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Abstract: We report a Method to Search for Highly Divergent Tandem Repeats (MSHDTR) in protein
sequences which considers pairwise correlations between adjacent residues. MSHDTR was compared
with some previously developed methods for searching for tandem repeats (TRs) in amino acid
sequences, such as T-REKS and XSTREAM, which focus on the identification of TRs with significant
sequence similarity, whereas MSHDTR detects repeats that significantly diverged during evolution,
accumulating deletions, insertions, and substitutions. The application of MSHDTR to a search of
the Swiss-Prot databank revealed over 15 thousand TR-containing amino acid sequences that were
difficult to find using the other methods. Among the detected TRs, the most representative were
those with consensus lengths of two and seven residues; these TRs were subjected to cluster analysis
and the classes of patterns were identified. All TRs detected in this study have been combined into a
databank accessible over the WWW.

Keywords: tandem repeats; amino acid sequence; protein; mathematical method; cyclic alignment;
pairwise correlation

1. Introduction

Protein molecules have a certain spatial structure, which is correlated with the func-
tional role they play in the cell. Most proteins fold into a single specific conformation, which
is characteristic for globular proteins composed of stable domains, whereas unstructured
loop-forming fragments represent an insignificant part of the molecule. In contrast, non-
globular proteins contain intrinsically disordered regions and low-complexity sequences.
An important role in the formation of the spatial structure of the protein is played by
repeats [1,2]. Repeats are quite common in amino acid sequences, and it has been reported
that about 25% of proteins contain tandem repeats (TRs) [3]. The simplest and most com-
mon repeats form elements of the protein’s secondary structure. Thus, α-helices, which
contain non-polar amino acids at each third or fourth position [4], have seven-residue long
repeats with a consensus sequence axx–dxxx, where a and d are non-polar amino acids [5].
Structures such as 310-helices have a periodicity of about 2.5 residues [4], whereas β-layers
are characterized by alternation between polar and non-polar residues [6].

In most cases, there is an association between the repeat’s consensus length and
the protein’s 3D structure, on which the most popular classification of repeat-containing
proteins is based [7]. According to this, proteins with repeats fall into the following classes:

• crystalline (TR consensus length: two to three residues),
• fibrous (TR consensus length: three to four residues),
• solenoid (TR consensus length: 5–42 residues),
• proteins with domain-forming repeats (TR consensus length: ≥30 residues), including

a subclass of β-propellers (TR consensus length: 44–60 residues).

The interest in TR-containing proteins is not accidental, as they play diverse roles
in vital processes in the cell. Thus, proteins with repeats represent structural elements of
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cells and tissues (e.g., collagen and keratin) and provide a framework for protein–protein
interactions [8] or, conversely, prevent cross-domain aggregation [9]. They may have
catalytic [10] or inhibitory activity [11]. Furthermore, changes in the number of repetitive
motifs and their consensuses can lead to genetic diseases [12–14]. Therefore, analysis
of TRs in amino acid sequences should promote an understanding of protein structure
and function. However, repetitive sequences in proteins evolve much faster than the
other regions [15], and TRs may have weak identities owing to extensive evolutionary
divergence, during which they accumulated insertions and deletions (indels) as well
as substitutions of amino acids while preserving similar conformation and functional
activity of the proteins. Therefore, the relatedness of individual repeats can be overlooked
because of their significant sequence dissimilarity [16]. Although many methods and
algorithms for detecting highly divergent TRs have been introduced, there is still no
universal approach that can effectively identify TRs of an arbitrary length and degree of
evolutionary separation.

A major effort has been put into the search for TRs using mathematical methods.
Among these, statistical methods, although being the earliest, have not lost their relevance
and are still quite popular [17]. They are based on observations of residue frequencies at a
specific position in the consensus or the frequencies of occurrence of a substring in a given
string. According to statistical data, a certain measure is formed that characterizes the
collective similarity of repeats to each other. In earlier work [18], the Hamming distance
was used as such a measure. It is noted that the algorithm works quite quickly, but it is
suitable for finding only short repeats, with a consensus length of up to 10 amino acids and
without indels.

The methods most frequently used to search for TRs are based on constructing se-
quence alignment with a determined repetitive consensus or self-alignment. The alignment
method was one of the first applied to detect repeats in DNA sequences [19]. However,
unlike DNA, amino acid sequences contain 20 characters which are, at the same time, much
shorter and, thus, it is more difficult to search for statistically significant TRs. Therefore,
prior to alignment, the amino acid residues are often combined into groups according to
their physicochemical or spatial properties. For example, in the DAVROS algorithm, a
weight matrix was calculated by a structural alignment builder (SAP) and used to find
alignments between individual repeats [20], whereas in the Swelfe method, the angles
between consecutive carbon atoms in the protein chain were denoted by specific symbols
and used to re-code amino acid sequences prior to TR analysis [21].

Dynamic programming is used to find TRs with a consensus over 20 residues at
the 3D level. The ProStrip program is based on translating protein backbone dihedral
angles (calculated on the basis of four successive carbon atoms) into alpha characters for
repeat detection [22]. The T-REKS method applies the k-means classification algorithm to
accurately identify repeat lengths [23], and TRUST exploits information on the transitivity
of individual repeats [24]. XSTREAM, based on the seed extension approach [25], is a very
fast method that is suitable for full-scale scanning of amino acid sequence databanks [26].
Cyclic profile alignment, which uses previously defined periodic consensuses found by
the information decomposition method, has made it possible to identify TRs in 94 protein
families [27,28].

Since, from the mathematical point of view, TRs can be considered as periodicity in
protein sequences, spectral approaches are also widely applied to search for repeats [29–31].
Spectral methods perform equally well for repeats of different lengths and degrees of diver-
sity; however, they cannot detect periodicity if indels are present in individual periods [30].
An attempt was made to compensate for this drawback when the Fourier transform method
was used to find repeats in membrane proteins: the hydrophobicity function of a protein
fragment was averaged within a window of 9–11 residues, which was sliding along the
sequence [31].

Hidden Markov Models (HMMs) such as HHrep [32] and HHRepID [33] are also
used to find amino acid repeats. The idea is to build multiple alignments for the protein
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in question and use them to construct an HMM profile, which is then aligned with itself.
Multiple alignments are obtained by iteratively applying PSI-BLAST; an alternative is to
use multiple alignments constructed by other algorithms.

Recently, machine learning methods have become popular for big data analysis. These
algorithms work by setting up a program for specific patterns and applying it to recognize
a similar object in the analyzed sequence. For example, RAPHAEL software, which uses a
geometric approach that simulates manual classification by an expert, can reveal spatial
structures of the solenoid type, determine their periodicity, and assign indels [15]. Support
vector machines are used for training. However, although machine learning methods
are highly accurate, there is one significant drawback: they need prior information about
the search object, such as the length and type of the repeat consensus or correct multiple
alignment, which is not always available. Considering that the main goal is to identify TRs
when the only input data are an amino acid sequence, machine learning methods can be of
little help here.

Many programs for finding TRs are available as program codes or web servers, such as
ProSTRIP [22], Swelfe [21], RAPHAEL [15], REPETITA [34], TRUST [24], and RADAR [26].
All these tools show high efficacy in identifying TRs of the known repeat families and
accurately determine TR boundaries [15,22]; they work well if the TRs have accumulated
an average number of substitutions per amino acid of the consensus sequence S < 0.5, but
fail to detect repeats with a large number of residue substitutions and indels. However,
it is the TRs with a high degree of evolutionary divergence that are of particular interest
for studying the structural characteristics of protein molecules, as well as for further
deciphering evolutionary processes.

Here, we describe a Method to Search for Highly Divergent TRs (MSHDTR), which
can find repeats with S > 0.5 in the presence of indels. MSHDTR does not require any
information other than the amino acid sequence. Using MSHDTR, we detected highly
divergent TRs missed by the currently existing methods and constructed weight matrices
characterizing the consensus sequence of repeats, which could be further used by other
methods (for example, machine learning algorithms) to search for specific repeat domains
in proteins.

2. Results
2.1. Determination of the Level of Statistical Significance Z0

MSHDTR was implemented in the Fortran programming language using the MPI
parallel programming library. All calculations were performed in the computer cluster of
the Research Center of Biotechnology RAS (Moscow, Russia).

First, we determined the statistical significance level Z0 using 132,133 sequences
from the Swiss-Prot databank (release 2016_07; 551,987 sequences in total) denoted as the
sequence set Q. The symbols in each sequence of the set Q were then randomly shuffled
to obtain the set Qr; the two sets were searched for TRs with consensus lengths of 2–100
(the TR size was ≥14 residues, as recommended in [23]) and the false discovery rate (FDR)
was calculated as FP/(FP + TP), where FP and TP are false positive and true positive hits,
respectively. The number of TRs in the set Qr is equal to FP and that in the set Q to FP + TP.
For TRs with Z0 ≥ 6.0, FP = 1284 and FP + TP = 3720, which corresponds to the FDR of
34.5%; this FDR value was chosen because it is typical for most methods used to detect TRs
in proteins (see the section below).

The search for TRs in the Swiss-Prot databank produced 15,035 amino acid sequences
that contained TRs with different consensus lengths. Considering that one sequence
may have several non-overlapping TRs, the total number of identified regions with TRs
was 15,407.

2.2. Comparison of MSHDTR with Other Methods of TR Detection

To correctly compare the performance of MSHDTR with those of the T-REKS [23] and
XSTREAM [25] algorithms, we verified the similarity of their FDRs, which were calculated
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using the sets Q and Qr as described in Section 2.1. The FDRs for T-REKS with psim = 0.75
and XSTREAM with the default parameters were 33.5% and 31.3%, respectively, and could
be considered similar to that of MSHDTR (34.5%). In further analysis, we used T-REKS
with psim = 0.75, XSTREAM with default parameters, and MSHDTR with Z0 ≥ 6.0.

Next, MSHDTR, T-REKS, and XSTREAM were applied to various artificial sequences
with TRs. For this, we generated random sets of amino acid sequences, which contained
different numbers of repeats with a length n (2, 5, 7, 10, 20, 40, 60, 80, and 100 residues);
homo-repeats were excluded from consideration. Random fragments of length n were
created based on the average residue composition according to Swiss-Prot; for each n,
100 different random chunks were obtained, and each fragment was then repeated k times
(k = 4, 8, 16, 24, 32, and 50). As a result, we generated an amino acid sequence of length nk
that contained TRs of a consensus length n.

A total set of 5400 sequences, denoted as W(0), was used to perform the TR search
methods. In each sequence of set W(0), we introduced random indels at the rate of 1 per
100 residues and substitutions of a certain percent i (25%, 50%, 75%, 90%, 100%, 110%, 120%,
and 150%) and created the sets W(i). Each sequence from the sets W(i) was inserted into a
random position of a random sequence consisting of 600 residues, and the information was
stored to test the accuracy of TR boundary determination. TR identification in the sets W(i)
was considered to be correct if the consensus length of the found repeat exactly coincided
with n, and the TR-containing region overlapped with the artificial repeat region of length
nk by at least 50%. If several non-overlapping regions with the same n were found inside
the tested TRs, their lengths were summed during calculation of the intersection length.

The results of TR identification in the sets W(i) by T-REKS, XSTREAM, and MSHDTR
are shown in Table 1. All three methods revealed a relatively high percentage of TRs
in weakly divergent sequences. However, with the increase in mutation frequency, the
recognition efficiency of T-REKS and XSTREAM rapidly decreased and they could not
detect TRs in sequences with ≥50% random substitutions, whereas MSHDTR was able
to identify 17.5% of TRs with the divergence rate of 100%. At the same time, MSHDTR
missed some TRs; one possible reason was that it recognized highly divergent TRs when
nk was large enough and, consequently, overlooked short regions such as two-residue
fragments repeated four times, which were successfully identified by T-REKS. Therefore,
the next task of the study was to determine the application area of the developed method,
i.e., the conditions (nk and degree of evolutionary divergence) under which MSHDTR
could reliably identify TRs.

Table 1. Number of TRs with different degrees of evolutionary divergence identified in 5400 artificial
sequences by MSHDTR, T-REKS, and XSTREAM.

Divergence Degree
S, %

Number (Percent) of Detected Sequences with TRs

MSHDTR T-REKS XSTREAM

25 3194 (59.15) 2997 (55.50) 2622 (48.56)
50 2462 (45.59) 160 (2.96) 39 (0.72)
75 1730 (32.04) 7 (0.13) 4 (0.07)
90 1276 (23.63) 1 (0) 0 (0)

100 949 (17.57) 0 (0) 0 (0)
110 604 (11.19) 0 (0) 0 (0)
120 324 (6.00) 0 (0) 0 (0)
150 42 (0.78) 0 (0) 0 (0)

2.3. Determination of the Optimal Application Scope for MSHDTR

To determine the scope of the MSHDTR application, we calculated the divergence
degree of TRs found in Swiss-Prot using the following algorithm.

1. We let k be the number of TRs with a length n and built multiple alignments for the
TRs found. Columns with the number of residues less than k/2 were disregarded.
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2. The coincidence matrix M2(i, j), where i = 1, 2, . . . , 20 and j = 1 . . . n1, was calculated.
The length of the multiple alignment was n1 ≥ n; m2(i, j) was an element of the matrix
M2(i, j) filled according to the multiple alignment and was equal to the number of amino
acids of type i in column j of the multiple alignment.

3. For TRs, we calculated the consensus sequence. The consensus sequence s3(j) (j = 1,2,
. . . , n1), where i was in position j if m2(i, j) was the maximum for i = 1, 2, . . . , 20.

4. Finally, we calculated v, which was the number of residues in all repeats of the
multiple alignment that coincided with the respective position of the consensus sequence.
The total number of residues v1 was also determined as the sum of all elements of the
matrix M2(i, j). Then, the degree of divergence was determined as follows:

S = 1 − v
v1

(1)

MSHDTR, T-REKS, and XSTREAM were used to search for TRs in Swiss-Prot, and S
for the found TRs was calculated using Equation (1). The results indicated that T-REKS
and XSTREAM could identify more TRs than MSHDTR: 41,375 and 19,255 vs. 15,407,
respectively. However, it should be noted that the TRs detected by MSHDTR were very
different from those found by the other methods. In particular, we examined properties
such as the degree of divergence (S) and the length of the sequence fragment (L) where
TRs were found. Figure 1a shows the dependence of the number of TR-containing regions
(N) on the length L The function value represents the absolute number of regions whose
lengths was greater or equal to L. It can be seen from the graph that the lengths of most
such regions detected by T-REKS and XSTREAM did not exceed 100 residues (31 and 47,
respectively), whereas those identified by MSHDTR were much longer: 399 residues.

Figure 1b shows the dependence of the number of TR-containing regions (N) on
the degree of divergence S Equation (1). The value of the function shows the number of
regions with TRs that had a divergence degree greater or equal to the argument. Although
T-REKS detected almost 2.5 times more TRs than the other two methods, most of them
were short, practically identical repeats. Typically, T-REKS and XSTREAM identified TRs
with a high degree of similarity, whereas MSHDTR recognized repeats with significant
evolutionary divergence.
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Table 2 shows the number of TRs found in Swiss-Prot by the three methods with and
without filtering according to the S value; it is evident that at S > 0.5, only MSHDTR could
detect TRs.

Table 2. Number of TRs detected by MSHDTR, T-REKS, and XSTREAM before and after filtering.

Method Without Filter S > 0.1 S > 0.2 S > 0.3 S > 0.4 S > 0.5

MSHDTR 15,407 15,323 15,223 15,042 14,684 13,986
T-REKS 41,375 37,769 17,599 92 0 0

XSTREAM 19,255 17,305 10,440 5549 871 1

We also compared MSHDTR with a mathematical approach that implements hidden
Markov models [33]. The HHRepID software was obtained from the server [35]. For
testing, we created artificial repeats (SEQ0–SEQ7) with different percentages of random
substitutions (25%, 50%, 75%, 90%, 100%, 110%, 120%, or 150%). TRs were constructed
from 100 repeats with a consensus of seven residues and inserted into random positions
of random amino acid sequences 600 residues long. The positions of the artificial TRs in
random sequences are shown in Table 3 (l0, r0).

The identification was considered correct if the overlap with TRs was at least 50% and
the consensus length of the repeat differed from 7 by no more than 1 or a multiple of 7. The
results shown in Table 3 indicated that MSHDTR confidently identified the artificial TRs
(Z > 10.0) with a degree of evolutionary divergence of up to 120%; over that (150%), the
presence of TRs could hardly be detected (Z = 5.0). In all cases, the identified areas included
complete TRs. It is important to note that the found consensuses exactly corresponded to
the TR consensus length in the artificial sequence.
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Table 3. TRs detected in eight artificial sequences by MSHDTR and HHRepID.

Sequence Divergence
S, %

TR Boundaries MSHDTR HHRepID

Left (l0) Right (r0) Length, n l r Z Period l r e-Value

SEQ0 25 161 864 7 161 865 58.4 7 164 866 1.6 × 10−172

SEQ1 50 14 715 7 161 775 48.8 7 13
380

333
604

5.7 × 10−54

1.9 × 10−11

SEQ2 75 263 960 7 222 984 22.3 56 373 600 2.1 × 10−12

SEQ3 90 483 1182 7 445 1227 20.1 7 1103 1144 3.3 × 10−6

SEQ4 100 254 959 7 220 1244 17.7 15
14

20
1062

48
1086

2.6 × 10−5

2.7 × 10−5

SEQ5 110 553 1254 7 385 1254 13.5 -

SEQ6 120 144 839 7 130 848 11.3 -

SEQ7 150 214 915 7 1 1188 5.0 -

In contrast, HHRepID correctly detected only two sequences with evolutionary di-
vergence rates of 25% and 50%. In SEQ1, HHRepID identified two distinct regions with a
consensus length of seven residues, which were included in real TRs. At higher levels of
evolutionary divergence (75% and 90%), only short fragments with the required or multiple
consensus lengths were detected, and the overlap with the real TRs was less than 33% of
the length. At the mutation level of 100%, only short parts of sequences with repeats of
14 and 15 residues were found.

The comparison of MSHDTR and HHRepID revealed not only that MSHDTR was
able to recognize highly divergent TRs but also that it could more accurately detect the
boundaries of TR fragments and the consensus length. At the same time, HHRepID tended
to overestimate the consensus length, which was either presented as a multiple of the
real length or differed from it by several residues; furthermore, it frequently significantly
underestimated the length of the region occupied by TRs.

2.4. Examination of TRs Detected in Swiss-Prot
2.4.1. TR Statistics by Period Length

Next, we examined the distribution of TRs over the consensus length n. It turned out
that short TRs with consensus lengths from 2 to 11 amino acids were the most frequently
observed in proteins, accounting for 71.0% of all TRs found using MSHDTR (Table 4),
which can be associated with the presence of secondary protein structures such as β-sheets
and α-helices. Along with short repeats, our method could detect longer TRs, which are
apparently responsible for more complex spatial structures [7].

Table 4. The 10 most common consensus lengths of TRs detected in amino acid sequences from Swiss-Prot.

Consensus Length, n Number of Detected TRs % of TRs

2 2104 13.65
3 1349 8.75
4 1205 7.82
5 1180 7.66
6 1005 6.52
7 1650 10.71
8 759 4.92
9 699 4.54
10 450 2.92
11 528 3.43
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2.4.2. Classification of TRs with a Length n Equal to Two and Seven Residues

The results shown in Table 5 indicated that TRs with consensus lengths of two and
seven amino acids were the most common; the former are likely to be associated with
β-sheets, as 2 is close to 2.3 residues, corresponding to a typical period for β-structures [4],
whereas the latter are known to be located on α-helices, in which each turn consists of
3.6 residues [36].

Table 5. Multiple alignment of 64-character repeats found in the sequence of Mus musculus hexokinase-1 (P17710).

No. Sequence of a Period

1 NMIMMTN..MNK.KN.MTIN . . . KNK.NKMNKKNIKMNKKTKNTMKTI.KKKTK.KKNN.IMKKMKNK.NMTM.NNNKNNT
2 NTKITNK..TNK.KM.KNKN . . . N.K..ITMKKTN.KKTINTMMMKMT.MMKKKKININ.IKN.M.N..NMKT.TKKKKNI
3 NMMIMKNKKTKK.TKKMKKN . . . MKK.MMMKTITK.NKKKKKNTNKKN.NNNNK.ITTN.NNT.K.K..KKKK.NKNNKNI
4 NTTKMMK..TKK.TK.TTKM . . . NNK.NNTIKKIK.TTKNKTTKMNTI.TMTKT.MKNK.NKK.M.N..KITM.NKNK.NI
5 NKTKKMK..K.K.KM..NKM . . . TNK.KITKMKNK.TKKNMKMINNNT.KKKKTNTMTKKNNK.M.TKKNMKKKTKNMTTN
6 KNKNMKN..NKK.NI.MNKN . . . KKKKNKKKKKNM.KMTNMKNKMKMN.NKKKT . . . .K.NKI.M.N..MKNI.NMMIMMN
7 KMMKKK . . . TNT.KM.IKKN . . . TNK.NKMKKKN . . . .KNKKKIMKKT.NMMNK.TTNK.NMI.M.K..NM . . . NKKNTKM
8 MMKMNTN..TNK.KM.MTNN . . . NMK.NKMNKKNIKMNKKTKNTMKTI.KKKTK.KKNN.IMK.K.K..KMKM.NKMMMNK
9 TNMNMKI..NKKKTK.NNKN . . . KTT.KITMKKNN.KNTIKTINKKMKKMNKKK.ININ.IKN.M.N..NNKT.NKKKKNI
10 NMKIMKN..TNK.KM.TKKNKKMTKK.MMMTTITK.TKKKKKNTNKKN.NNNNK.ITTK.NNT.K.K..KKKK.NKNNKNI
11 NTTNMNK..TNK.TK.NNKN . . . NNK.NNTIKKIK.TNKNKTTKMNTI.TMKKT.TINK.NNK.M.N..MITM.NKNK.NI

We classified TRs with the consensuses of two and seven residues, as described in
Section 4.4 of the Materials and Methods. Figures 2 and 3 show the clustering dendrograms
for TRs with the lengths of two and seven residues, respectively. Only the upper parts of
the dendrograms are shown, since the total number of objects was too large for display.
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We calculated distance B0 at which the grouping into classes was not random (Equation (8)).
The matrices Mmax(n, 25) (n = 2 or 7) were obtained by analysis of the Swiss-Prot databank;
in total, 2104 Mmax(2, 25) and 1650 Mmax(7, 25) were obtained. Next, we created two sets,
MR2 and MR7, which contained 2104 2 × 25 matrices and 1650 7 × 25 matrices (2 and 7 are
the number of rows and 25 is the number of columns in the matrix). Each i-th matrix in the
sets MR2 and MR7 was obtained by randomly rearranging the elements of matrix i from
the original set Mmax(n, 25). We then performed cluster analysis for each set MR2 and MR7
and determined the average number of elements in the class for different values of the
distance B, denoted as Yn(B) (where n is equal to 2 or 7). We calculated the mathematical
expectation and variance of the random variable Yn(B) to classify the sets MR2 and MR7,
and determined the average number of elements in the class Xn(B) for the real matrices
Mmax(n, 25). After that, we calculated the value of Zn(B) [37]:

Zn(B) =
Xn(B)− Yn(B)√

D(Xn(B))/r1 + D(Yn(B))/r2
(2)

where r1 and r2 are the numbers of classes obtained by classifying the matrices Mmax(n, 25)
and the set MRn, respectively, at the level B.

We chose B0 = 19 for n = 2 and B0 = 35 for n = 7; in both cases, Zn(B) exceeded 10. The
obtained classes at the given levels are framed in red in the dendrograms (Figures 2 and 3).
For n = 2 residues, there were 19 classes; among these, 11 were the most representative,
containing over 90% of the elements. For n = 7 residues, the number of classes at the level
B0 = 35 was equal to 8.

For each created class, we determined the common class matrices Mmax(n, 25). The
(i, j) elements of the matrix were found by averaging them in all matrices included in the
class, taking the phase into account. To do this, we first found the central matrix for each
class, from which the total distance to the rest of the class elements was minimal. The order
of the rows in the other matrices of the class was shifted before averaging to the phase with
the central matrix of the class by cyclic permutation of the rows. The phase for the matrix
was considered to be correct if the distance B between the matrix and the central matrix was
minimal. Class matrices for n = 2 or 7 residues are provided in the Supplemental Materials.

2.5. Performance of MSHDTR in Identifying Weakly Similar TRs from Swiss-Prot

A specific feature of our method is that it is able to detect TRs in rather extended
protein regions as well as highly divergent TRs with S > 0.5. MSHDTR can also successfully
detect TRs with a very high Z (>30.0), such as those present in collagen-like proteins, serine-
aspartate repeat proteins, and zinc finger proteins; these proteins have been previously
reported as TR-containing and were confirmed as such here by using MSHDTR. However,
the performance of MSHDTR is more notable in the analysis of sequences with a low Z in
the interval of 8.0–10.0, in which most TRs are not recognized by other methods. Below, we
present two examples of such sequences from Swiss-Prot.

1. Hexokinase-1 from Mus musculus (P17710; sequence length: 974 amino acids).
The enzyme is the first in the glycolysis pathway, where it catalyzes the phosphorylation
of hexoses; it consists of two sub-units and is ubiquitously expressed in all mammalian
tissues. MSHDTR could detect TRs of n = 64, S = 0.75, and Z = 9.0 at positions from 96 to
805. Table 5 shows the multiple alignment of the detected repeats presented using the
five-character code (Materials and Methods, Section 4.1).

Repeats are shown using the five-character code introduced in Section 4.1 (K, N, I,
M, and T indicate non-polar, polar, aromatic, positively charged, and negatively charged
residues, respectively).

The TRs identified by MSHDTR have not been previously detected by other methods
and are not described in Swiss-Prot. The 3D structure of the enzyme monomer 73–969 is
shown in Figure 4. The molecule consists of alternating helical and non-helical regions,
which are included in the 64-residue consensus of the found TRs.
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Figure 4. 3D structure of the 73–969 residue region of the Mus musculus hexokinase-1 monomer.

2. Aspartyl/glutamyl-tRNA (Asn/Gln) amidotransferase subunit B from Pseudomonas
aeruginosa strain UCBPP-PA14 (Q02GV7; sequence length: 481 amino acids). MSHDTR
could detect TRs six residues long (S = 0.81, Z = 7.9) at positions from 186 to 469. The
multiple alignment of the found TRs is shown in Table 6 and the 3D structure of the enzyme
monomer (3–403 residues) is shown in Figure 5.

Table 6. Multiple alignment of six-character repeats found in aspartyl/glutamyl-tRNA (Asn/Gln)
amidotransferase subunit B (Q02GV7) from Pseudomonas aeruginosa.

No. Repeat Sequence No. Repeat Sequence

1 N.K.T..K.N.K. 25 M.K.N . . . .K.K.
2 M.N.T..N.N.K. 26 N.K.T..K.M.K.
3 N.K.M..K.M.K. 27 K.K.N..I.K . . .
4 N.K.T..I.K.N. 28 N.K.T..KKN.KK
5 M.K.T..K.M . . . 29 N.M.T..K.K.T.
6 N.K.N..N.I.M. 30 K.T.N..N.K.K.
7 I.K.T..M.K.K. 31 N.K.TN.K.K.K.
8 N.M.T..K.N.M. 32 N.K . . . . . . K.M.
9 N.K.T..K.K.T. 33 K.M.T..N.N.K.
10 T.K.K..M.K.K. 34 N.K.M..K.K.M.
11 N.T.N..M.K.I. 35 N.KIT..K.N.K.
12 T.K.N..M.T.T. 36 N.K.T..K.NKT.
13 N.M.N..N.M.K. 37 N.KKT..K.M.K.
14 M.T.T..K.N.T. 38 K.M.N..K.N.T.
15 I.M.I..I.K . . . 39 N.K.K..K.T.M.
16 N.K.T..K.K.K. 40 N.K.TTKK.K.K.
17 K.KKT..K.T.I. 41 N.K.T..N.K.T.
18 K.K.M..K.M.T. 42 N.I.M..K.K.T.
19 N.KKT..K.K.K. 43 T.K.M..M.K.M.
20 N.M.M..T.M.I. 44 NIK.I..I.K.K.
21 T.N.N..I.K.K. 45 N.K.N..M.K.N.
22 N.KIT..K.N.KK 46 M.K.M..K.N.K.
23 N.K.N..M.T . . . 47 N . . . . . . . . . . . .
24 N.K.T..I.I.T.

Repeats are shown using the five-character code introduced in Section 4.1 (K, N, I,
M, and T indicate non-polar, polar, aromatic, positively charged, and negatively charged
residues, respectively).
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transferase subunit B monomer.

The 15,407 TRs found by our program in Swiss-Prot have been placed in a database
(http://victoria.biengi.ac.ru/aarep/ access date: 30 June 2021) running under MySQL
DBMS. All TRs in the database are presented in the form of a list; detailed information on
specific features such as the matrix Mmax(n, 25) and alignments can be accessed through the
hyperlink. There is also a standard filtering functionality for finding TRs with the desired
parameters, such as a specified range of consensus lengths or a Z value.

3. Discussion

Here, we described a method that can detect TRs with weak similarity in protein
sequences. MSHDTR applied to the search of the Swiss-Prot databank, comprising over
500 thousand sequences, revealed more than 15 thousand proteins with TRs, including
about 14 thousand containing highly divergent TRs with S > 0.5, which constituted 2.8% of
the whole databank.

The ability of MSHDTR to identify TRs with S > 0.5 can be due to two factors. First,
we grouped amino acids according to their physicochemical properties (non-polar, polar,
aromatic, positively charged, and negatively charged) and re-coded the protein sequences
using five instead of 20 symbols. As a result, MSHDTR considers the positions of TRs con-
taining amino acids of the same group as identical; therefore, TRs for which the probability
of residue substitutions within a group was higher than that between groups detected as
similar by this method, which would not happen in case of 20-letter sequences.

Second, in the search for TRs, MSHDTR considers the correlation of neighboring
residues. The weighting matrix for alignment was calculated based on the frequencies of
pairs of symbols that encoded groups of amino acids rather than individual residues and,
thus, reflected correlations between adjacent amino acids in TRs. As a result, MSHDTR
could recognize highly divergent TRs that otherwise would not be possible to detect at a
statistically significant level using previously developed methods.

At the same time, MSHDTR skips TRs present in small numbers, which limits its
applicability. Thus, the scopes of the existing methods, such as T-REKS and XSTREAM,
and our method regarding TR detection are fundamentally different. If the aim is to find
reasonably well-preserved TRs (S < 0.5) with a small number of copies, then T-REKS and
XSTREAM should be chosen. If, however, the aim is to detect highly divergent TRs (S > 0.5)
present in large numbers, MSHDTR should be applied. Therefore, to cover the whole
spectrum of potentially existing TRs, we recommend using T-REKS and XSTREAM in
conjunction with MSHDTR.

We also compared the performance of MSHDTR with that of the Fourier transform ap-
plied using the procedure described previously [38]. It appeared that the Fourier transform
could detect only 11% of the TR-containing sequences among those identified by MSHDTR
(1707 out of 15,407). While comparing the two approaches, we assumed that the consensus
length n of TRs detected by MSHDTR and that defined by the Fourier approach should

http://victoria.biengi.ac.ru/aarep/
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differ by ≤10%. Most overlaps were observed for n < 10 residues, and only less than 10% of
the 1707 sequences detected by the Fourier transform had a period length of >10 residues.

The class matrices created here for n = 2 and n = 7 can be used to search for divergent
repeats belonging to these classes. These matrices should make it possible to identify
extremely dissimilar TRs of a specific type that could not be detected before and to do it
more quickly, since there would be no need to pre-generate the weight matrices used in the
dynamic programming method.

Highly divergent TRs imply some regularity, which is reflected in the spatial organiza-
tion of the protein molecule. An extremely interesting question is whether TRs are found
in intrinsically disordered proteins and regions (IDP, IDR).

It is well known that IDPs do not have unique spatial structures. Their structure and
functions are customizable to interact with different partners using alternative splicing
and post-translational modifications. Thus, they contribute to increasing the complexity
of biological organization [39,40]. The amount of IDPs is strictly controlled at the cellular
level. IDP regulation faults are associated with diseases such as cancer, diabetes, and
cardiovascular disease [41]. It is assumed that more than half of eukaryotic transcription
factors contain IDRs [42].

Previously, the DisProt database containing IDPs was created [43]. We analyzed
sequences from DisProt and found some IDRs containing TRs, for example, protein P38398
from Homo sapiens, Breast cancer Type 1 susceptibility protein (length: 1863 residues). It has
83.2% disordered content from 100 to 1649 residues. At the same time, in it, we detected TRs
from 31 to 1768 residues with a consensus length of 24, Z = 10.7, and S = 0.81. We can also
consider protein P30185 from Arabidopsis thaliana, Dehydrin Rab18 (length: 186 residues).
The disordered content was 100%. It has TRs with a consensus length of seven residues,
Z = 7.2, and S = 0.61 from 10 to 180 residues.

Thus the developed method detects such divergent patterns thatallows the protein to
accept the desired conformation only in certain interactions.

4. Materials and Methods
4.1. Re-Coding of Amino Acid Sequences According to Side-Chain Polarity

Before the search for TRs, we divided the 20 amino acids into 5 groups according to the
polarity of their side chains—non-polar, polar, aromatic, positively charged, and negatively
charged—and assigned a specific letter to each group: K (G, A, V, I, L, P), N (S, T, C, M, Q,
N), I (F, Y, W), M (K, R, H), and T (D, E), respectively [44]. Next, each amino acid sequence
in the Swiss-Prot databank was re-coded using the 5 symbols. The aim of such re-coding
was to take the correlation of adjacent residues into account, which was not feasible with
the 20-letter code because of the large number of possible amino acid pairs. The resulting
symbolic sequence was designated as Seq(l), l = 1, 2, . . . , NN (where NN is the volume of
the Swiss-Prot databank) and was searched for TRs using the algorithm MSHDTR.

4.2. Cyclic Alignment Search Method Considering Pairwise Correlations

To find TRs in Seq(l), we used a mathematical algorithm that included 4 steps. First,
we created a set of random position–weight matrices (PWMs) Q(n) of size (n, 25), where
n is the consensus length of TRs. Set Q(n) contained 103 matrices M(n, 25), where n and
25 are the numbers of rows and columns, respectively, in each PWM, since we considered
correlations of adjacent symbols in Seq(l).

Second, we used an iterative procedure to determine the matrix Mmax(n, 25) that best
described TRs of length n present in the sequence Seq(l). For this, we performed local
alignment of the sequences S1 and Seq(l) using the matrix M(n, 25) from the set Q(n) [45].
The sequence S1(n) was created artificially and contained a fragment 1, 2, . . . , n, which
was repeated in tandem over the length L. The matrix Mmax(n, 25) was considered to have
the best local alignment with the sequence Seq(l) if it had the highest value of the similarity
function Fmax(n).
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In the third step, this procedure was iterated for a consensus length n from 2 to 100,
and Mmax(n, 25) and Fmax(n) were determined for each length n.

Finally, we evaluated the statistical significance of TRs with consensus lengths n = 2–100
using the Monte Carlo method. Each step of the developed algorithm is described in
detail below.

4.2.1. Creation of a Set of Random Matrices Q(n)

We generated the sequence S1(n) that contained the fragment 1, 2, . . . , n repeated 1000
times; thus, the sequence S1(n) had a length L = 1000 n. Next, we created the sequence
S2 of length L, where numbers from 1 to 5 occurred in a random order and with equal
probabilities. Next, we filled in the matrix M1(n, 25) using an iterative procedure. Initially,
the elements of the matrix were zeroed; in this case, M1(s1(i), k) = M1(s1(i), k) + 1, where
i = 2 to L, s1(i) is the i-th element of the sequence S1(n), and k = s2(i − 1) + 5 (s2(i) − 1). The
sum of the elements of the matrix M1(n, 25) is equal to L-1. Based on the matrix M1(n, 25),
we calculated PWM M(n, 25) using the formula:

M(i, j) =
M1(i, j)− (L − 1)p(i, j)√
(L − 1)p(i, j)(1 − p(i, j))

(3)

where p(i, j) = x(i)y(j)/(L − 1)2, x(i) =
25
∑

j = 1
M1(i, j), and y(j) =

n
∑

i = 1
M1(i, j).

Thus, we created the first M(n, 25) from the set Q(n). After that, we randomly mixed
the numbers in the sequence S2, re-filled matrix M1(n, 25), and calculated the second matrix
M(n, 25) by Equation (3). In total, we created 103 matrices M(n, 25) for each Q(n), where n
varied from 2 to 100.

4.2.2. Iterative Procedure for Finding the Matrix Mmax(n, 25)

The sets Q(n) created in Section 4.2.1 were used to calculate the matrix Mmax(n, 25)
according to the following algorithm:

1. Matrix transformation
We took the first matrix M(n, 25) from the set Q(n) and calculated:

R2 =
n

∑
i = 1

25

∑
j = 1

m(i, j)2 (4)

Kd =
n

∑
i = 1

25

∑
j = 1

m(i, j)p1(i)p2(j) (5)

where p1 (i) is the probability of symbols in S1, which is equal to 1/n for any i, and p1(k)
and p2(l) are the probabilities of the numbers k and l, respectively, in S2 (k, l = {1, 2, 3, 4, 5}).

To make each matrix from the set Q(n) have the same R2 and Kd, we performed
matrix transformation as described in detail in [46], after which, all the matrices had
R0 = 110 n and Kd = −1.0; the transformed matrix was denoted as MT(n, 25). The aim of
the transformation was to obtain approximately the same distribution for the similarity
function F(n) [46] to analyze random sequences, so that the local alignment with the highest
Fmax(n) could be selected as the most statistically significant. Such an assumption greatly
speeds up calculations.

2. Local Alignment of the Sequences S1(n) and Seq(l)
Let the length of the sequence Seq(l) be L. To calculate the local alignment, we used the

sequence S1(n) introduced in Section 4.2.1, whose length was equal to that of the sequence



Int. J. Mol. Sci. 2021, 22, 7096 14 of 17

Seq(l). For local alignment of the sequences S1(n) and Seq(l), we calculated the matrix of
similarity function F using the formula:

F(i, j) = max


0

F(i − 1, j − 1) + MT(s1(j), t)

F(i, j − 1)− del

F(i − 1, j)− del

 (6)

where t = s(k) + 5(s(i) − 1)); i and j range from 2 to L; s(i) and s1(j) are elements of the
sequences S(l) and S1, respectively; and t indicates the fact that in the matrix MT, symbol
pairs are considered.

For calculations using Equation (6), we need to find the previous position k already
included in the alignment. The process of searching for k and filling the matrix F with the
dimensions (L, L) is described in [47] in their Section 2.3.

We took F(i, 0) = 0 and F(0, j) = 0 for i and j from 1 to L as the initial conditions. The
penalty for indel (del = 25.0) was chosen as previously described [46]. The inverse transition
matrix was filled together with matrix F, in which we determined the maximum element
mF and built the maximum subsequence from mF to the first element of the matrix F equal
to zero. This maximum subsequence, denoted as Local, represented the local alignment of
the sequences S1(n) and S(l), including its coordinates in each sequence.

3. An Iterative Procedure for Finding Fmax(n)
To determine the best Local, we iteratively changed PWM MT(n, 25). First, we cal-

culated the frequency matrix M1(n, 25) by scanning Local from the beginning to end and
filling the matrix M1(n, 25) as: M1(s1(i), k) = M1(s1(i), k) +1, where i is the entire length
of Local, s1(i) is the i-th element of the sequence S1 in Local, and k = s(i − 1) + 5(s(i) − 1).
The sum of the elements in the matrix M1(n, 25) was equal to the length of Local minus
1. If, in Local, the sequences S1(n) and S(l) had a missing character, then i = i + 1 without
filling the matrix M1(n, 25). Next, we calculated a new PWM M(n, 25) using Equation (3),
transformed the matrix M(n, 25), and obtained MT(n, 25) as described above. MT(n, 25)
was used again in Equation (6) to obtain new Local and mF values; the procedure was
reiterated starting with the construction of a new frequency matrix M1(n, 25) with the new
Local until the mF value was increased. If mF remained the same or decreased, or showed
cyclical fluctuations, then the iterative procedure was stopped. The maximum value of mF
corresponding to its Local and PWM MT(n, 25) was obtained as the output.

The above steps were repeated for all matrices from the set Q(n), for each of which
its own mF, Local, and MT(n, 25) were created; then the maximum mF, denoted as Fmax(n),
was chosen and used to select Mmax(n, 25) and Local.

4.2.3. Estimation of Statistical Significance for TRs with a Consensus Length of n0 by the
Monte Carlo Method

To estimate the statistical significance of each TR with a consensus length of n using
Monte Carlo simulation, we randomly shuffled the sequence Seq(l) 200 times and obtained
a set (Sr) containing 200 random sequences, each with a length of L. We then took the
matrix Mmax(n, 25), aligned the sequence S1(n) with each sequence from the set Sr using
the iterative procedure described in Section 4.2.2, and obtained mF values, which were
inserted into the set Vn. Next, we determined the mean (Vn) and variance (D(Vn)) for the
set Vn and calculated the statistical significance Z(n) of TRs with a consensus length of n:

Z(n) = (Fmax(n)− Vn)/
√

D(Vn) (7)

For all consensus lengths, we introduced the same threshold level Z0, which means
that if Z(n) > Z0, then the identified TRs can be considered statistically significant.
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4.3. Filtering of the Obtained Results

For sequence Seq(l), we obtained a spectrum of Z(n), and for each n, we had Fmax(n),
Mmax(n, 25), and Local. The local alignment coordinates for various values of n may differ. If
TRs with different lengths n overlapped slightly, the protein was considered to have regions
with separate TRs, but if the overlap was significant, then the TRs were treated as the same.
This situation can be encountered for multiple lengths n: 2n, 3n, etc., or close lengths. In
order to avoid duplication of TRs in further analysis, the detected TRs were filtered.

First, for each sequence Seq(l), we chose the n0 that had Local0 and the largest Z(n0);
next, the values of n which had a local alignment intersection with Local0 over 50% of the
length were excluded, and the next n0 was chosen. The procedure was reiterated until all
values of n for sequence Seq(l) had been considered.

4.4. Algorithm for TR Classification

The results shown in Table 5 indicated that TRs with consensus lengths of 2 and
7 amino acids were the most common; the former are likely to be associated with β-
sheets, as 2 is close to 2.3 residues, corresponding to a typical period for β-structures [4],
whereas the latter are known to be located on α-helices [36], in which each turn consists of
3.6 residues [48].

We classified all TRs with Z(n) > Z0 for n equal to 2 and 7 by assessing the difference
between the matrices Mmax(n, 25) for TRs with the same n.

The matrix Mmax(n, 25) can be considered as a point in the n × 25 space and the
difference between two matrices could be measured according to the Euclidean distance
between them according to the formula:

B =

√√√√ n

∑
i

25

∑
j
(m1

max(i, j)− m2
max(i, j))2 (8)

where m1
max(i, j) and m2

max(i, j) are the elements of the matrices M1
max(n, 25) and M2

max(n, 25),
respectively. It is impossible to know the phase orientation of these matrices; since a phase
shift may be present, all distances obtained for any possible phase shifts should be checked.
Algorithmically, the phase shift is produced by a cyclic shift of the rows of the second
matrix. We take the minimum of n calculated distances (Bmin) as the resulting distance
between two TRs.

For TR consensus lengths n = 2 and n = 7, we compared all pairs of matrices Mmax(2, 25)
and Mmax(7, 25) and found 2104 and 1650 TRs, respectively; next, the distance matrices
B2(2104, 2104) and B7(1650, 1650) were calculated. Next, we performed a cluster analysis
of the TRs for n = 2 and n = 7 using the R software environment for statistical computing,
with B2 and B7 as the input data. First, all TRs were considered to be separate objects
and were then merged iteratively into classes with other objects or previous iteration
classes according to the shortest distance between them using the complete linkage method.
Finally, the algorithm combined all objects into 1 class, forming a hierarchical tree structure.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
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