal slices
of 1.9-mm thickness with an in-plane resolution of 0.47 mm2, TR of 5000 ms, TE of 456 ms,
and inversion time 1700 ms.

Both T1 and FLAIR scans were corrected for intensity inhomogeneities due to MRI
bias field using N4 [90]. BV and brain scaling factor (for correcting individual differences
in cranial size) were obtained on MPRAGE scans using the SIENAX program [91] from FSL.
Optimal values were obtained by adjusting the parameter used for brain extraction. WMHV
was quantified on FLAIR images using lesion prediction algorithm from SPM12 [92]. Lesion
masks were generated by setting appropriate thresholds on lesion probability maps using
the FSL command, fslmaths, followed by manual correction for errors using ITK-Snap [93].
WMHV calculations were performed using the FSL command, fslstats.

4.5. Statistical Analysis

All statistical analyses were conducted in the open-source statistical package R 3.6.3
(http://www.r-project.org/ accessed on 25 June 2020). Multiple linear regression was
used to study the effects of age, group, sex, and age-by-group interaction on individual
MRI/mitochondrial outcomes. Contrasts were used to make specific group comparisons
within a regression model. WMHV and most mitochondrial outcomes (except the index of
respiratory capacity and respiratory control ratio; IRC and RCR) did not follow normal
distributions in premutation carriers. Consequently, log-transformation was applied to
these variables before performing any statistical analyses. Since FXTAS commonly occurs
in premutation carriers aged 50 and above, the correlations between FXTAS stage and
MRI/mitochondrial outcomes were analyzed including only the premutation carriers older
than 50 years, while controlling for age and sex. Brain scaling factor was added as a
covariate for all statistical models involving the MRI data. Model selection procedure
was carried out using a stepwise approach via the likelihood ratio test. The correlations
between MRI and mitochondrial measurements were examined in all premutation carriers.
Semi-partial correlation coefficients from the R package “ppcor” were employed to assess
the associations between individual mitochondrial outcomes and individual MRI measures
while controlling cranial size for MRI measures only. The Benjamini-Hochberg method of
false discovery rate (FDR) [94] was applied to control the FDR at 10% for all hypotheses
tested in one type of analysis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22179171/s1.
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