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Abstract: Serotonin modulates several physiological and cognitive pathways throughout the human
body that affect emotions, memory, sleep, and thermal regulation. The complex nature of the
serotonergic system and interactions with other neurochemical systems indicate that the development
of depression may be mediated by various pathomechanisms, the common denominator of which
is undoubtedly the disturbed transmission in central 5-HT synapses. Therefore, the deliberate
pharmacological modulation of serotonergic transmission in the brain seems to be one of the most
appropriate strategies for the search for new antidepressants. As discussed in this review, the
serotonergic system offers great potential for the development of new antidepressant therapies based
on the combination of SERT inhibition with different pharmacological activity towards the 5-HT
system. The aim of this article is to summarize the search for new antidepressants in recent years,
focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in
the pharmacotherapy of depression.
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1. Introduction

Depression is a mental illness that affects over 250 million people worldwide [1].
Emotional (depressed mood, irritability, anhedonia), somatic (sleep, appetite, libido), and
functional disorders (suicidal thoughts, slowed speech and movement, learning, memory
and attention deficits) [2] make this disease the main cause of disabilities in the general
population [3,4].

An important step in the treatment of depressive disorders is the introduction of SSRIs
(serotonin reuptake inhibitors), which are currently first-line antidepressants (e.g., fluoxe-
tine, sertraline, escitalopram). Their mechanism of action is based on the serotonergic sys-
tem, and the molecular target is the serotonin transporter protein (SERT). The effectiveness
of these therapeutics, unfortunately, leaves much to be desired; 60–70% of patients do not
experience a remission of symptoms, and 30–40% do not respond to the treatment at all [5].
A serious drawback of selective serotonin reuptake inhibitors is their latency period, i.e., a
delay in the therapeutic response by 2–6 weeks. Common side effects for SSRIs are sexual
dysfunction, anxiety, and food intolerances.

Apart from SSRIs, other selective monoamine reuptake inhibitors are also used in
pharmacotherapy. Reboxetine, a selective norepinephrine reuptake inhibitor, appears to be
less effective than the SSRIs. These observations may, however, result from its relatively low
tolerance [6]. Bupropion, on the other hand, is a norepinephrine and dopamine reuptake
inhibitor and, therefore, has a more activating profile than SSRI drugs. Two drugs, ven-
lafaxine and duloxetine, are classified as dual serotonin-norepinephrine reuptake inhibitors
(SNRIs). However, the efficacy of the norepinephrine reuptake blocking at clinical doses of
duloxetine is unclear [7]. Clinical guidelines often recommend the use of SNRIs in patients
who do not respond to SSRIs [8–10].

There is a need for the further exploration of the neurochemical causes of depres-
sion. Recent studies report the influence of many various types of neurosignaling on
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the mechanism of depression [11–14]. The search for new generations of antidepressants
using the triple reuptake inhibition mechanism (SSRI/SNRI/SDARI), or the combination
of serotonin reuptake inhibition with affinities for various 5-hydroxytryptamine (5-HT)
receptor subtypes, broadens the knowledge in this field [15–17].

A significant part of recent studies proves that serotonergic dysfunction, especially
related to the postsynaptic 5-HT1A receptor, plays an important role in the pathomechanism
of Major Depressive Disorder (MDD) [18–24]. Clinical trials show that the combination
of SSRIs with both partial agonism and antagonism of the 5-HT1A receptor may result in
an improvement in the speed and efficacy of the antidepressant effect [23,25,26]. This can
be confirmed by the drugs recently introduced into the pharmacotherapy of depression–
vilazodone and vortioxetine (Figure 1). Vilazodone exhibits partial agonist activity at
the 5-HT1A receptor, while vortioxetine binds to several 5-HT receptor subtypes (5-HT1A,
5-HT1B, 5-HT1D, 5-HT3, and 5-HT7). For example, the degree of sexual dysfunction associ-
ated with the use of vilazodone has been found to be relatively low [27]. Vortioxetine, on
the other hand, positively influences cognitive impairment related to depression [10,28].
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The targeted pharmacological modulation of serotonergic transmission in the brain
continues to be a leading strategy in the search for new antidepressants. The careful selec-
tion of molecular targets for the proper use of the mechanisms of serotonergic modulation,
which influences other neurotransmission systems, seems to be the most effective strategy
for supplementing the activity of “serotonin-enhancing” drugs in the near future. A better
understanding of the receptors and receptor signaling responsible for the effects of sero-
tonin on neurogenesis can also help in the development of new and more effective drugs.
The aim of this article is to summarize the search for new antidepressants in recent years,
focusing primarily on the possibility of benefiting from interactions with various 5-HT
receptors in the pharmacotherapy of depression.

2. The Serotonergic System and Depression

Serotonin, or 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter found
throughout the human body [19,29]. Serotonin is synthesized in the midbrain in a small
population of raphe nucleus neurons where tryptophan hydroxylase is expressed [30].
However, serotonin synthesis is not limited to the central nervous system (CNS), as trypto-
phan hydroxylase is also found in enterochromaffin cells in the gastrointestinal tract [31].
In fact, it should be noted that most of the serotonin in the human body is produced by
this cell type [32]. Serotonin binds to more than 14 receptor proteins, most of which are
G-protein coupled receptors [30,33]. This molecule mediates the transmission of several
physiological and cognitive systems throughout the body that affect emotions, memory,
sleep, and thermal regulation [34].

Serotonin is synthesized in the body from an essential amino acid—L-tryptophan.
Ingested with food, L-tryptophan is converted into serotonin through a series of reactions.
The first step, which simultaneously limits the rate of serotonin synthesis, is the hydrox-
ylation of L-tryptophan to 5-hydroxy-L-tryptophan (5-HTP) by tryptophan hydroxylase
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(TPH) using oxygen and tetrahydropteridine as co-factors. There are two isoforms of TPH
that can participate in this reaction: TPH1, expressed predominantly peripherally; and
TPH2, expressed only in the brain. L-aromatic amino acid decarboxylase (AADC) then
converts 5-HTP to serotonin [19,31].

The crossing of the blood–brain barrier (BBB) by serotonin is impossible due to its
acid dissociation [35]; therefore, the amount of serotonin present in the CNS depends on
the amount of centrally present L-tryptophan. The L-tryptophan present in the systemic
circulation is actively transported by the BBB to the CNS using a carrier protein, where
it is then converted into serotonin. Serotonin synthesized in the central nervous system
is stored in secretory vesicles, where it remains until neuronal depolarization triggers
its release into the synaptic cleft, allowing postsynaptic binding. Once released into the
synapse, the serotonin molecules are eventually taken up by the serotonin transporter
(5-HTT), which is located on the presynaptic axonal membrane. After the above-mentioned
reuptake occurs, serotonin molecules are metabolized by monoamine oxidase (MAO) to
5-hydroxyindole acetic acid (5-HIAA) [29]. There are two isoforms of MAO (MAO-A and
MAO-B), and both break down serotonin into neurons through oxidative deamination.
The serotonin metabolite (5-HIAA) is actively transported from the CNS to the periphery
and then excreted in the urine [19].

Already by the 1950s, it was noted that several mental illnesses showed abnormalities
in the serotonergic system. The relationship between the serotonergic system and depres-
sion has been confirmed in clinical trials. They showed that an acute, transient relapse of de-
pressive symptoms can be produced in subjects in remission using p-chlorophenylalanine
(an irreversible inhibitor of serotonin synthesis). L-tryptophan depletion, causing a tempo-
rary reduction in central serotonin levels, had similar consequences. These findings have
shown that the clinical efficacy of antidepressants depends on the presynaptic serotonergic
function. Other studies have demonstrated a reduced concentration of the major metabolite
of serotonin (5-HIAA) in the cerebrospinal fluid of untreated depressed patients and a
reduced concentration of 5-HT and its major metabolite (5-HIAA) in the postmortem brain
tissue of depressed and/or suicidal patients [20].

The serotonergic neurons of the mammalian brain constitute the most extensive and
complex neurochemical network in the CNS after the glutamatergic system, which is the
brain’s primary transmission network. It has been estimated that the human brain contains
approximately 250,000 5-HT neurons. For comparison, the total number of all neurons is
around 1011 [36]. While serotonergic neurons originate mainly in the brainstem dorsal and
median raphe nuclei, they arborise over large areas such that they innervate almost every
area of the brain with high densities of axonal varicosities. Some serotonergic projections
create classical chemical synapses, but many release 5-HT in a paracrine manner (sometimes
referred to as “volumetric transmission”). In addition, serotonin neurons exhibit slow
(~1 Hz) and regular tonic activity that ceases during the rapid eye movement sleep phase
(REM-off neurons). This activity is parallel to the noradrenergic neurons of the locus
coeruleus [34]. Under normal conditions, the activity of serotonergic neurons is tightly
controlled by a number of mechanisms, including: (i.) glutamatergic inputs from the
forebrain (mainly the prefrontal cortex) [37], (ii.) the tonic noradrenergic input from the
pontine nuclei [38], (iii.) inhibitory GABAergic signals from local interneurons [39], and
(iv.) dopamine signals from the dopaminergic nuclei of the midbrain [40]. Moreover, the
serotonin system is, in a way, self-regulating. The key control mechanism of 5-HT neurons
is negative feedback through the 5-HT1A autoreceptors [20]. This mechanism is currently
being studied in great detail in the context of the treatment of CNS diseases.

The aforementioned anatomical and electrophysiological picture shows that changes
in the activity of serotonergic neurons affect a large population of target neurons in the
forebrain. The complex nature of the serotonergic system and interactions with other
neurochemical systems indicate that the development of MDD may be mediated by various
pathomechanisms. Currently suggested mechanisms include: (i.) low neuronal production
of serotonin or of postsynaptic receptors, (ii.) decreased excitatory inputs or excessive
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system self-control, and (iii.) decreased 5-HT synthesis and/or tryptophan deficiency.
The common denominator of these phenomena in depression is undoubtedly the disturbed
transmission in the central 5-HT synapses. Therefore, the deliberate pharmacological
modulation of serotonergic transmission in the brain seems to be one of the appropriate
strategies for the search for new antidepressants.

3. The 5-HT Receptors

The serotonergic system affects various physiological functions, including psychoe-
motional expression, sensorimotor integration, and the regulation of the autonomic, car-
diovascular, respiratory, and digestive systems. Within the CNS, 5-HT is involved in the
regulation of higher mental functions and emotions, extrapyramidal motor functions, and
cognitive functions (e.g., learning and memory).

At least 14 different serotonin receptors have been identified. These receptors can be
divided into distinct families, which are labelled 1, 2, 3, 4, 5, 6, and 7, and the subtypes in
each family are labelled with letters (e.g., a, b, c). Many of these receptors are thought to be
involved in the pathogenesis of various CNS disorders [41].

3.1. The 5-HT1A Receptors

The 5-HT1A receptors are located primarily in the following populations: (i.) presynap-
tic neurons of the raphe nuclei of the midbrain and (ii.) postsynaptic neurons, mainly in the
hippocampus, septum, amygdala, and corticolimbic regions [42]. Autoreceptors are located
within the bodies and dendrites of serotonin neurons. Their activation inhibits neuronal
discharges and reduces the release of serotonin [43]. Thus, 5-HT1A autoreceptors play an
important role in the self-regulation of the serotonergic system; they partially inhibit the
activity of adenylate cyclase [44] and activate G protein-dependent rectifying potassium
channels (GIRK) with the use of the βγ subunit of G protein [45]. This causes membrane
hyperpolarization, a reduction in neuronal excitability, and the inhibition of potential-
dependent calcium channels, reducing the influx of calcium ions. The consequence is a
reduction in the neural discharge rate. Given the significant influence of these neuronal
discharges on the overall activity of the entire serotonergic system, it can be concluded that
the reduction in the firing rate evoked by serotonin and other 5-HT1A agonists immediately
translates into an overall reduction in 5-HT release in most areas of the brain, particularly
in regions innervated by the dorsal raphe [20].

The activation of 5-HT1A autoreceptors by endogenous serotonin, therefore, plays an
essential role in the physiological control of the activity of the 5-HT ascending neurons.
The 5-HT neurons during waking periods show a slow and regular rate of discharge [36].
Under conditions of excessive excitatory input (e.g., stress), there is an increased release of
serotonin in the vicinity of neuronal bodies. It activates 5-HT1A autoreceptors, which allow
low and regular neuronal activity to be maintained [40]. Thus, 5-HT1A autoreceptors act as
negative feedback physiological “safety valves” to maintain homeostasis.

The expression of 5-HT1A heteroreceptors, in turn, takes place in populations of
non-serotonin receptors, mainly in the limbic system within: (i.) bodies and dendrites
of glutamatergic neurons [43] or (ii.) axons of GABA-ergic [46], and (iii.) cholinergic
neurons [47]. These receptors are involved in regulating the release of various neurotrans-
mitters: acetylcholine in the medial septum [48], glutamate in the prefrontal cortex [49],
and dopamine in the ventral tegmental area [50]. In most regions of the brain, the inhibition
of adenylate cyclase occurs due to the activation of the Gαi protein. The GIRK channels in
the hippocampus are activated by the βγ subunits of the Gαo isoform [51]. The 5-HT1A
receptors in the cortex and hypothalamus bind to both the Gαi and Gαo subunits, while
their preferential binding to the Gαi3 protein occurs within the raphe nucleus.

The differences in the properties of 5-HT1A auto- and hetero-receptors are manifested
in their different functional selectivity [52]: 5-HT1A heteroreceptors stimulate [53], while
5-HT1A autoreceptors inhibit ERK1/2 transmission [54]. The 5-HT1A-biased agonism
appears to result in the preferential activation of a specific signaling pathway without
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affecting or even blocking other pathways associated with this receptor subtype [55]. It has
also been shown that there is an agonist-dependent modulation of G-protein coupling and
a transduction of 5-HT1A receptors in rat dorsal raphe nucleus. Moreover, 8-hydroxy-2-
(di-n-propylamino)tetralin (8-OH-DPAT, a full 5-HT1A receptor agonist) compared with
buspirone (a partial 5-HT1A receptor agonist) fails to modify forskolin-stimulated cAMP
accumulation [56].

In general, 5-HT1A receptor-deficient mice show a shorter immobility time in the forced
swim test than wild-type control animals [57]. The lack of functional 5-HT1A autoreceptors
may, therefore, favor a less-depressed phenotype. The whole-life suppression of 5-HT1A
heteroreceptor expression in adolescence results in a broad depression-like phenotype.
In addition, the group showed physiological and cellular changes within medial prefrontal
cortex–dorsal raphe proper circuitry: (i.) increased basal serotonin levels in the medial
prefrontal cortex, which is hyporeactive to stress and (ii.) decreased basal serotonin levels
and firing rates in a dorsal raphe hyperactivated by the same stressor [57].

Animal studies show that both the stimulation and blockade of 5-HT1A receptors can
cause or accelerate the antidepressant effect [17]. It is difficult not to associate this with
the above-described functional differences of 5-HT1A auto- and hetero-receptors and the
phenomenon of the biased 5-HT1A agonism. Many studies have demonstrated the antide-
pressant effect of 8-OH-DPAT reversed by 5-HT1A receptor antagonists [58]. Moreover,
5-HT1A receptor-deficient mice showed no increase in adult neurogenesis in the hippocam-
pus after chronic treatment with fluoxetine (SSRI) and not with imipramine (TCA) [59].
The preferential activation of postsynaptic 5-HT1A receptors by F15599 (Figure 2), a biased
5-HT1A agonist, resulted in an antidepressant-like effect [60]. Similar activity was shown
by F13714, a non-selective agonist of 5-HT1A receptors, but it induced a deeper “sero-
tonin syndrome”, hypothermia, and corticosterone release in rats. Elevated corticosterone
levels accompany chronic stress in animals, leading to depression [61]. Moreover, the
activation of 5-HT1A receptors in the prefrontal cortex (PFC) by F15599 produces strong
antidepressant-like effects in the forced swim test (FST) in rats, with a distinctive bimodal
dose–response pattern. These data suggest that F15599 may target specific 5-HT1A receptor
subpopulations in the PFC, possibly located on the GABAergic and/or glutaminergic
neurons [62].
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The previously described physiological function of 5-HT1A autoreceptors and their
regulation of depressive behavior seem to be unfavorable in the context of the mechanism
of action of antidepressants [20,63]. The negative feedback pathway through 5-HT1A au-
toreceptors may decrease the efficacy of the SSRI as the dose increases, thus creating a
second, anomalous part of the dose–response curve. This effect may also be responsible
for the so-called therapeutic window for such antidepressants [64]. The prolonged use of
SSRIs translates into significantly higher levels of extracellular 5-HT than after a single
administration [65]. The negative feedback loop is believed to be the cause of the slow
and delayed clinical efficacy of antidepressant drugs [66]. Administration of antidepres-
sants (tricyclic drugs, monoamine oxidase inhibitors, and SSRIs) significantly increases the
level of extracellular 5-HT in the midbrain raphe [67]. This leads to: (i.) the activation of
5-HT1A receptors, (ii.) the reduction in 5-HT cell firing [68], and (iii.) the terminal release of
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5-HT [69]. The inhibition of SSRIs in the negative feedback pathway clearly decreases with
the duration of treatment. This is most likely due to the serotonin-induced desensitization
of raphe 5-HT1A autoreceptors discussed earlier [70]. Thus, the desensitization of 5-HT1A
autoreceptors may accelerate the onset and/or enhance the antidepressant effect [71].
Mice with higher levels of 5-HT1A autoreceptors showed a blunted physiological response
to acute stress, increased behavioral despair, and no behavioral response to fluoxetine [72].
Moreover, mice with lower autoreceptor levels showed a strong behavioral response to
fluoxetine after both chronic and subchronic administration [72]. Thus, lowering the level
of 5-HT1A autoreceptors prior to antidepressant treatment may accelerate and increase the
effectiveness of antidepressant therapy. Combining SSRI treatment with the 5-HT1A recep-
tor antagonist pindolol significantly reduces the latency of the antidepressant response and
improves the clinical response in previously untreated MDD patients (Table 1) [20,21,73].
The above data indicate that the stimulation of postsynaptic 5-HT1A receptors or the block-
ade of presynaptic 5-HT1A receptors results in antidepressant-like activity. (-)-pindolol may
also stimulate somatodendritic 5-HT1A receptors. Then, its accelerating antidepressant
effect might stem from the accelerated adaptive changes like autoreceptor desensitization in
response to both serotonin and pindolol. This mechanism can also be achieved by initiating
the treatment with high-dose SSRI when a patient is suicidal. The antidepressant action of
pindolol may also be related to its agonistic activity at the β1-adrenoreceptor as this drug
possesses the strongest intrinsic sympathicomimetic activity among other β-blockers [74].

Table 1. Clinical effects of augmentation of SERT inhibition with different activities towards 5-HT receptors.

Clinical Intervention Mechanism of Action Effect References

SSRI + pindolol SERT inhibition + 5-HT1A
agonism

Reduced latency of the
antidepressant response and

improved the clinical response in
previously untreated MDD patients

[21]

SSRI + buspirone SERT inhibition + 5-HT1A
partial agonism

Symptom remission in patients
unsuccessfully treated with SSRIs [75]

SSRI + mirtazapine SERT inhibition + 5-HT2A
antagonism

Augmentation of the clinical response
to SSRIs in treatment-resistant

patients
[76]

Vilazodone SERT inhibition + 5-HT1A
partial agonism

In contrast to prototypical SSRIs,
vilazodone has not been associated

with treatment-emergent sexual
difficulties or dysfunction

[27]

Vortioxetine
SERT, 5-HT3 and 5-HT7

receptors inhibition,
5-HT1A agonism

Potential rapid onset of action [77]

According to the neurotrophic hypothesis of depression, decreased neurotrophic
support causes neuronal atrophy, which in turn reduces hippocampal neurogenesis and
leads to depression. Clinical data support this theory: postmortem analysis has shown
reduced volumes of the hippocampus and prefrontal cortex in depressed patients [78,79].
Persons diagnosed with MDD showed decreased levels of BDNF (brain-derived neu-
rotrophic factor) and NGF (nerve growth factor) in the hippocampus. A deficit of these
neurotrophins may promote neuronal loss [80,81]. This phenomenon was confirmed by
in vivo studies [82–85], which showed that antidepressants reversed these changes [86].
Chronic treatment with 8-OH-DPAT, in turn reduced the feeding delay in the novelty-
suppressed feeding test and increased adult hippocampal neurogenesis in wild-type mice,
but showed no effect in the 5-HT1A receptor knockout group [59]. Thus, 5-HT1A receptors
mediate the action of 8-OH-DPAT, from which it can be concluded that the postsynaptic
5-HT1A receptors mediate the antidepressant-like action of 8-OH-DPAT [87]. The specific
deletion of the 5-HT1A heteroreceptors from mature granular cells in the dentate gyrus of
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the hippocampus has also been found to abolish the effects of SSRIs in various behavioral
tests [88]. It also attenuated the effects of SSRIs on adult neurogenesis and the expression
of hippocampal neurotrophic factors: BDNF and VEGF (vascular endothelial growth fac-
tor). Whole-life 5-HT1A heteroreceptor-knockout (but not autoreceptor-knockout) mice
showed decreased mobility in the forced swim test [89]. Such a depression-like phenotype
was not observed when the suppression of heteroreceptors was initiated in adulthood.
Therefore, serotonergic signaling in the forebrain during development may stably influence
the circuits underlying the behavioral response to the FST [89].

The STAR*D clinical trial shows that in patients unsuccessfully treated with SSRIs, the
augmentation with buspirone resulted in symptom remission [75]. Buspirone (a partial
agonist of the 5-HT1A receptor) enhances the desensitization of 5-HT1A autoreceptors,
increasing the effectiveness of the SSRI treatment. Recently, a single transcription factor,
Freud-1, has been found to be crucial for the expression of the 5-HT1A autoreceptor [90].
Mice with a conditional knockout of Freud-1 in serotonin neurons were shown to have
elevated levels of 5-HT1A autoreceptors and exhibited the enhanced anxiety and depressive
behavior in adulthood that was refractory to chronic SSRI treatment [90]. Interestingly, the
double knockout of the Freud-1/5-HT1A gene did not produce such effects. In this case, the
depressive-like behavior was even reduced [90]. The study suggests that targeting specific
transcription factors may increase the response to antidepressant treatment. These reports
indicated the need to search for compounds targeting only the population of 5-HT1A auto-
or heteroreceptors.

The results of postmortem and neuroimaging studies suggest an increased density
of 5-HT1A autoreceptors in patients with MDD compared to the control group [91–93].
Genetic studies have shown that individuals with an increased density or activity of 5-HT1A
autoreceptors are more prone to mood disorders and respond poorly to antidepressant
treatment [94,95]. However, the number and density of postsynaptic 5-HT1A receptors
have been shown to be unaltered or reduced in depressed patients, and this alteration is
not sensitive to antidepressant treatment [96]. Long-term antidepressant therapy causes
the tonic activation of 5-HT1A receptors in the dorsal hippocampus [97], and activation of 5-
HT1A receptors in the dentate gyrus increases hippocampal neurogenesis [98]. In light of the
cited reports, the use of 5-HT1A agonists as antidepressants seems natural [99]. Some agents
possessing such activity (e.g., buspirone and gepirone) show antidepressant efficacy in
placebo-controlled trials, but their potency is lower than that of SSRIs. Most 5-HT1A
agonists (especially azapirones, Figure 3) show the preferential activation of presynaptic
5-HT1A receptors. Moreover, these agents tend to have a reduced efficacy at postsynaptic
5-HT1A receptors. Thus, endogenous serotonin competes in the postsynaptic sites with
an exogenous substance (with lower agonism), which causes a paradoxical reduction in
the tone at the postsynaptic 5-HT1A receptors. Higher doses of 5-HT1A agonists (such
as those used in experimental animals) are likely to result in the greater activation of
postsynaptic 5-HT1A receptors, which may explain the positive results of efficacy studies in
animal models. Conversely, the administration of the selective 5-HT1A receptor antagonist
DU125530 with fluoxetine did not accelerate or increase the efficacy of fluoxetine in a
double-blind, randomized, placebo-controlled clinical trial. DU125530 had similar binding
to pre- and post-synaptic 5-HT1A receptors [100], and the blockade of postsynaptic 5-HT1A
receptors likely offset the benefits of enhancing presynaptic serotonergic function [101].
This may show the importance of the activation of postsynaptic 5-HT1A receptors in the
mechanism of antidepressant action.
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Observations on the 5-HT1A receptor population contributed to a fruitful search
for potential multimodal antidepressants that incorporate 5-HT1A receptor activity into
their mechanism of action [102]. Recently developed compounds seem to overcome the
aforementioned therapeutic problems of azapirones and other first-generation 5-HT1A
agonists. Two new antidepressants, vilazodone [27,103] and vortioxetine [104,105], inhibit
5-HT reuptake and show the partial agonism at 5-HT1A receptors.

The 5-HT1A receptor ligands also possess their own potentially therapeutic activity.
The 5-HT1A partial agonists show antianxiety [106,107], antidepressant [108], antiaggres-
sive [109], anticraving [110], and anticataleptic properties [111]:

• Animal studies show that both the stimulation and blockade of 5-HT1A receptors can
cause or accelerate the antidepressant effect. It is difficult not to associate this with the
functional differences of 5-HT1A auto- and hetero-receptors and the phenomenon of a
biased 5-HT1A agonism;

• A single transcription factor, Freud-1, has been found to be crucial for the expression of
the 5-HT1A autoreceptor. Targeting it may increase the response to antidepressant treatment;

• Observations on the 5-HT1A receptor population contributed to a fruitful search for
potential multimodal antidepressants (vilazodone and vortioxetine) that incorporate
5-HT1A receptor activity into their mechanism of action.

3.2. The 5-HT1B Receptors

The 5-HT1B receptors, like 5-HT1A receptors, are located pre- and post-synaptically
and are also negatively coupled to adenylate cyclase. Their highest densities are in the
striatum, pallidum, nucleus accumbens, substantia nigra, and ventral tegmental area.
Lower levels of 5-HT1B receptors are found in the hippocampus, amygdala, and cingulate
cortex [112].

Unlike somatodendritic 5-HT1A autoreceptors, 5-HT1B autoreceptors are located
on serotonergic axons, where they regulate the synthesis and release of 5-HT locally.
The 5-HT1B postsynaptic receptors are located mainly in the centers of motor control (such
as the basal ganglia), where they control the synaptic transmission of other neurotrans-
mitters [112]. Studies have shown that 5-HT1B receptors play a role in depression, anxiety,
migraines, locomotor activity, aggressive behavior, and the potentiation of the action of
other drugs [112–114].

Animal studies show that the involvement of 5-HT1B receptors in the pathophysiology
of depression is partly related to their responsiveness to environmental stress as well
as their exposure to antidepressants [115]. The 5-HT1B heteroreceptors are involved in
hippocampal neurogenesis, which may explain their importance for the antidepressant-like
effect [116]. Mice lacking 5-HT1B autoreceptors showed an increased mobility in the FST as
well as an increased preference for lower-sucrose concentrations in the sucrose preference
test compared to the control group. After SSRI administration, elevated levels of serotonin
in the hippocampus were observed [117]. Moreover, two common genetic polymorphisms
of 5-HT1B receptors, G861C [118] and C129T [119], were associated with MDD and affective
disorders. The 5-HT1B receptor gene knockout mice showed increased aggression [120].

The p11 protein, which colocalizes with 5-HT1B and 5-HT4 receptors [121], plays a key
role in modulating the function of the 5-HT1B receptor. Its dysregulation has been reported



Int. J. Mol. Sci. 2021, 22, 9015 9 of 31

in preclinical models of depression and in postmortem samples from MDD patients [122].
The p11 protein improves 5-HT1B receptor function in various regions of the brain and
contributes to an antidepressant-like effect in animal behavioral tests [123]. P11 knockout
mice showed depression-like behavior and demonstrated a reduced responsiveness to
5-HT1B receptor agonists and tricyclic antidepressants [123].

Studies in the learned helplessness model showed that 5-HT1B receptors were up-
regulated in various regions of the brain following stress exposure. A reduced 5-HT1B
autoreceptor function and, thus, increased serotonin release, has also been demonstrated
after chronic antidepressant treatment [124]. Moreover, chronic treatment with SSRIs in-
duced a negative regulation and/or desensitization of 5-HT1B autoreceptors [125] and
facilitated the effect of SSRIs in serotonin neurotransmission [126]. Compounds exhibiting
5-HT1B antagonism, administered alone or with antidepressants, have been shown to be
effective in preclinical models of depression [127]. The pretreatment with 5-HT1B receptor
antagonists [128] or the genetic inactivation of the 5-HT1B receptor [129] increased the
SSRI-induced effect in mice. Therefore, the blockade of 5-HT1B autoreceptors may promote
the antidepressant effect. It has been suggested that the 5-HT1B receptor antagonists them-
selves may be attributed to an antidepressant-like effect. SB-616234-A, a 5-HT1B receptor
antagonist, decreased immobility in a forced swim test in mice (Figure 4) [130]. The se-
lective 5-HT1B receptor inverse agonist, SB236057A, increased, in turn, the extracellular
concentration of serotonin in the dentate gyrus of a guinea pig. This effect was comparable
to that of 14 days of paroxetine therapy [131]. The acute blockade of the 5-HT1B receptor
might cause a rapid antidepressant effect [131]. It appears that the agonist activation
of 5-HT1B heteroreceptors may also induce antidepressant-like effects [132]. CP94253, a
selective 5-HT1B receptor agonist, showed an antidepressant-like activity in a forced swim-
ming test in mice [133]. Anpirtoline, as a selective 5-HT1B receptor agonist, also reduced
immobility in control mice but had no effect in 5-HT1B knockout mice [132]. The effect
of this compound in the FST was, therefore, due to the activation of the 5-HT1B receptor.
The above studies suggest that 5-HT1B receptors play a role in antidepressant-like activ-
ity. Ther stimulation of postsynaptic receptors and the inhibition of presynaptic 5-HT1B
receptors may be beneficial in the treatment of depression [134].
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As with 5-HT1A receptors, acute SSRI therapy activates terminally localized 5-HT1B
receptors, thus reducing 5-HT synthesis and release. The long-term administration of
SSRIs desensitizes terminal 5-HT1B autoreceptors [135], suggesting that the plasticity of
the autoregulatory function of both 5-HT1A and 5-HT1B receptors may be important with
respect to the therapeutic profile of SSRIs. Again, as with 5-HT1A receptor antagonists, the
administration of 5-HT1B receptor antagonists increases the neurochemical and behavioral
effects of SSRIs [128,136]. Interestingly, the co-administration of the selective 5-HT1A
antagonist WAY-100635 and the 5-HT1B receptor antagonist SB-224289 has an additive effect,
enhancing the neurochemical effects of fluoxetine. This has led to the suggestion that the
combination of the 5-HT1A and 5-HT1B receptor antagonism may increase CNS serotonin
levels and, therefore, potentially be an effective treatment strategy for depression [20]:
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• Animal studies show that the involvement of 5-HT1B receptors in the pathophysiology
of depression is partly related to their responsiveness to environmental stress as well
as an exposure to antidepressants;

• The p11 protein improves 5-HT1B receptor function in various regions of the brain
and contributes to an antidepressant-like effect in animal behavioral tests;

• The 5-HT1B heteroreceptors are involved in hippocampal neurogenesis, which may
explain their importance for the antidepressant-like effect. The stimulation of postsy-
naptic receptors and the inhibition of presynaptic 5-HT1B receptors may be beneficial
in the treatment of depression.

3.3. The 5-HT1D, 5-HT1E, and 5-HT1F Receptors

The clinical significance of the remaining 5-HT1 receptors (5-HT1D, 5-HT1E, 5-HT1F) is
less clear. There is limited preclinical evidence linking some of the receptors with depressive
states. The sensitivity of postsynaptic 5-HT1D receptors in patients after treatment with
SSRIs has been found to be impaired [137]. On the other hand, a postmortem study of
untreated suicidal victims with a confirmed history of depression showed a much higher
density of 5-HT1D receptors in the globus pallidus [138]. The observed high expression of
the 5-HT1E receptor in the frontal cortex and hippocampus may indicate the relationship
between 5-HT1E receptors and cognitive functions and memory [20,139].

3.4. The 5-HT2A Receptors

The 5-HT2A receptors, like the others of the 5-HT2 family, are preferentially cou-
pled to the G protein of the Gq/11 type, so their activation increases the cellular level
of inositol phosphate and, consequently, the cytosolic concentration of calcium ions.
The 5-HT2A receptors are distributed postsynaptically and presynaptically throughout the
brain at serotonergic terminals, with the greatest concentration in the neocortex [140–142].
Recent anatomical and functional studies suggest that 5-HT2A receptors are also present
presynaptically as heteroreceptors, where they may enhance glutamatergic neurotransmis-
sion and participate in memory processes [143]. It has also been demonstrated that the
5-HT2A receptors of the cerebral cortex are located on GABAergic interneurons as well as
glutamatergic projection neurons in the brains of humans and rodents [42,144].

Many antidepressants and antipsychotic drugs possess a relatively high binding
to 5-HT2A receptors [145]. Although there is no direct correlation between the affinity
of these drugs for 5-HT2A receptors and clinically effective doses, there is ample evi-
dence that the 5-HT2A receptor plays a role in the pathomechanism of depression [20,146].
Some antidepressants mediate their action partly via the antagonism of 5-HT2A recep-
tors [147]. In addition, chronic treatment with antidepressants, such as tricyclic antidepres-
sants, monoamine oxidase inhibitors, mianserin, mirtazapine, or sertraline, decreased the
number of 5-HT2A receptors in rodents [148]. Chronic electroconvulsive shock treatment
resulted in the upregulation of cortical 5-HT2A receptors in rodents [149].

Several clinical trials have shown that atypical antipsychotics [150] and the antide-
pressant mirtazapine with an affinity for α2-adrenoceptors and 5-HT2A receptors [151]
augment the clinical response to SSRIs in treatment-resistant patients [76]. A common
feature of these substances is their ability, at clinical doses, to block responses to signals
mediated by 5-HT2A receptors [152]. Such downregulation could, inter alia, explain why
the side effects of SSRIs diminish after 2 or 3 weeks. The high co-expression of 5-HT1A
and 5-HT2A receptors in the neocortex [153] may indicate that the blockade of 5-HT2A
receptors enhances 5-HT1A receptor-mediated neurotransmission in the cortical and limbic
regions, an activity associated with antidepressant efficacy. The chronic administration of
5-HT2A receptor antagonists has been shown to result in a paradoxically negative regula-
tion of 5-HT2A receptors [154,155], which may be beneficial in the treatment of depression.
Moreover, preclinical studies indicate that 5-HT2A antagonists have anxiolytic properties,
as demonstrated by ritanserin, a 5-HT2A antagonist with anxiolytic effects in humans [156].
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Another issue is the relationship between the 5-HT2A receptor and the noradrenergic
system in relation to depression [157]. Studies have shown that the activation of 5-HT2A
receptors as a result of treatment with SSRIs causes an increase in serotonin levels in GABA
neurons. This inhibits the neuronal activity of norepinephrine through the prolonged
release of GABA [158–160]. In turn, citalopram, in addition to reducing norepinephrine
firing, also has the effect of lowering basal and evoked extracellular norepinephrine levels
in the amygdala [161]. This may underlie SSRI ineffectiveness in resistant depression.
The co-administration of an SSRI and a 5-HT2A receptor antagonist trazodone (as well
as atypical antipsychotics, such as quetiapine, risperidone, olanzapine, and aripiprazole)
reversed this inhibitory effect in noradrenergic neurons in rats and might be beneficial
in the treatment of resistant depression [160,162–164]. Increasing evidence shows that
5-HT2A receptor antagonists display antidepressant effects. EMD 281014 (Figure 5), a
5-HT2A receptor antagonist, showed significant activity in the FST in congenital learned
helpless rats [165]. A similar effect was shown by another 5-HT2A receptor antagonist,
FG5893, which significantly shortened the immobility time in the FST [166]. The selective 5-
HT2A receptor antagonist, M100907, enhanced the antidepressant-like behavioral effects of
fluoxetine [167], suggesting that a selective 5-HT2A receptor blockade may complement the
behavioral effects of serotonin transporter inhibition. In contrast, recent studies in rats have
shown that the functional disturbance of the 5-HT2A receptor in the medial prefrontal cortex
may contribute to postpartum mental disorders, including depression and psychosis [168].
In addition, prefrontal 5-HT2A receptors may both have beneficial and negative effects
on cognition, which might explain the aggravation of cognitive deficits after the onset of
SSRI treatment in depressed patients, as well as the limited efficacy of second-generation
antipsychotics that act as 5-HT2A receptor antagonists against the strongly debilitating
cognitive symptoms of schizophrenia and other psychiatric disorders [169]. A deficiency
in 5-HT2A receptors has also been shown to alter the metabolic and transcriptional, but
not behavioral, consequences of chronic unpredictable stress in mice [170]. The 5-HT2A
blockade or SSRI-induced downregulation of 5-HT2A may lead to emotional blunting in
patients. It is, therefore, very likely that 5-HT2A receptors may have different functions
depending on the region of the brain:
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• Many antidepressants and antipsychotic drugs have relatively high binding to 5-
HT2A receptors;

• The high co-expression of 5-HT1A and 5-HT2A receptors in the neocortex may in-
dicate that the blockade of 5-HT2A receptors enhances 5-HT1A receptor-mediated
neurotransmission in the cortical and limbic regions, an activity associated with
antidepressant efficacy;

• Increasing evidence shows that 5-HT2A receptor antagonists display antidepressant
effects. A selective 5-HT2A receptor blockade may complement the behavioral effects
of serotonin transporter inhibition.
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3.5. The 5-HT2B Receptors

The 5-HT2B receptor is expressed mainly in peripheral tissues, especially in the liver,
kidneys, and heart, and its distribution in the brain is low [171]. In the central nervous
system, the 5-HT2B receptor is present in septal nuclei, the dorsal hypothalamus, and
the medial amygdala at levels similar to those found in the stomach [171]. The 5-HT2B
receptor, mRNA, is found in the dorsal raphe nucleus, suggesting a potential autoreceptor
role [172]. The 5-HT2B receptors are coupled to the Gq protein, which activates PLC
(phospholipase C)/PKC (protein kinase C) and increases the concentration of calcium ions
in the cytosol.

The knowledge about the function of the 5-HT2B receptor in the CNS is limited;
however, there are reports of the antidepressant properties of selective 5-HT2B receptor
agonists [173]. The presence of 5-HT2B receptors in the dorsal raphe and their stimula-
tory role in 5-HT release has been demonstrated [173]. The pharmacological or genetic
inactivation of the 5-HT2B receptor abolished the effects of chronic treatment with SSRIs,
and the stimulation of 5-HT2B receptors induced an SSRI-like response in behavioral and
neurogenic tests. In turn, the genetic inactivation of 5-HT2B receptors in serotonergic
neurons eliminated the neurogenic effects of fluoxetine [173]. It has recently been con-
firmed that 5-HT2B receptors directly and positively regulated the activity of serotonin
neurons [174]. In addition, the stimulation of the 5-HT2B receptor via fluoxetine in astrocyte
cell cultures resulted in the phosphorylation of extracellular signal-regulated kinases and
the transactivation of the EGF (epidermal growth factor) receptor [175]. A reduced level of
astroglial (but not neuronal) 5-HT2B receptors in a mouse model of Parkinson’s disease was
also reported, which paralleled the development of the depression-like phenotype [176].
The stimulation of astroglial 5-HT2B receptors may, therefore, be beneficial in treating
depressive disorders [177].

Considering the role of peripherally located 5-HT2B receptors, potential new antide-
pressants acting on 5-HT2B receptors may adversely affect the function of the respiratory
and circulatory systems [17,20]:

• 5-HT2B receptors directly and positively regulate the activity of serotonin neurons;
• There are reports of the antidepressant properties of selective 5-HT2B receptor agonists;
• Potential new antidepressants acting on 5-HT2B receptors may adversely affect the

function of the respiratory and circulatory systems.

3.6. The 5-HT2C Receptors

The 5-HT2C receptors are mainly located in the choroid plexuses, cerebral cortex,
hippocampus, substantia nigra, and cerebellum. They bind preferentially with Gq/11
and increase the concentrations of inositol phosphates and cytosolic Ca2+. Like 5-HT2A
receptors, they are involved in the regulation of mood, motor behavior, and appetite [178].

Several classes of antidepressants have an affinity for 5-HT2C receptors. Although
these receptors are usually somatodendritic, in some regions they are also present on axon
terminals [179]. The location of 5-HT2C receptors in relation to serotonergic and GABAergic
neurons in the anterior raphe nuclei demonstrates complex systemic relationships in the
brain. It has been shown that 5-HT2C receptors are preferentially located on GABAergic
interneurons (and not on serotonergic neurons). This suggests that the stimulation of
GABAergic interneurons by 5-HT2C receptors plays an important role in the suppression
of serotonergic cell firing in the dorsal raphe and surrounding areas [180]. The immunore-
activity of the 5-HT2C receptor has also been described in GABAergic cells in the PFC [181]
and in the dopaminergic and GABAergic neurons of the mesolimbic pathway [182].

A potent 5-HT2C receptor antagonist, S32006 (Figure 6), showed antidepressant activity
in rodent behavioral tests and increased dopamine and norepinephrine levels in the frontal
cortex [183]. This compound reduced immobility in the FST in mice, suppressed anhedonia
in a chronic mild stress model, and increased cell proliferation and BDNF expression
in the dentate gyri of rats [183]. In contrast, the inverse agonist of the 5-HT2C receptor,
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S32212, showed an antidepressant effect in the FST in rats after both acute and chronic
treatment [184].
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On the other hand, some studies report that 5-HT2C agonists have been shown to be
active in animal models of depression, suggesting an antidepressant-like effect [185,186].
WAY-163909, a selective 5-HT2C receptor agonist, elicited a rapid antidepressant effect in a
rat FST that was blocked by the 5-HT2C/2B receptor antagonist, SB206553 [186]. Moreover,
after chronic treatment, WAY163909 reduced the hyperactivity associated with olfactory
bulbectomy in rats [186,187]. It is possible that the mediated antidepressant effects of these
compounds were due to the stimulation of 5-HT2C receptors and the resulting activation of
postsynaptic serotonin receptors [188]. Other selective 5-HT2C receptor agonists have also
been effective in animal models of depression and obsessive–compulsive disorder [189].

Preclinical data show that the antagonism of 5-HT2C receptors increases the neuro-
chemical and behavioral effects of SSRIs. Examples include: the increase in the effect of
SSRIs on extracellular 5-HT concentrations in the hippocampus and cortex [190,191], or a
significant increase in the effect of SSRIs in behavioral models of depression by selective
and non-selective 5-HT2C antagonists [190].

Additionally, 5-HT2C receptors have been shown to be involved in the anti-immobility
effect of antidepressants in the FST, increasing the serotonin level in the synapse [192].
Few studies suggest that 5-HT2C receptor antagonists alone may also exhibit antidepressant-
like properties. The inactivation of 5-HT2C receptors has been shown to potentiate SSRI-
induced serotonin release in rodents [190]. However, 5-HT2C receptor antagonists adminis-
tered separately had no effect on serotonin levels [191].

An altered editing of the mRNA-encoding 5-HT2C receptors has been reported in the
PFC of depressed suicide victims [193]. The desensitization of these receptors has been
observed in patients after chronic treatment with SSRIs [194].

The 5-HT2C receptors are also involved in the tonic modulation of dopaminergic
activity [195]. The role of the dopaminergic system in schizophrenia, along with the antag-
onism of atypical antipsychotics towards the 5-HT2C receptors, has aroused interest in this
receptor for the treatment of schizophrenia [196]. Conversely, the ineffectiveness of SSRIs
in some patients may be due to the serotonin-related inhibition of the neuronal activity
of dopamine in the ventral capping region via 5-HT2C receptors [157]. Escitalopram has
been shown to reduce the stimulation of dopamine neurons by activating 5-HT2C receptors
located on GABA neurons. Some studies indicate that the co-administration of SSRIs with
5-HT2C receptor antagonists (including atypical antipsychotics, such as aripiprazole) may
eliminate the inhibitory effects on dopaminergic neurons in rat brains and restore the effect
of the SSRI [163]. The aforementioned 5-HT2C receptor antagonist S32006, with a potential
antidepressant- and anxiolytic-like effect, increased dopamine levels in the frontal cortex
of rats and enhanced dopaminergic neuron firing [183]. The modulation of dopaminergic
activity may, therefore, be beneficial in the development of antidepressants due to the
above-mentioned activity of 5-HT2C receptor ligands. Recent studies demonstrate the
contradictory effect of 5-HT2C receptors on the effects of SSRIs on motor function and
affective behavior, highlighting the potential benefits of 5-HT2C receptor antagonists both
for reducing SSRI motor side effects and enhancing the therapeutic antidepressant and
anxiolytic effects [197].
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Both 5-HT2C receptor agonists and antagonists exhibit antidepressant-like activity,
and there is still a need to further define the role of this receptor subtype in depression:

• Several classes of antidepressants have an affinity for 5-HT2C receptors. Alterations in
their functional status have been observed in depressive and anxiety states;

• Both 5-HT2C agonists and antagonists have been shown to be active in animal models
of depression. Preclinical data show that the antagonism of 5-HT2C receptors increases
the neurochemical and behavioral effects of SSRIs;

• There is still a need to further define the role of 5-HT2C receptor subtype in depression.

3.7. The 5-HT3 Receptors

The activation of the 5-HT3 receptor leads to a rapid opening of the transmembrane
channel, resulting in an increase in the conductivity of Na+/K+ ions and an immediate
influx of extracellular Ca2+ ions. This, in turn, triggers the release of neurotransmitters
and/or peptides. The 5-HT3 receptors are found throughout the brain and CNS and the
highest density of 5-HT3 receptors was found in the spinal cord and brainstem. The 5-HT3
receptors present in the dorsal vagal complex are involved in the control of the emetic
mechanism [142]. Many 5-HT3 receptor antagonists have been developed as antiemetics
for use in cancer chemotherapy. In the 1990s, lithoxetine, an antidepressant combining sero-
tonin reuptake and 5-HT3 receptor antagonism, was developed to prevent SSRI-induced
gastrointestinal side effects [198]. In the forebrain, on the other hand, 5-HT3 receptors were
present mainly in structures of the limbic system, such as the hippocampus, amygdala, and
entorhinal cortex [199].

The 5-HT3 receptors are involved in the control of dopamine and acetylcholine re-
lease. They also control the functioning of the GABAergic system. Activity towards other
neurotransmission systems is the main mechanism of action for 5-HT3 receptor ligands.
The 5-HT3 receptors are expressed on different types of GABAergic interneurons in the
forebrain [200,201]. The physiological stimulation of serotonergic neurons stimulates corti-
cal (and possibly hippocampal) GABAergic neurons. This likely results in the inhibition of
neighboring excitatory neurons by GABAA and GABAB receptors [201].

Preclinical studies suggest that the 5-HT3 receptor plays a role in mental disorders [17].
The 5-HT3 antagonists show antidepressant-like activity in various animal models [202].
The systemic administration of tropisetron (a 5-HT3 receptor antagonist) prevented re-
straint stress-induced dopamine release in the nucleus accumbens and prefrontal cortex
in rats. This suggested that 5-HT3 receptors mediated the stress-dependent activation of
dopaminergic neurotransmission [203]. Tropisetron additionally exerted an antidepressant-
like effect in FST in rats. This effect was abolished after a pretreatment with mCPGB
(1-(m-chlorophenyl)-biguanide), a potent 5-HT3 receptor agonist (Figure 7) [204].
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Some antidepressants with different mechanisms of action exhibit functional 5-HT3
receptor antagonism [205]. Chronic treatment with fluoxetine desensitizes 5-HT3 recep-
tors [206], and SERT knockout mice show increased 5-HT3 receptor density compared
to wild-type mice [207]. It has been suggested that the antidepressant effect of SSRIs is
partially dependent on the blockade of 5-HT3 receptors [208]. The relatively new multi-
modal antidepressant drug vortioxetine [209,210] displays nanomolar binding affinities
to the SERT (Ki = 1.6 nM) and other serotonin receptors, including 5-HT3, 5-HT1A, 5-HT7,
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5-HT1B and 5-HT1D, with Ki values of 3.7 nM, 15 nM, 19 nM, 33 nM and 54 nM, re-
spectively [102]. Vortioxetine antagonism at the 5-HT3 receptor [211] may underlie its
faster onset of action [212]. Rodent experiments show that the antidepressant-like ef-
fect should be attributed to postsynaptic, rather than presynaptic, 5-HT3 antagonism,
since the presynaptic and somatodendritic 5-HT3 receptor blockade reduces serotonin
levels [203]. The antidepressant and/or anxiolytic effects recently demonstrated by some
5-HT3 receptor antagonists in animal models of depression may result from the modulation
of the hypothalamic–pituitary-adrenal axis, interaction with the serotonergic system, or
antioxidant properties [213–218].

The agonism of the 5-HT3 receptor reduces the antidepressant effect in the FST in
rats [219], while the antagonism of the 5-HT3 receptor reduces the immobility time in
the FST [220]. Ondansetron, a 5-HT3 receptor antagonist, confirms these observations; it
exhibits antidepressant properties in the TST (tail suspension test) and FST, also enhancing
the effect of fluoxetine [220]. In a model of chronic unpredictable stress in mice, the
administration of ondansetron reversed depressive behavior affecting the hypothalamic-
pituitary-adrenal axis [221]. Moreover, in mice with streptozotocin-induced diabetes, the
drug displayed antidepressant and anxiolytic properties, possibly through the antagonism
of the 5-HT3 receptor [222]. Behavioral studies with ondansetron (and tropisetron) also
suggested an interaction of 5-HT3 and NMDA receptors, as well as an involvement of
the nitric oxide-cyclic guanosine monophosphate pathway inhibition in the observed
antidepressant-like effects [223,224]. Studies on genetically modified animals confirm the
role of 5-HT3 receptors in the antidepressant effect. The 5-HT3 receptor knockout mice
were reported to display an antidepressant-like phenotype [225].

In vitro electrophysiology studies showed that low-dose citalopram treatment desen-
sitized the 5-HT1A receptor only in the dorsal raphe nucleus of 5-HT3 knockout mice, while
high dose treatment caused similar 5-HT1A autoreceptor desensitization in 5-HT3 knockout
and wild types [225]. Hence, lower doses of citalopram may be effective when 5-HT3
receptors are deactivated. It has also been shown that the blockade of the 5-HT3 receptor
by ondansetron enhances the effect of citalopram on extracellular serotonin levels in the
rat forebrain [102]. The use of combined SSRIs and 5HT3 receptor antagonists is proposed
as an improvement strategy to be tested in the treatment of depressive disorders [226].
The neurochemical, electrophysiological, and behavioral consequences of the repeated
administration of this drug combination will need to be assessed.

The properties of 5-HT3 receptor antagonists have also been used to alleviate substance
abuse, which is often associated with most psychiatric disorders, including MDD [227].
The 5-HT3 receptor antagonists have been reported to be effective in reducing ethanol and
morphine intake [228]. It is worth noting that various antipsychotics are non-competitive
5-HT3 receptor antagonists, and this may contribute to their efficacy [229]. There is likely
to be an association between 5-HT3 receptors and anxiety behavior [230]. The 5-HT3
antagonists reverse helpless behavior in rats [231] and abolish the emotion-potentiated
startle effect in humans [232]:

• Activity towards other neurotransmission systems is the main mechanism of action
for 5-HT3 receptor ligands;

• Rodent experiments show that the antidepressant-like effect should be attributed to
postsynaptic rather than presynaptic 5-HT3 antagonism, since the presynaptic and
somatodendritic 5-HT3 receptor blockade reduces serotonin levels;

• Some antidepressants with different mechanisms of action exhibit functional 5-HT3
receptor antagonism. The vortioxetine antagonism at the 5-HT3 receptor may underlie
its faster onset of action.

3.8. The 5-HT4 Receptors

The 5-HT4 receptors in the CNS are mainly located in the putamen, caudate nucleus,
hippocampus, nucleus accumbens, globus pallidus, and substantia nigra. To a lesser extent,
these receptors are present in the neocortex, raphe and pontine nuclei, and thalamus [233].
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Studies using positron emission tomography show a slightly more limited regional distri-
bution of 5-HT4 receptors in the human brain, showing a high density of this receptor in the
caudate–putamen and much lower densities in the frontal cortex and hippocampus [234].
The 5-HT4 receptors are coupled to the Gs protein, which activates adenylate cyclase/PKC
and increases the intracellular level of cAMP. Regarding peripheral tissues, these receptors
play an important role in the heart, gastrointestinal tract, adrenal glands, and urinary
bladder [235].

There are reports linking the 5-HT4 receptor with depressive disorders [236].
Preclinical models of depression, such as the olfactory bulbectomized and glucocorti-
coid heterozygous receptor mice, show that the expression of 5-HT4 receptors increased
in the ventral hippocampus or striatum, respectively [237], while in the Flinders-sensitive
line rat model of depression, the downregulation of 5-HT4 receptors was observed in the
ventral and dorsal hippocampus [238].

The 5-HT4 receptor subtype is involved in the modulation of synaptic plasticity [239],
which is influenced by antidepressants [240]. The signaling of the 5-HT4 receptor may
modulate the function of the dentate gyrus of the hippocampus by increasing the neuroge-
nesis and expression of neurotrophic factors, which may contribute to the antidepressant
effects of drugs that enhance serotonergic transmission [241]. The 5-HT4 receptor interacts
with the p11 protein, which determines the antidepressant activity mediated by 5-HT1B
and 5-HT4 receptors [242].

In addition, 5-HT4 knockout mice show an enhanced response of serotonergic neurons
to citalopram [243]. Thus, 5-HT4 receptors are possibly involved in the activation of 5-HT
neurons during SERT inhibition. As observed for 5-HT1A and 5-HT2A receptors [37,40],
5-HT4 receptors in the PFC control the firing rate of midbrain serotonergic neurons via
descending inputs [244]. In addition, 5-HT4 receptors mediate synaptic transmission be-
tween the dentate gyrus and the CA3 field of the hippocampus. Fluoxetine was observed to
normalize the mossy fiber pathway by activating 5-HT4 receptors [245]. Chronic treatment
with fluoxetine and venlafaxine (but not reboxetine) decreased the 5-HT4 receptor density
in rat brain [246]. Although the 5-HT4 receptor antagonist, SB 204070A, showed no indepen-
dent effect and did not reduce the immobility time in the FST in naive rats [247], another
receptor antagonist, GR 125487, blocked fluoxetine activity in a mouse corticosterone-
induced depression model [248]. Therefore, this study suggests that the activation of 5-HT4
receptors mediates the antidepressant-like effects of fluoxetine. It has been shown that
a knockout of the 5-HT4 receptor can induce some adaptive changes in mice, leading to
depression and anxiety-like behavior. Moreover, 5-HT4 receptor knockout mice do not
respond to fluoxetine in the olfactory bulbectomized model of depression and anxiety [249].
On the other hand, some studies suggest that the behavioral effects of fluoxetine in the
corticosterone-induced model of depression and anxiety do not appear to be dependent on
5-HT4 receptors [250].

Preclinical studies show that the administration of the 5-HT4 agonists, RS67333 and
prucalopride (Figure 8), reduces the immobility time in the FST, thus demonstrating the
potential of the 5-HT4 receptor as a molecular target of a potential new generation of
antidepressants [251]. The agonism of the 5-HT4 receptor may also play a role in the cogni-
tive deficits associated with MDD. The use of RS67333 in chronic neuroendocrine animal
models of depression/anxiety resulted in the restoration of induced learning and memory
disorders [252]. Moreover, the studies show that administration of RS67333 and prucalo-
pride causes 5-HT1A autoreceptor desensitization, increased the tonus on hippocampal
postsynaptic 5-HT1A receptors, and increased CREB phosphorylation and neurogenesis
in the hippocampus [251]. These parameters, which characterize the functioning of the
brain, are used in antidepressant therapies. Importantly, these effects are noticeable after
3 days of treatment [251], while they are usually only seen after 2–3 weeks of treatment
with SSRIs due to the latency phenomenon. The faster response to 5-HT4 agonism has been
suggested to be a result of the parallel rapid and sustained activation of 5-HT neuronal
firing in the dorsal raphe nucleus [253]. Increased serotonergic neuronal firing may also
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underlie the apparently superior efficacy of 5-HT4 agonists over SSRIs because the reuptake
inhibitory effect depends on the basal rates of 5-HT cell firing. Since the 5-HT4 receptor
is not expressed in the raphe nuclei, the ability of 5-HT4 receptors to stimulate the firing
of 5-HT neurons appears to involve the activation of receptors located on neurons in the
PFC [244]. The identity of the cells expressing 5-HT4 receptors and their connections to
the serotonergic neurons of the dorsal raphe nucleus are not yet well understood. It is
possible that they project to other regions, contributing to the antidepressant effect of 5-HT4
agonists [253].
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The activation of the 5-HT4 receptor may be a useful adjunct to antidepressant ther-
apy, both to accelerate the onset of clinical antidepressant effects and to target cognitive
symptoms that are not effectively treated with current therapies [254]:

• There are reports linking the 5-HT4 receptor with depressive disorders. The 5-HT4
receptor interacts with the p11 protein, which determines the antidepressant activity
mediated by 5-HT1B and 5-HT4 receptors;

• 5-HT4 receptor signaling may modulate the function of the dentate gyrus of the
hippocampus by increasing the neurogenesis and expression of neurotrophic factors,
which may contribute to the antidepressant effects of drugs that enhance
serotonergic transmission.

• The activation of the 5-HT4 receptor may be a useful adjunct to antidepressant therapy,
both to accelerate the onset of clinical antidepressant effects and to target cognitive
symptoms that are not effectively treated with current therapies.

3.9. The 5-HT6 Receptors

The 5-HT6 receptors are the postsynaptic receptors most expressed in the striatum,
nucleus accumbens, olfactory tubercle, and cortex. They are also moderately dense in the
amygdala, hippocampus, hypothalamus, thalamus, and cerebellum [255].

This serotonin receptor subtype has been found to play a role in learning and mem-
ory [256] as well as in the central regulation of hunger and satiety behavior [257]. The 5-HT6
receptors may, therefore, serve as a novel molecular target for the improvement of cog-
nitive functions [258]. Several of the tricyclic antidepressants (e.g., amitriptyline) and
atypical antidepressants (e.g., mianserin) exhibit nanomolar 5-HT6 binding and antagonis-
tic activity [259]. This fact, as well as the distribution of the 5-HT6 receptor in the limbic
and cortical regions of the brain, may suggest that 5-HT6 receptors play an important
role in the pathogenesis and/or treatment of depression [259]. The 5-HT6 antagonists
(SB-399885, Figure 9) show antidepressant activity in the FST and in the TST in rodents
(rats and mice) [260]. In addition, the combination of an ineffective dose of SB-399885 with
ineffective doses of imipramine, desipramine, bupropion, or moclobemide has been shown
to exert antidepressant effects in the rat FST [261]. This suggests that the inhibition of the
5-HT6 receptor potentiates the effects of clinically used antidepressants. This synergistic
effect is interesting in the search for a multimodal antidepressant therapy with mini-
mized side effects or a faster onset of action. Other preclinical studies show that 5-HT6
agonism can be used in the treatment of depression. The reduction in the immobility
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of mice in the FST after the administration of WAY208466, a selective potent agonist of
the 5-HT6 receptor, has been demonstrated [262]. The 5-HT6 receptor partial agonist,
EMD386088, caused antidepressant- and anxiolytic-like effects after intrahippocampal
administration [263]. This also occurred after acute and chronic treatment in rats [264],
possibly because it directly stimulated the receptor. The stimulation of the 5-HT6 receptor
may initiate the biochemical and behavioral effects induced by SSRIs (fluoxetine) [122].
On the other hand, the 5-HT6 receptor agonist LY-586713 increases the expression of BDNF
(a marker of cellular antidepressant activity) in the hippocampus after just a single admin-
istration [265]. In comparison, SSRIs require multiple applications to produce the same
effect [240]. Therefore, it is unclear what functional 5-HT6 receptor ligand profile (antag-
onism or agonism) will be more beneficial in the treatment of depression. Moreover, the
exact mechanism by which 5-HT6 ligands induce antidepressant effects is unknown and
may include effects on other neurotransmission systems [260,266]:
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• The distribution of the 5-HT6 receptor in the limbic and cortical regions of the brain
may suggest that 5-HT6 receptors play an important role in the pathogenesis and/or
treatment of depression;

• Several tricyclic and atypical antidepressants exhibit nanomolar 5-HT6 receptor bind-
ing. The inhibition of the 5-HT6 receptor potentiates the effects of clinically used
antidepressants. This synergistic effect is interesting in the search for a multimodal
antidepressant therapy with minimized side effects or a faster onset of action;

• It is not exactly clear what functional 5-HT6 receptor ligand profile (antagonism or
agonism) will be more beneficial in the treatment of depression. Moreover, the exact
mechanism by which 5-HT6 ligands induce antidepressant effects is unknown and
may include effects on other neurotransmission systems.

3.10. The 5-HT7 Receptors

The 5-HT7 receptor is highly expressed in the thalamus, hypothalamus, hippocampus,
and cortex [267]. The results of immunolocation and autoradiography studies are generally
consistent with the pattern of mRNA distribution [268,269], suggesting a dominant soma-
todendritic localization. The physiological role of 5-HT7 receptors is to regulate circadian
rhythm, sleep, and mood [270].

As with the 5-HT6 receptors, several antidepressants [271] and antipsychotics [272]
have been found to have a high affinity for the 5-HT7 receptor, leading to much further
research into its antidepressant activity. One preclinical study in rats showed that several
antidepressants, both tricyclic and SSRIs, induce c-fos expression in a manner consistent
with 5-HT7 receptor activation within the suprachiasmatic nucleus, and that chronic treat-
ment with antidepressant drugs downregulates 5-HT7 receptor binding [271].

Preclinical studies also indicate the antidepressant and anxiolytic effects of the selective
5-HT7 receptor antagonist, SB-269970, in rodents [273], as well as a synergistic interaction
between subeffective doses of this agent and antidepressants, leading to a reduction in
immobility in both the FST and the TST [274,275]. The intrahippocampal administra-
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tion of SB-269970 (Figure 10) induced an antidepressant effect in the FST in rats [276].
The co-administration of citalopram and SB-269970 increased the activity of serotonin neu-
rons in rats and improved the antidepressant effect in the TST [274]. SB-269970 enhanced
the antidepressant effect of antidepressants (citalopram, imipramine, desipramine, and
moclobemide) in the FST in mice [275]. It was also shown that the administration of
SB-269970 for only one week caused the behavioral, electrophysiological, and neuroanatom-
ical changes that usually occur after a long-term treatment with SSRIs. Therefore, 5-HT7
receptor antagonists might represent a new class of antidepressants with a faster thera-
peutic effect. JNJ-18038683, another 5-HT7 receptor antagonist, was also effective in mice
TST [277]. Moreover, the compound potentiated serotonin transmission, REM suppression,
and antidepressant-like behaviour induced by citalopram in rodents [277]. The above
studies indicate that the participation of the 5-HT7 receptor in the antidepressant-like
action, and blockade of the 5-HT7 receptor may not only induce but accelerate this action.
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In addition, the genetic and pharmacological inactivation of 5-HT7 receptors partially
reversed phencyclidine-induced deficits of pre-pulse inhibition, an animal model for an-
tipsychotic activity [278]. Similarly, it should also be noted that the atypical antipsychotic
aripiprazole, which has a high affinity for the 5-HT7 receptor, is sometimes used to en-
hance the effects of traditional antidepressants [279]. Similarly, there are reports that the
antidepressant effect of amisulpride is mediated by its action on 5-HT7 receptors [280].

Vortioxetine is a high affinity inhibitor of the human 5-HT transporter, 5-HT3 and
5-HT7 receptors, and a 5-HT1A agonist [281]. Although the affinity of vortioxetine for the
rat 5-HT7 receptor is lower compared to the human receptor [282], subacute administration
(within 3 days) of an effective dose of vortioxetine rapidly lowers rat 5-HT7 receptor
levels [283]. This preclinical evidence suggests that vortioxetine has a relatively low affinity
for the 5-HT7 receptor compared to other 5-HT receptor subtypes but inhibits its action
with a rapid 5-HT7 receptor downregulation as an inverse agonist, similar to other 5-HT7
receptor-inhibiting mood-stabilizing atypical antipsychotics: clozapine, lurasidone, and
olanzapine [283,284]. In other words, the rapid-acting antidepressant and anxiolytic actions
of 5-HT7 receptor antagonism are worth reassessing in the context of drug development
after future clinical data have been accumulated. Overall, the 5-HT7 receptor is currently
considered a promising target for the development of antidepressants [285]. Recent clinical
studies have shown that both the intravenous and oral administration of vortioxetine
resulted in a significant improvement in depression (Montgomery Åsberg Depression
Rating Scale and Hospital Depression Scale) and anxiety (Hospital Anxiety Scale) after
3 days [77]:

• Several antidepressants have been found to have a high affinity for the 5-HT7 receptor,
leading to much further research into its antidepressant activity;

• The antagonists of the 5-HT7 receptor might represent a new class of antidepressants
with a faster therapeutic effect.

• Preclinical evidence suggests that vortioxetine has a relatively low affinity for the
5-HT7 receptor compared to other 5-HT receptor subtypes but inhibits its action with a
rapid 5-HT7 receptor downregulation as an inverse agonist. Both the intravenous and
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oral administration of vortioxetine resulted in a significant improvement in depression
and anxiety after 3 days.

4. Conclusions

The development of new antidepressants is based on monoamine systems. The tar-
geted pharmacological modulation of serotonergic transmission in the brain continues to
be a leading strategy in the search for new antidepressants. As can be seen from this review,
the serotonergic system offers great potential for the development of new antidepressant
therapies based on the combination of SERT inhibition with different pharmacological
activities towards the 5-HT system. The careful selection of molecular targets for the
proper use of the mechanisms of serotonergic autoregulation and selective/biased ac-
tivation or the blockade of relevant receptors (e.g., stimulation of postsynaptic 5-HT1A,
postsynaptic 5-HT1B, 5-HT2B and 5-HT4 receptors; or the blockade of presynaptic 5-HT1A,
presynaptic 5-HT1B, 5-HT2A, 5-HT3, and 5-HT7), which also influences other neurotrans-
mission systems, seems to be the most effective strategy for supplementing the activity of
“serotonin-enhancing” drugs in the near future. A better understanding of receptors and
the receptor signaling responsible for the effects of serotonin on neurogenesis could also
help in the development of new and more effective drugs.
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