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Abstract: The discovery of a large variety of functions of vitamin D3 and its metabolites has led
to the design and synthesis of a vast amount of vitamin D3 analogues in order to increase the
potency and reduce toxicity. The introduction of highly electronegative fluorine atom(s) into vitamin
D3 skeletons alters their physical and chemical properties. To date, many fluorinated vitamin D3

analogues have been designed and synthesized. This review summarizes the molecular structures of
fluoro-containing vitamin D3 analogues and their synthetic methodologies.
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1. Introduction

Fluorine is one of the halogens, known as a small and the most electronegative element.
Fluorine substitution offers a variety of advantages, such as changing the pKa and dipole
moment of the molecule, improving the chemical or metabolic stability, and enhancing the
binding affinity to the target protein. Furthermore, it has a small atomic radius, similar
to that of a hydrogen atom. Due to their unique properties, fluorine atoms have been
incorporated into many drugs, drug candidates, and agricultural chemicals [1–12]. The con-
tribution of fluorine to drug development and medicinal chemistry, and the life science as
well as material science fields, is widely recognized around the world [13–17]. Many scien-
tists have been engaged in the practical synthesis of organofluorine compounds, including
fluorinated vitamin D3 analogues. Vitamin D3 (VD3) is a fat-soluble vitamin whose biologi-
cal function depends on metabolic activation by CYP enzymes [18]. Bioactivation of VD3
requires sequential oxidation steps at C-25 and C-1 catalyzed by vitamin D 25-hydroxylase
(CYP2R1) and 25-hydroxyvitamin D3-1α-hydroxylase (CYP27B1), respectively. The result-
ing B-secosterol, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3 (1)], is the fully active and
hormonal form of VD3. Moreover, 1α,25(OH)2D3 (1) and 25-hydroxyvitamin D3 [25(OH)D3
(2)] are degraded via hydroxylation at C23 or C24 catalyzed by 1α,25-dihydroxyvitamin D3-
24-hydroxylase (CYP24A1) [19]. C23 hydroxylation and subsequent three-step oxidation
lead to vitamin D3-26,23-lactone (3). On the other hand, C24 hydroxylation and subsequent
five-step oxidation lead to calcitroic acid (4) (Scheme 1) [19,20].

For slowing or preventing the biological degradation of the VD3 side chain, replacing
C-H with C-F bond(s) at appropriate positions should prolong their half-life in vivo, since
a C-F bond is stronger than a C-H bond chemically. The introduction of fluorine atoms
into VD3 analogues can also alter electron distribution, which can confer lower pKa at the
hydroxy group(s), change the dipole moment, and influence the conformation because of
their marked electron-withdrawing properties. Because of these unique properties, both
academic institutions and industries have designed and synthesized numerous fluorinated
VD3 analogues, similarly to other bioactive compounds with fluorine atoms. Most of them
show fluorination at the main metabolic site(s) and/or neighboring hydroxy group of
the VD3 molecule, namely either an A-ring or a side-chain moiety or both. This review
introduces fluorinated VD3 analogues and their synthetic methodologies, including some
basic biological activities.
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Scheme 1. Deactivation metabolic pathways of 25(OH)D3 (2) and 1α,25(OH)2D3 (1). 
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On the VD3 A-ring, 1α-hydroxylation is the final and essential step to produce the 

hormonal form of VD3 from 25(OH)D3 (2), and 1α,25(OH)2D3 (1) exerts a range of physio-
logical activities by binding to the vitamin D receptor (VDR). The A-ring moiety is an-
chored in the VDR ligand-binding pocket through four hydrogen-bonding interactions, 
i.e., the 1α-hydroxy group to Ser233 and Arg270, and the 3β-hydroxy group to Tyr143 and 
Ser274 [21]. As expected, based on the importance of the A-ring moiety, many A-ring 
fluorinated VD3 analogues have been synthesized and evaluated regarding their biologi-
cal activities. 

2.1. 1-Fluorinated VD3 Analogues 
DeLuca and coworkers described the first synthesis of 1-fluoro-VD3 for the purpose 

of studying the possibility of using it as a kind of VD3 antagonist against 1α-hydroxylase 
in 1979 [22]. They prepared 1α-hydroxyvitamin D3-3-acetate by the selective acetylation 
of 1α-hydroxyvitamin D3 [1α(OH)D3 (5)] and used it as a starting material. The fluorina-
tion step was achieved by N,N-(diethylamino)sulfur trifluoride (DAST) to afford 1-fluo-
rovitamin D3 (6) (Scheme 2). The authors did not assign its C1 configuration in the report. 
The biological evaluation revealed that 6 demonstrated a relative preference for stimulat-
ing bone calcium mobilization with respect to intestinal calcium transport after metabo-
lism in vivo, and 6 was a weak agonist that could not be used as an anti-vitamin D agent. 

Scheme 1. Deactivation metabolic pathways of 25(OH)D3 (2) and 1α,25(OH)2D3 (1).

2. A-Ring Fluorinated VD3 Analogues

On the VD3 A-ring, 1α-hydroxylation is the final and essential step to produce the
hormonal form of VD3 from 25(OH)D3 (2), and 1α,25(OH)2D3 (1) exerts a range of physio-
logical activities by binding to the vitamin D receptor (VDR). The A-ring moiety is anchored
in the VDR ligand-binding pocket through four hydrogen-bonding interactions, i.e., the 1α-
hydroxy group to Ser233 and Arg270, and the 3β-hydroxy group to Tyr143 and Ser274 [21].
As expected, based on the importance of the A-ring moiety, many A-ring fluorinated VD3
analogues have been synthesized and evaluated regarding their biological activities.

2.1. 1-Fluorinated VD3 Analogues

DeLuca and coworkers described the first synthesis of 1-fluoro-VD3 for the purpose of
studying the possibility of using it as a kind of VD3 antagonist against 1α-hydroxylase in
1979 [22]. They prepared 1α-hydroxyvitamin D3-3-acetate by the selective acetylation of 1α-
hydroxyvitamin D3 [1α(OH)D3 (5)] and used it as a starting material. The fluorination step
was achieved by N,N-(diethylamino)sulfur trifluoride (DAST) to afford 1-fluorovitamin
D3 (6) (Scheme 2). The authors did not assign its C1 configuration in the report. The
biological evaluation revealed that 6 demonstrated a relative preference for stimulating
bone calcium mobilization with respect to intestinal calcium transport after metabolism
in vivo, and 6 was a weak agonist that could not be used as an anti-vitamin D agent.

Next, DeLuca et al. designed and synthesized 1α,25-difluorovitamin D3 (7) in 1981 [23].
As shown in Scheme 3, it was synthesized from either 1α,25(OH)2D3 3-acetate (8) or
1α,25(OH)2-3,5-cyclovitamin D3 (9) using DAST as a fluorination reagent. The authors
explained that the stereochemistry at C1 was 1α in the report, but they revised it to 1β
in 1984 [24].Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 3 of 27 

 

 

 
Scheme 2. DeLuca’s direct fluorination approach to 1-fluorovitamin D3 (6). 

Next, DeLuca et al. designed and synthesized 1α,25-difluorovitamin D3 (7) in 1981 
[23]. As shown in Scheme 3, it was synthesized from either 1α,25(OH)2D3 3-acetate (8) or 
1α,25(OH)2-3,5-cyclovitamin D3 (9) using DAST as a fluorination reagent. The authors ex-
plained that the stereochemistry at C1 was 1α in the report, but they revised it to 1β in 
1984 [24]. 

 
Scheme 3. Direct C1 and C25 fluorination approach to 1α,25-difluorovitamin D3 (7). 

The authors evaluated the biological properties of 1α,25-difluorovitamin D3 (7) and 
demonstrated that it had essentially no vitamin D activity. These results strongly sup-
ported the idea that C1 and C25 hydroxylation are essential aspects of vitamin D function. 
Initially, since both the C1 and C25 positions of VD3 were blocked with fluorine atoms, it 
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Scheme 3. Direct C1 and C25 fluorination approach to 1α,25-difluorovitamin D3 (7).

The authors evaluated the biological properties of 1α,25-difluorovitamin D3 (7) and
demonstrated that it had essentially no vitamin D activity. These results strongly supported
the idea that C1 and C25 hydroxylation are essential aspects of vitamin D function. Initially,
since both the C1 and C25 positions of VD3 were blocked with fluorine atoms, it might
have shown the anti-vitamin D activity of 25-hydroxylation of VD3 in vivo. However, 7
did not exhibit the expected inhibitory activity against the 25-hydroxylation of VD3.

In 1984, 1α-fluorovitamin D3 (10) and 1α-fluoro-25(OH)D3 (11) were synthesized
utilizing a steroid A-ring epoxide as the starting material in order to confirm the stereo-
chemistry at C1 (Scheme 4) [24,25].
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Scheme 4. Synthesis of 1α-fluoro-VD3 (10) and 1α-fluoro-25(OH)D3 (11) from sterols.

A comparison of the spectral data of the report [24] and previous ones [22,23] revealed
that the reported 1α-fluorovitamin D3 in 1979 [22] and 1α,25-difluorovitamin D3 in 1981 [23]
were, in fact, 1β-fluorovitamin D3 and 1β,25-difluorovitamin D3, respectively.

On the other hand, although 1α-fluoro-25(OH)D3 (11) showed no stimulation of
intestinal calcium transport or bone calcium mobilization activities at a dosage level
of 1.3 µg, its binding affinity to chick intestine VDR was 30 times greater than that of
25(OH)D3.



Int. J. Mol. Sci. 2021, 22, 8191 4 of 25

A convergent synthetic route to 1-fluoro-VD3 analogues was described by Uskoković
and coworkers using an A-ring key fragment, a 1α-fluorinated A-ring precursor (12),
which was prepared from (S)-(+)-carvone (13), in 1990 (17 steps in 4%) (Scheme 5) [26],
as well as an A ring from VD3 in 1991 (12 steps) (Scheme 6) [27]. A lithium anion of
the A-ring phosphine oxide (12) underwent a Wittig–Horner coupling reaction with the
8-keto-CD-ring (14) to afford the desired 1α-fluoro-25(OH)D3 (11).
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Scheme 6. Alternative convergent synthetic approach to 1α-fluoro-25(OH)D3 (11) using the A-ring moiety (12), available
from the A-ring of VD3.

Later, Uskoković’s group utilized the 1α-fluoro-A-ring (12) to synthesize six 1α-fluoro-
VD3 analogues with two different side chains at C20 (Gemini analogues). They prepared
six 8-keto-CD-rings (16–21) starting from the methyl ester (15) and coupled it with 12 under
basic conditions (Scheme 7) [28]. The anticancer activity of these compounds was tested,
but 1α-fluorination did not effectively promote the activity.
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In 2019, Uesugi and colleagues published the first synthesis of 1-fluoro-19-norVD3 ana-
logues [29]. They constructed 1-hydroxy-19-norvitamin D3 structures with a modified Julia
olefination method [30], and the direct deoxyfluorination of C1 yielded the corresponding
1-fluorinated analogues (22,23). In this reaction sequence, shown in Scheme 8, they also
obtained 3-fluoro-19-norVD3 analogues (24,25). Some of these analogues were poor VDR
binders but showed potent sterol regulatory element-binding protein (SREBP) inhibitory
activity via inducing SREBP cleavage-activating protein (SCAP) degradation [29].
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2.2. 2-Fluorinated VD3 Analogues

Several 2-fluorinated VD3 analogues have been reported to date, because fluorine
substitution at this position can change the A-ring conformation and pKa value of the
neighboring 1α- and 3β-hydroxy groups. The first synthesis of 2β-fluoro-VD3 was reported
by Ikekawa and coworkers in 1980, in which nucleophilic fluorination using KHF2 to 1,2α-
epoxycholesterol gave 2β-fluoro-1α(OH)D3 (26), (Scheme 9) [31]. It was noted that the
biological activity of 26 was increased [32].
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Next, 2α-fluorovitamin D3 (27) was also synthesized, and its biological activity was
tested in 1986 [32]. Electrophilic 2α-fluorination of 3,6β-diacetoxycholest-2-ene (28) using
CsSO4F gave 2α-fluoroketone (29). To construct the B-secosteroidal structure, conventional
photochemical conversion and subsequent thermal isomerization were applied (Scheme
10) [32]. The biological effects of 27 on intestinal calcium transport and bone calcium
mobilization as well as the serum calcium concentration at a dosage level of 500 ng for
rats were measured, and the activities were found to be essentially equivalent to those of
VD3 itself.
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The synthesis and biological activities of 2β-fluoro-1α,25-dihydroxyvitamin D3 (30) were
reported by Scheddin et al. in 1998 [33]. The synthetic route was similar to Ikekawa’s [31],
as shown in Scheme 11, and the biological evaluation revealed that the synthetic 2β-fluoro-
1α,25-(OH)2D3 (30) exhibited greater potency in vitro, for example, six-times higher affinity
for VDR, nearly identical affinity for the vitamin D-binding protein (DBP), and 90-times
higher antiproliferative activity toward C3H10T1/2 cells under serum-containing conditions,
as well as five-times greater adipogenesis inhibitory activity than the natural hormone
1α,25(OH)2D3 (1).
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The catalytic asymmetric stereoselective synthesis of the A-ring precursor of the 19-nor
type 2α-fluorovitamin D3 analogue (31) and its synthesis were reported by Mikami et al.
[34,35]. The regio- and stereo-selective 2α-fluorination was achieved via a ring opening
reaction of chiral epoxide (32) mediated by HfF4/Bu4NH2F3, the asymmetric catalytic
carbonyl-ene cyclization was used to construct the 6-membered A-ring precursor, and
the subsequent coupling reaction with the CD ring afforded 2α-fluoro-19-normaxacalcitol
(31) (Scheme 12). This 2α-fluoro-22-oxa-19-nor analogue (31) had very low DBP-binding
affinity but four-times stronger VDR-binding potency than its 22-oxa-19-nor counterpart
and also showed significant transactivation activity [34]. It was also shown that 31 was
highly effective in inhibiting metastatic tumor growth in vivo without toxicity in terms of
hypercalcemia and weight loss [35].
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Posner’s group showed the first example of synthesis of the 2,2-difluorovitamin D3
analogue in 2002 [36]. They synthesized the racemic 2,2-difluoro substituted A-ring phos-
phine oxide (33) from trifluoroethanol (7% in 13 steps). A coupling reaction of 33 with the 8-
keto-CD-ring and subsequent deprotection yielded the 2,2-difluoro-1,25-dihydroxyvitamin
D3 analogues in the ratio of 5:1 (1α,3β (34):1β,3α) (Scheme 13). The diastereomers were
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separated with reversed-phase HPLC to afford the target 2,2-difluoro-1α,25(OH)2D3 (34).
Biological evaluation revealed that 34 exhibited antiproliferative activity similar to that of
1α,25(OH)2D3 (1) and was 2-3 times more transcriptionally active than 1 in rat osteosar-
coma cells, even though the human VDR-binding affinity was 9.6% relative to that of 1.
Compound 34 showed strong calcemic activity in vivo.
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Scheme 13. Posner’s synthetic route to 2,2-difluoro-1α,25-dihydroxyvitamin D3 (34) from 2,2-difluoro-A-ring (33) via an
inverse-electron-demand Diels–Alder reaction between a pyrone diene and difluorovinyl ether.

2.3. 3-Fluorinated VD3 Analogues

The C3 position of VD3 has a β-hydroxy group, and substitution of the hydroxy
with a fluorine atom is of fundamental interest. There are several reports of replacing the
C3-hydroxy group with a fluorine atom in order to demonstrate the expected positive
effects on biological activity.

The synthesis of 3β-fluoro-3-deoxyvitamin D3 (35) from 3β-fluorocholesta-5,7-diene
(36) via photochemical transformation followed by thermal isomerization was described
by Segal et al. in 1976 [37]. It was found that 3β-fluoro-3-deoxyvitamin D3 (35) had an
antirachitic effect analogous to VD3. On the other hand, in 1978, Mazur and coworkers
designed and synthesized 3β-fluoro-3-deoxy-1α-hydroxyvitamin D3 (37) to elicit VD3
activity. The 3β-fluoro group was constructed from (6R)-hydroxy-3,5-cyclovitamin D3 (38)
by treatment with HF (Scheme 14) [38]. The biological activities of the newly synthesized
analogue were tested, and the fluoro-analogue (37) could actively induce the formation of
a calcium-binding protein and stimulate intestinal calcium absorption in rachitic chicks.
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Later, in 1985, Kumar and coworkers reported the synthetic route to 3β-fluoro-3-
deoxyvitamin D3 (35) starting from 7-dehydrocholesterol (39) via 3-deoxy-3-fluoro-7-
dehydrocholesterol (36) [39]. The B-ring protected PTAD (4-phenyl-1,2,4-triazoline-3,5-
dione) adduct (40) was reacted with DAST to yield a fluorinated product (41), and sub-
sequent deprotection of 41 gave 3-deoxy-3-fluoro-7-dehydrocholesterol (36) (Scheme 15).
To investigate the influence of the replacement of the C3-hydroxy group with fluorine,
they compared the biological activities of VD3, 3-deoxyvitamin D3, and 3β-fluoro-3-
deoxyvitamin D3 (35) and revealed that 35 was less active than VD3 and more active
than 3-deoxyvitamin D3 in terms of intestinal calcium transport and bone calcium mobi-
lization in vivo.
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As mentioned in Section 2.1, Uesugi and colleagues reported the first synthesis of
3-fluoro-19-norVD3 analogues and evaluated their SREBP inhibitory activity vs. VDR
activity (see Scheme 8) [29].

2.4. 4-Fluorinated VD3 Analogues

Yamada and coworkers reported 4,4-difluorovitamin D3 (42) and 4,4-difluoro-1α,25(OH)2
D3 (43) in an A-ring conformational study in 1999, and these analogues were synthesized
starting with enones (44,45), which were constructed from ergosterol, respectively [40]. The
difluorination step was achieved by electrophilic fluorination under thermodynamic condi-
tions (Scheme 16). The binding affinity of 4,4-difluoro-1α,25(OH)2D3 (43) for VDR was only
ca. 1% of that of the natural hormone, 1α,25(OH)2D3 (1).
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3. Introduction of a Fluorine Atom into the Triene Part of VD3

3.1. 19-Fluorinated VD3 Analogues

In 1980, the first attempt to synthesize 19,19-difluorovitamin D3 (46) starting from
19-oxocholesteryl acetate (47) via photoirradiation and thermal isomerization reactions
using diene (48) failed, because the final thermal isomerization step by [1,7]-sigmatropic
rearrangement did not proceed in the presence of the difluoromethyl group at the C10
position (Scheme 17) [41].Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 11 of 27 
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using (PhSO2)2NF in the presence of LiHMDS (Scheme 18A). In 2000, the same group 
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sized both (10E)- and (10Z)-19-fluoro-1α,25(OH)2D3 (52,53) [43]. The binding affinity of 
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also established by the same group in 2001 (Scheme 18B) [44]. 

 
Scheme 18. Yamada’s approach to (10E)- and (10Z)-19-fluorovitamin D3 (50,51) in (A) and (10E)- and (10Z)-19-fluoro-
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Scheme 17. Mazur’s trial to synthesize 19,19-difluorovitamin D3 (46).

Later, in 1996, Yamada and coworkers showed a novel synthetic route to the first (10E)-
and (10Z)-19-fluorovitamin D3 (50,51) [42]. They prepared VD3-SO2 adducts (49) from
VD3, and fluorination at the C19 position was achieved by electrophilic fluorination using
(PhSO2)2NF in the presence of LiHMDS (Scheme 18A). In 2000, the same group showed
the regioselective introduction of a fluorine atom to the C19 position and synthesized
both (10E)- and (10Z)-19-fluoro-1α,25(OH)2D3 (52,53) [43]. The binding affinity of (10Z)-
19-fluoro-1α,25(OH)2D3 for VDR was ca. 10% compared with that of 1α,25(OH)2D3 (1).
The alternative synthetic route to 52 and 53 from a 10-oxo-19-norVD3 derivative was also
established by the same group in 2001 (Scheme 18B) [44].
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3.2. 6- and 7-Fluorinated VD3 Analogues

The synthesis of 6-fluorovitamin D3 (54) was described by Dauben et al. in 1985, and
the synthetic route started from 6-oxo-cholestanyl acetate (55) [45]. The key intermediate,
6-fluoro-7-dehydrocholesteryl acetate (56), was synthesized by allowing 55 to react with
piperidinosulfur trifluoride in the presence of sulfuric acid. To construct the triene system,
6-fluoro-7-dehydrocholesterol was irradiated, followed by thermal [1,7]-sigmatropic hydro-
gen rearrangement, to give the desired 6-fluorovitamin D3 (54) (Scheme 19). The obtained
6-fluorovitamin D3 (54) was air-sensitive, and decomposition proceeded. The biological
profile of the analogue was evaluated in vivo, revealing that 54 had no biological effect on
either intestinal calcium absorption or bone calcium mobilization. However, it significantly
inhibited both VD3- and 1α,25(OH)2D3-mediated intestinal calcium absorption through a
direct interaction with VDR [46].
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Furthermore, 6-fluoro-1α,25-dihydroxy-19-norvitamin D3 (57) and 7-fluoro-1α,25-
dihydroxy-19-norvitamin D3 (58) were synthesized by the Teijin research group in 2004 [47].
Takenouchi et al. prepared a C6-fluorinated A-ring (59) and C7-fluorinated CD-ring (60),
respectively. A Ni-catalyzed cross-coupling reaction with each CD-ring- or A-ring-activated
alkene counterpart was used to construct the diene structures of 57 and 58 (Scheme 20).
These compounds possessed 10–70% VDR binding affinity of that of 1α,25(OH)2D3 and
potential activity to induce HL-60 cell differentiation.
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4. CD-Ring Fluorinated VD3 Analogues: 11-Fluorinated VD3 Analogues

To our knowledge, only one report has been published on the synthesis of CD-ring
fluoro-VD3 analogues. In 1994, De Clercq and coworkers designed and synthesized 11α-
and 11β-fluorovitamin D3 analogues (61–64) with the aim of inducing a conformational
change from s-trans to s-cis at the C6-C7 single bond via expected hydrogen bond for-
mation between the C11-F and C1α-OH groups [48]. Enone (65), readily available from
Grundmann’s ketone, was used as a starting material. Epoxidation of 65, followed by
reductive opening with lithium dimethylcuprate, gave the C11α-OH functional group
(66). After coupling with A-ring phosphine oxides, the C11α-OH group was treated with
N-(2-chloro-1,1,2-trifluoroethyl)diethylamine (FAR) to give C11α-F and C11β-F isomers
as well as an elimination product at a ratio of 3:1:1 (Scheme 21). NMR spectra analyses
of the 11-fluoro-1α(OH)D3 showed that all analogues had a large J6-7 coupling constant,
reflecting an almost exclusive s-trans extended geometry without intramolecular hydrogen
bonding between C11-F and 1α-OH.
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5. Side-Chain Fluorinated VD3 Analogues

The CYP24A1 pathway is well-known as the deactivation pathway of both 25(OH)D3
(2) and 1α,25(OH)2D3 (1) [19]. Varieties of side-chain-fluorinated VD3 analogues have been
actively synthesized because of the expected slower catabolism resulting from the presence
of fluorine atoms at the oxidation site or adjacent area.

5.1. 22-Fluorinated VD3 Analogues

In 1986, Kumar and coworkers described the synthesis of 22-fluorovitamin D3 (67)
starting from (22S)-cholest-5-ene-3β,22-diol (68) [49]. Selective protection of the C3 hy-
droxy group as an acetate, followed by fluorination at the C22 position by DAST, gave
22-fluorocholest-5-en-3β-acetate (69). After forming the C5-7 diene unit in the B ring,
photolysis and thermal isomerization yielded the target 22-fluorovitamin D3 (67) without
assigning C22 stereochemistry (Scheme 22). They tested the biological activities of the ana-
logue in vitro and in vivo, referring to the potency of intestinal calcium transport, serum
calcium level, calcium-binding protein induction, plasma vitamin D-binding protein (DBP),
and VDR affinities, and concluded that the introduction of a fluorine atom to C22 resulted
in the compound, with weak biological activities and poor binding to DBP compared with
VD3 itself.
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5.2. 23-Fluorinated VD3 Analogues

As mentioned in the Introduction, the C23 position of VD3 is one of the essential
metabolic sites of CYP24A1; therefore, C23-fluorinated VD3 analogues have been designed
and synthesized based on the idea of blocking the oxidative position. Ikekawa and col-
leagues achieved the first synthesis of a C23-fluoro-VD3 analogue, 23,23-difluoro-25(OH)D3
(70), in 1984 [50]. For the synthesis of 70, the triene structure was constructed by applying
the well-established route through 5,7-diene steroids, and the difluoro unit was introduced
using DAST into a reactive α-ketoester (71) (Scheme 23).
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Later, in 2019, our group synthesized (23R)-23-fluoro-25(OH)D3 (75) and its 23S-iso-
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CD- rings (77,78) (Scheme 25) [53]. The preliminary biological evaluation revealed that the 
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23,23-difluoro-1α,25(OH)2D3 (72) is also shown.

The same group continued to report 23,23-difluoro-1α,25(OH)2D3 (72) by the enzy-
matic 1α-hydroxylation of 70 in 1985 [51]. Their biological activities were evaluated, and
23,23-difluoro-25(OH)D3 (70) was 5-10 times less active than 25(OH)D3 in stimulating
intestinal calcium transport, bone calcium mobilization, mineralization of rachitic bone,
etc., and 23,23-difluoro-1α,25(OH)2D3 (72) was one-seventh as active as 1α,25(OH)2D3 in
binding to VDR.

Ikeda and coworkers of the Sumitomo research group reported the synthesis of (23R)-
23,26,26,26,27,27,27-heptafluoro-1α,25(OH)2D3 (73) and its 23S isomer (74) in 2000 [52]. The
starting methyl ketone was available from VD2, and a subsequent hexafluoroacetone (HFA)
aldol reaction gave a 23-oxo derivative, which was reduced to 23R- and 23S-secondary
alcohols that could be separated and subjected to deoxyfluorination using DAST to afford
73 and 74 (Scheme 24). Both analogues showed higher VDR-binding affinity and HL-60
cell differentiation activity than falecalcitriol.
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Later, in 2019, our group synthesized (23R)-23-fluoro-25(OH)D3 (75) and its 23S-isomer
(76) starting from the Inhoffen–Lythgoe diol via the key intermediate 23-hydroxy-CD- rings
(77,78) (Scheme 25) [53]. The preliminary biological evaluation revealed that the 23S-isomer
(76) showed higher resistance to CYP24A1 metabolism than its 23R-isomer (75).



Int. J. Mol. Sci. 2021, 22, 8191 14 of 25
Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 15 of 27 
 

 

 
Scheme 25. Stereoselective C23-fluorination of 23-hydroxy-CD-rings using PyFluor. 

5.3. 24-Fluorinated VD3 Analogues 
Since oxidation of the hydroxy function at the C24 position catalyzed by CYP24A1 is 

one of the important pathways to deactivate both 25(OH)D3 and 1α,25(OH)2D3, develop-
ing practical methods to construct the C24-fluoro unit on the VD3 skeleton has been pur-
sued since 1979. The first synthesis of the 24,24-difluorovitamin D3 analogue was reported 
independently by Takayama’s group [54] and Kobayashi-Ikekawa’s group [55]. Both syn-
thetic routes involved the key intermediate (79), and the two groups synthesized the same 
analogue, 24,24-difluoro-25(OH)D3 (80). For the construction of the 24,24-difluoro unit, 
Takayama and coworkers utilized the reaction of α-ketoester (81), which was derived 
from lithocholic acid, with DAST. On the other hand, Kobayashi et al. used the reaction 
of steroidal enol ether, derived from cholic acid, with difluorocarbene (Scheme 26). 

 
Scheme 26. Takayama’s and Kobayashi-Ikekawa’s synthetic routes to 24,24-difluoro-25(OH)D3 (80). 

In 1980, Kobayashi-DeLuca’s group subsequently demonstrated that kidney homog-
enates from the chicken converted 24,24-difluoro-25(OH)D3 (80) to 24,24-difluoro-
1α,25(OH)2D3 (82) [56]. The results of the biological evaluation revealed that 82 and its 
nonfluorinated counterpart 1α,25(OH)2D3 (1) equipotently stimulate intestinal calcium 
transport and bone calcium mobilization in vivo, while in another in vitro system, 82 was 
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5.3. 24-Fluorinated VD3 Analogues

Since oxidation of the hydroxy function at the C24 position catalyzed by CYP24A1 is
one of the important pathways to deactivate both 25(OH)D3 and 1α,25(OH)2D3, developing
practical methods to construct the C24-fluoro unit on the VD3 skeleton has been pursued
since 1979. The first synthesis of the 24,24-difluorovitamin D3 analogue was reported
independently by Takayama’s group [54] and Kobayashi-Ikekawa’s group [55]. Both
synthetic routes involved the key intermediate (79), and the two groups synthesized the
same analogue, 24,24-difluoro-25(OH)D3 (80). For the construction of the 24,24-difluoro
unit, Takayama and coworkers utilized the reaction of α-ketoester (81), which was derived
from lithocholic acid, with DAST. On the other hand, Kobayashi et al. used the reaction of
steroidal enol ether, derived from cholic acid, with difluorocarbene (Scheme 26).
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In 1980, Kobayashi-DeLuca’s group subsequently demonstrated that kidney ho-
mogenates from the chicken converted 24,24-difluoro-25(OH)D3 (80) to 24,24-difluoro-
1α,25(OH)2D3 (82) [56]. The results of the biological evaluation revealed that 82 and its
nonfluorinated counterpart 1α,25(OH)2D3 (1) equipotently stimulate intestinal calcium
transport and bone calcium mobilization in vivo, while in another in vitro system, 82 was
found to be four times more potent than 1α,25(OH)2D3 (1).

In 1990, Kumar’s group synthesized 24,24-difluoro-25-hydroxy-26,27-dihomovitamin
D3 (83) and its 1α-hydroxy analogue (84) from 3β-hydroxy-22,23-dinorcholenic acid using
a Reformatsky reaction in their synthetic route (Scheme 27) [57]. Both analogues showed
similar biological activities, such as intestinal calcium transport and bone calcium mobi-
lization in vivo, to those of the respective nonfluorinated counterparts and also 25(OH)D3
or 1α,25(OH)2D3.
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Scheme 27. Kumar’s synthetic approach to 24,24-difluorovitamin D homologues (83,84) using the Reformatsky reaction.

In 1992, two alternative linear synthetic routes to 24,24-difluoro-1α,25(OH)2D3 (82)
were reported by Takayama et al. using the Reformatsky reaction with ethyl bromodiflu-
oroacetate or Horner–Emmons reaction as the key step, respectively (Scheme 28) [58,59].
The starting material of the former was 1α-hydroxydehydroepiandrosterone, with a 3.8%
overall yield of 82 [58], and that of the latter was vitamin D2, with a 9.3% overall yield
of 82 [59].
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As shown in Scheme 29A, the same group synthesized 24,24-difluoro-1α(OH)D3 (85)
from a steroidal skeleton in 1996 [60]. This compound showed higher activity than 24,24-
difluoro-1α,25(OH)2D3 (82) in intestinal calcium absorption. In 1998, Iwasaki-Takayama’s
group reported the synthesis of (25R)- and (25S)-24,24-difluoro-1α,25,26-trihydroxyvitamin
D3 (86,87), including the X-ray crystallographic analysis of a synthetic intermediate to
determine C25-stereochemistry, and proved that the 25S-isomer (87) was the main CYP24-
metabolite of 82 (Scheme 29B) [61].
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The 24,24-difluoro-19-norVD3 analogues including 20-epi-versions (88–91) were re-
ported by DeLuca et al. in 2015 [62]. In contrast to the previous synthetic methods
starting from steroid skeletons, they demonstrated a convergent method utilizing the
Wittig–Horner reaction between 24,24-difluoro-CD-rings (92,93) and a lithium salt of a
phosphine oxide anion from A-ring precursors (Scheme 30). The 20S-derivatives showed
marked bone-mobilizing activity in vivo; however, 2-methylene substitution was required
for such elevated activity in the 20R series.

In 2019, our group developed the convergent synthesis of 24,24-difluoro-25(OH)D3
(80) using a coupling reaction between the 24,24-difluoro-CD ring ketone derived from
the Inhoffen–Lythgoe diol via 94 and an A-ring phosphine oxide (Scheme 31A) [63]. We
subsequently synthesized a novel vitamin D-based VDR-silent SREBP inhibitor, KK-052,
from 94 (Scheme 31B) [64].



Int. J. Mol. Sci. 2021, 22, 8191 17 of 25

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 18 of 27 
 

 

 
Scheme 30. DeLuca’s convergent approach to 24,24-difluoro-1α,25(OH)2-19-norVD3 (88,89) and the 2-exomethylene ana-
logues (90,91) including their 20-epi versions using the Wittig–Horner reaction. 

In 2019, our group developed the convergent synthesis of 24,24-difluoro-25(OH)D3 
(80) using a coupling reaction between the 24,24-difluoro-CD ring ketone derived from 
the Inhoffen–Lythgoe diol via 94 and an A-ring phosphine oxide (Scheme 31A) [63]. We 
subsequently synthesized a novel vitamin D-based VDR-silent SREBP inhibitor, KK-052, 
from 94 (Scheme 31B) [64]. 

Scheme 30. DeLuca’s convergent approach to 24,24-difluoro-1α,25(OH)2-19-norVD3 (88,89) and the 2-exomethylene
analogues (90,91) including their 20-epi versions using the Wittig–Horner reaction.

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 19 of 27 
 

 

 
Scheme 31. Efficient construction of the 24,24-difluorinated CD-ring unit (94) and the subsequent A-ring coupling reaction 
(A). Synthesis of the novel SREBP-specific inhibitor KK-052 (B). 

Ikekawa’s group reported in 1979 the first synthesis of C24-monofluoro-25(OH)D3 
(95) from cholenic acid without assigning the C24 stereochemistry (Scheme 32) [55]. 

 
Scheme 32. Synthesis of 24-monofluoro-25(OH)D3 (95) using nucleophilic fluorination as a key step. 

Scheme 31. Efficient construction of the 24,24-difluorinated CD-ring unit (94) and the subsequent A-ring coupling reaction
(A). Synthesis of the novel SREBP-specific inhibitor KK-052 (B).



Int. J. Mol. Sci. 2021, 22, 8191 18 of 25

Ikekawa’s group reported in 1979 the first synthesis of C24-monofluoro-25(OH)D3
(95) from cholenic acid without assigning the C24 stereochemistry (Scheme 32) [55].
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After this, (24R)-24-fluoro-1α,25(OH)2D3 (96) was synthesized by Uskoković’s group
through linear (Scheme 33A) and convergent (Scheme 33B) synthetic routes in 1985 [65]
and 1988 [66], respectively. In this case, (24R)-24-fluoro-1α,25(OH)2D3 (96) showed a longer
plasma half-life and higher anti-rachitogenic activity than 1α,25(OH)2D3 in vivo.
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Scheme 33. (24R)-Fluoro-1α,25(OH)2D3 (96) was synthesized by Uskoković et al. through a linear synthetic route using 97
and optically active L-(-)-malic acid as a chiral synthon (A) and an alternative convergent route starting from a CD-ring
part, 98 (B).

5.4. 25-Fluorinated VD3 Analogues

The 25-hydroxylation is the initial metabolic conversion of VD3 by CYP2R1 or CYP27A1
[18], and 25(OH)D3 (2) is known as the major circulating metabolite in the human body.
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The first introduction of fluorine to C25, i.e., the synthesis of 25-fluoro-VD3, was reported
by DeLuca et al. in 1977 (Scheme 34A) [67]. C3-Selective O-acetylation of 25(OH)D3 (2)
and subsequent direct fluorination at the C25 position using DAST, followed by deacetyla-
tion, gave 25-fluorovitamin D3 (99). In 1978, Stern and coworkers synthesized 25-fluoro-
1α(OH)D3 (100) using the same approach (Scheme 34B) [68]. The results of the biological
evaluation indicated that 25-fluoro-1α(OH)D3 (100) was approximately equipotent to
1α(OH)D3 (5) in VDR binding and stimulating bone resorption in vitro, and the C25-fluoro
substituent behaved similarly to hydrogen, without elevating its biological potency.
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using DAST as a fluorinating reagent.

As described in Section 2.1, DeLuca’s group also synthesized 1,25-difluorovitamin D3
in 1981, and this compound was devoid of any biological activity [21].

5.5. 26,27-Hexafluorinated VD3 Analogues

Falecalcitriol (101) is 26,26,26,27,27,27-hexafluorinated VD3 and has been approved
for therapeutic use against secondary hyperparathyroidism in Japan [69,70]. Falecalcitriol
(101) was ca. 10 times more active in increasing bone calcium mobilization than the
natural hormone (1) in vivo [71]. Similarly to other fluorinated VD3 analogues, it was
metabolized more slowly than 1α,25(OH)2D3 (1) by CYP24A1, and interestingly, its major
metabolite (23S)-23-hydroxyfalecalcitriol (102) was equipotent to the parent compound
101 in its biological activity (Figure 1) [72–74]. The 23-hydroxylated 102 was specifically
glucuronidated by UGT1A3 [75].
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The first synthesis of 26,26,26,27,27,27-hexafluoro-25(OH)D3 (103) was reported by
Kobayashi et al. in 1980 [76], and the same group subsequently synthesized 26,26,26,27,27,27-
hexafluoro-1α,25(OH)2D3 (101) in 1982 [77]. In this case, 3β-Tetrahydropyranyloxychol-5-en-
24-ol tosylate was used as a starting material, and hexafluoroacetone (HFA) was utilized for
construction of the 26,26,26,27,27,27-hexafluoro unit (Scheme 35). The biological evaluation
revealed that 101 was approximately 5-10-fold more active than 1α,25(OH)2D3 (1) without
inducing severe hypercalcemia.
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Scheme 35. Synthesis of 26,26,26,27,27,27-hexafluoro-25(OH)D3 (103) and 26,26,26,27,27,27-hexafluoro-1α,25(OH)2D3 (101)
using hexafluoroacetone as a fluorine source.

Using the reaction of acetylides with excess HFA gas as the key step, syntheses of the
hexafluoroalkynyl-VD3 analogue (104), C-seco-hexafluoroalkynyl-VD3 analogue (105), and
the previously mentioned two-side-chain analogues 17-22 including alkene side chains
(Section 2.1) were reported by Ohira et al. in 1992 [78], by Wu et al. in 2002 [79], and
by Maehr et al. in 2009 [28], respectively (Scheme 36). Compound 104 had a potent
inducing effect on the differentiation of cancer cells, with little calcium mobilization activity.
Compound 105 showed comparable VDR-binding affinity to the natural hormone 1 and
had strong antiproliferative activity against four cancer cell lines in vitro, with 1% calcemic
activity compared with 1 in vivo. More recently, Sigüeiro et al. synthesized C22-diyne
analogues with a C17-methyl group, including the hexafluoropropanol unit at the terminal
(106), which showed potent VDR-binding affinity [80].
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Scheme 36. Combination of the hexafluoropropanol unit derived from hexafluoroacetone (HFA) and triple bond(s), which
brought conformational rigidity to the side chain.

Hayashi and colleagues described the introduction of the 26,26,26,27,27,27-hexafluoro
unit utilizing an aldol reaction [52]. The C23 ketone was treated with HFA in the presence
of LiHMDS to afford the HFA adduct (see Scheme 24 in Section 5.2).

As an alternative path to construct the hexafluoro unit, the nucleophilic trifluoromethy-
lation of methyl esters with Ruppert–Prakash reagent (CF3TMS) can be utilized. In our
group, 26,26,26,27,27,27-hexafluoro-25(OH)D3 (103) and 26,26,26,27,27,27-hexafluoro-CD
ring (107) were synthesized in 2018 starting from the methyl esters (108,110) through
trifluoromethylketones (109,111) as the intermediates (Scheme 37) [81].
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CD-ring precursor (107) using efficient two-step trifluoromethylation method.

6. Summary

This review summarized the historical fluorinated VD3 analogues with modification
from the A-ring to the end of the side-chain, including their synthetic methods. With the
aim of preventing or slowing their activation or degradation by CYPs, the A-ring and
side-chain have been mainly focused on, and numerous VD3 analogues containing the
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fluorine atom(s) have been synthesized. Hydroxylation at the C25 and C1α positions of
VD3 is necessary for the activation process of the molecule by CYP2R1/CYP27A1 and
CYP27B1, respectively; therefore, in general, the introduction of fluorine to these positions
decreases the biological activity through VDR if compared to non-fluorinated 25(OH)D3
or 1α,25(OH)2D3 as each parent VDR ligand. On the other hand, fluorination at the side
chain C23, C24, and C26(27) of VD3, where deactivating hydroxylation occurs based on
CYP24A1 metabolism, produces strong VDR agonists that have a long half-life in vivo.
Among them, falecalcitriol was successfully approved for the treatment of secondary
hyperparathyroidism in Japan. Discovery of the new functions of VD3 continues; for
example, the potent SREBP-inhibitory activity of 25(OH)D3 [82] and the new fluorinated
analogues with their efficient synthetic methods may contribute to the treatment of patients
with VD3-function-related disease in the future.
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