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Abstract: In nature, plants usually produce secondary metabolites as a defense mechanism against
environmental stresses. Different stresses determine the chemical diversity of plant-specialized
metabolism products. In this study, we applied an abiotic elicitor, i.e., NaCl, to enhance the biosynthe-
sis and accumulation of phenolic secondary metabolites in Melissa officinalis L. Plants were subjected
to salt stress treatment by application of NaCl solutions (0, 50, or 100 mM) to the pots. Generally,
the NaCl treatments were found to inhibit the growth of plants, simultaneously enhancing the accu-
mulation of phenolic compounds (total phenolics, soluble flavonols, anthocyanins, phenolic acids),
especially at 100 mM NaCl. However, the salt stress did not disturb the accumulation of photosyn-
thetic pigments and proper functioning of the PS II photosystem. Therefore, the proposed method
of elicitation represents a convenient alternative to cell suspension or hydroponic techniques as it
is easier and cheaper with simple application in lemon balm pot cultivation. The improvement
of lemon balm quality by NaCl elicitation can potentially increase the level of health-promoting
phytochemicals and the bioactivity of low-processed herbal products.

Keywords: phenolic metabolites; lemon balm; chlorophyll fluorescence; medicinal plants; secondary
metabolites; abiotic elicitors; salinity

1. Introduction

Due to their sedentary lifestyle, plants are under constant pressure to adjust their
metabolic pathways to changing environmental conditions. Therefore, in addition to
primary metabolites, they synthesize a wide range of unique, low-molecular secondary
metabolites. Environmental stresses (biotic and abiotic) redirect plant metabolism to-
wards the biosynthesis of these metabolites from primary metabolites and intermediates.
The products of specialized metabolism most often have defense and signaling functions.
Such compounds are generally toxic or inconsumable for herbivores, possess fungicidal
or bactericidal properties, or can detoxify toxic metals and consequently protect plants
against stresses [1–3].

Therefore, stress is an important factor determining the chemical composition of
plants and thus having a significant impact on their biological activity. The use of plant
defense mechanisms to stimulate the biosynthesis of desired secondary metabolites and
improve the health-promoting quality of plants is called elicitation [4]. Elicitors are physical
factors or chemical substances that can induce responses via modifications of accumulation
and/or synthesis of secondary metabolites, mimicking a defensive reaction [5–7]. One of
the readily available and cheap abiotic elicitors with proven effectiveness is NaCl [8,9].

Salinity induces both ionic and osmotic stress in plants. The intensity of the salt stress
plays a decisive role in the plant salinity response and the possibility of reversible or irre-
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versible changes in plant functioning [10]. The effect of salt stress on plants can be twofold.
Excess of salt may have a toxic effect on plants, limiting their growth and development,
and may lead to plant death in extreme cases [11]. Nevertheless, a moderate or mild level of
salinity may have a stimulating effect on the growth and development of plants (eustress)
and/or the accumulation of secondary metabolites, improving the level of pro-health
components, antioxidant potential, and nutritional quality of plants [5,8,12]. For example,
in safflower (Carthamus tinctorius L.) grown at a salinity concentration <100 mM NaCl in
hydroponic conditions, the accumulation of flavonoids was enhanced, but the plant growth
was not reduced [13]. In turn, Navarro et al. [14] demonstrated improved antioxidant
activity in hydrophilic and lipophilic fractions under moderate salinity in red pepper.

Lemon balm (Melissa officinalis L.), belonging to the family Lamiaceae, is a valuable
herb used as a flavoring agent in food and drinks. Due to the richness of secondary metabo-
lites (mainly monoterpenoids in essential oils and phenolic compounds), it is also used as a
medicinal plant, natural insecticide, and an ingredient of cosmetics [15]. The many biologi-
cally active components in lemon balm include a number of phenolics, the most important
of which is rosmarinic acid [16,17]. Ingredients of extracts from M. officinalis revealed a
number of pharmacological activities, including clinically proven antiviral, anxiolytic, and
antispasmodic effects as well as influence on mood stabilization and memory [18]. Due to
the positive effect on cognitive function and agitation, M. officinalis extract is valuable in
the management of mild to moderate Alzheimer’s disease [19]. This species is resistant
to relatively low concentrations of salinity (up to 50 mM NaCl) [20]. Irrigation of lemon
balm with saline water increased the essential oil yield, free proline, and total soluble
sugar levels but decreased plant growth parameters [21]. In turn, a decrease in the yield
of essential oils but an increase in the number of their ingredients under NaCl exposure
(50–200 mM NaCl) was found by Bonacina et al. [20]. However, the effect of salinity on the
level and composition of phenolic compounds in this species is poorly understood. One of
the few studies on this topic indicated that NaCl-treated lemon balm accumulated more
total phenolics and flavonoids than untreated plants [22].

The hypothesis that NaCl-induced stress affects physiological response and enhances
accumulation of (poly)phenolics in lemon balm was tested. This elicitation method may
potentially improve the level of health-promoting secondary metabolites and bioactivity of
lemon balm-based raw materials. Moreover, this work provides insights into the effect of
salt stress on the physiology and phenolic composition of the pharmaceutically significant
species M. officinalis.

2. Results
2.1. Biomass and Physiological Parameters of Lemon Balm Grown under NaCl Exposure

The use of the NaCl solution for plant irrigation had a significant impact on the plant
biomass (Figure 1a). A decrease in the FW of the above-ground organs with the increase in
NaCl concentration was observed; however, this reduction (22% in relation to the control)
was statistically significant only under the influence of 100 mM NaCl. In comparison
to the control plants, an increase (by 6–11%) in the concentration of chlorophyll b at
50 and 100 mM NaCl was found. However, the level of chlorophyll a and carotenoids
did not change significantly under the salt exposure (Figure 1b). The measurements of
selected parameters of chlorophyll a fluorescence (F0, Fm, and Fv/Fm) indicated that the
applied concentrations of NaCl had no significant effects on the efficiency of photosynthesis
(Supplementary Figure S1).

2.2. Total Phenolic Compounds, Flavonoids, Rosmarinic Acid, and Anthocyanin Concentrations
under NaCl Elicitation

Salinity influenced the total concentration of phenolic compounds (TPC) in the ex-
tracts made from the lemon balm herb. It was found that both of the different NaCl
levels enhanced the TPC concentration, but this increase (by 16% compared to the control)
was statistically significant only after the application of 100 mM NaCl (Figure 2a). Simi-
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larly, the content of total flavonol compounds (TFC) significantly increased by 23% after
application of 100 mM NaCl (Figure 2b).
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that there are no significant differences. 
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different letters differ statistically significantly (p < 0.05, Tukey’s test). 

Based on the UPLC-UV-MS analysis, 13 different phenolic acids, mainly hy-
droxycinnamic acid derivatives including a caffeic acid ester—rosmarinic acid and a 
caffeate trimer—lithospermic acid, were identified (Figure 3). These acids represented two 
characteristically high peaks in the chromatograms (Figure 4). All the chromatograms ob-
tained from both the control and the NaCl-treated plants showed a similar phenolic pro-
file, showing differences only in the quantities of each compound. No peaks from the new 
compounds were observed under the influence of NaCl (Figure 4). It was found that both 

Figure 1. Effect of the NaCl concentration on (a) growth parameters and (b) concentrations of photosynthetic pigments in
Melissa officinalis after 10 days of salt exposure. Data are means ± SD (n = 16 for FW and n = 6 for photosynthetic pigments).
Means followed by different letters differ statistically significantly (p < 0.05, Tukey’s test). The absence of letters indicates
that there are no significant differences.
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Figure 2. Effect of the NaCl concentration on the concentration of (a) total soluble phenolic compounds and (b) total soluble
flavonols in Melissa officinalis shoots after 10 days of salt exposure. Data are means ± SD (n = 4). Means followed by different
letters differ statistically significantly (p < 0.05, Tukey’s test).

Based on the UPLC-UV-MS analysis, 13 different phenolic acids, mainly hydrox-
ycinnamic acid derivatives including a caffeic acid ester—rosmarinic acid and a caffeate
trimer—lithospermic acid, were identified (Figure 3). These acids represented two charac-
teristically high peaks in the chromatograms (Figure 4). All the chromatograms obtained
from both the control and the NaCl-treated plants showed a similar phenolic profile,
showing differences only in the quantities of each compound. No peaks from the new
compounds were observed under the influence of NaCl (Figure 4). It was found that
both salinity concentrations induced the accumulation of phenolic acids (Figures 4 and 5).
Quantitative determination of rosmarinic acid showed that its level increased by 40% and
67%, respectively, under the influence of 50 and 100 mM NaCl in relation to the control
(Figure 5).
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(3,4-dihydroxyphenyl)-lactic acid; (2) caftaric acid; (3) fertaric acid; (4) caftaric acid hexoside; (5) rosmarinic acid hexoside;
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The elicitation of the lemon balm with both concentrations of NaCl boosted the
accumulation of anthocyanins in lemon balm leaves (Figure 6a), especially in the lower
epidermis (Figure 6b). Along with the increase in salinity, over a two-fold or four-fold
increase in the concentration of these compounds was found after the exposure to 50 mM
NaCl or 100 mM NaCl, respectively.

The heat map (Figure 7) represents graphically the abundance of particular phenolic
compounds across the experimental treatments. The standardized parameters are rep-
resented by colors (dark blue represents low value while dark red denotes high value).
Four individuals are shown for each treatment. Additionally, the heat map also shows
the aforementioned enhanced accumulation of anthocyanins, soluble phenols, and sol-
uble flavonols in the NaCl treatments; however, this phenomenon was more notable at
the higher concentration of salt (Figure 7). Moreover, the calculated mean contents of
rosmarinic acid and anthocyanin per plant in the control plants were 4.6 mg and 7.7 ng,
respectively, and increased to 6.6 mg and 33.9 ng per plant after eliciting with 100 mM
NaCl. Meanwhile, TPC and TFC were at a similar level per plant in different treatments
(Supplementary Table S1). The analysis of the influence of NaCl on the ability of the plant
extracts to reduce DPPH radical revealed a significant increase in free radical scavenging
activity (FRSA) only in the 100 mM NaCl treatment (Supplementary Figure S2).
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Figure 6. Effect of the NaCl concentration on (a) the foliar concentration of anthocyanins (as cyanidin
3-glycoside; C3G) and (b) pigmentation of the lower epidermis of Melissa officinalis leaves after
10 days of salt exposure. Data are means ± SD (n = 4). Means followed by different letters differ
statistically significantly (p < 0.05, Tukey’s test).
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Figure 7. Heat map visualization of changes in the abundance of particular compounds shown
in the rows for individual plant samples with different salinity levels (column). The colors range
from dark blue (low abundance) to deep red (high abundance); number of compounds: (1) 3-(3,4-
dihydroxyphenyl)-lactic acid; (2) caftaric acid; (3) fertaric acid; (4) caftaric acid hexoside; (5) ros-
marinic acid hexoside; (6) rosmarinic acid; (7) salvianolic acid H/I (isomer); (8) salvianolic acid C
derivative III; (9) lithospheric acid; (10) salvianolic acid C derivative III; (11) salvianolic acid C deriva-
tive IV; (12) sagecoumarin 2-hydroxy-3-(3,4-dihydroxyphenyl)-propanoide; (13) methyl lithospermic
acid; (14) total anthocyanins; (15) soluble phenols; and (16) soluble flavonols.

3. Discussion

Salt-induced osmotic stress leads to numerous physiological disorders in plants,
including water deficit, nutrient imbalance, membrane damage, hormonal imbalance,
and oxidative damage [23]. For the above reasons, the biomass of lemon balm can decrease
at various NaCl concentrations in the irrigation water used in our experiments (Figure 1a),
which was also demonstrated by Khalid and Cai [21]. Similarly, in another medical
species, i.e., sage, irrigated with a 100 mM NaCl solution, a significant reduction in growth
parameters was demonstrated [24]. Nevertheless, at moderate levels, salt stress can also be
an effective method of eliciting plant secondary metabolites [25].

Although the lemon balm biomass was significantly reduced under the influence
of 100 mM but not 50 mM NaCl (Figure 1a), the analyzed parameters of chlorophyll a
fluorescence did not indicate disturbances in photosynthesis in either of the NaCl treat-
ments (Supplementary Figure S1). Also, the concentration of photosynthetic pigments
was generally not negatively affected even in the 100 mM NaCl treatment. In the salinity
conditions, the level of chlorophyll b was even increased (Figure 1a). Therefore, it seems
that lemon balm may be more resistant to salinity than previously suggested by Bonacina
et al. [20]. In contrast, in a study conducted by Safari et al. [22], a decrease in the content of
chlorophyll under salt stress was found in this species. Studies conducted on sunflower
have shown that the NaCl-induced reduction of chlorophyll level may be mainly a conse-
quence of inhibited synthesis of 5-aminolaevulinic acid, a precursor of chlorophyll and,
to a lesser extent, increased activity chlorophyll-degrading chlorophyllase [26].

However, in the context of the present research, a more interesting issue was the
increase in the accumulation of bioactive substances under salinity. Besides essential oils,
(poly)phenolic compounds with a broad spectrum of biological activities are the main
group of secondary metabolites in the Lamiaceae family [27]. As shown by Ozarowski
et al. [28], caffeic acid esters and glycosides of flavones are the major group of active
metabolites in M. officinalis. Additionally, they indicated that the rosmarinic acid is a
dominant active compound in this species. In our study, 13 caffeic acid derivatives were
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identified. Rosmarinic acid and lithospheric acid were the main phenolic acids identified
in the extracts obtained from the shoots of the lemon balm (Figures 3 and 4). It was
found that the accumulation of different phenolic compounds, including caffeic acid
derivatives, was clearly enhanced under salinity (Figures 4 and 7). The concentration of
rosmarinic acid was improved by 40–67% in comparison to the control (Figure 5). In turn,
rosmarinic acid concentrations in five genotypes of M. officinalis were reduced by osmotic
stress induced by drought, while the level of essential oils increased in some genotypes [29].
The phenomenon of an increasing level of (poly)phenolic compounds in response to
various abiotic stress factors was observed before [30–32]. Although the mechanisms of
(poly)phenol biosynthesis were not investigated here, ample evidence indicated that the
phenylpropanoid pathway which generates a majority of compounds is activated by stress
factors [33]. Previously, a positive correlation between salinity and phenolic compound
concentrations was noted in Thymus species [34] or Fagopyrum esculentum [33]. In contrast,
the content of phenolic compounds decreased in response to NaCl in broccoli [35] or
lettuce [36], which indicates differential responses of plant species to salinity in relation to
accumulation of (poly)phenolics.

Our recent studies on the application of a biotic elicitor chitosan lactate in basil and
lemon balm showed that the foliar application of this compound effectively induced
accumulation of phenolic compounds [37]. Here, the NaCl-induced elicitation generally
had a positive effect on the level of all (poly)phenolics tested. However, the accumulation
of TPC and TFC as well as FRSA was significantly improved only at the higher level of
salinity (Figure 2a,b, Supplementary Figure S2). Much more effective elicitation of TPC was
achieved in a study with Mentha pulegium [38], where a 3.5-fold increase in its level in leaf
extracts was found in a 100 mM NaCl treatment. Unfortunately, a drastic reduction of plant
biomass (approx. 60%) was recorded in these conditions. In turn, in another medicinal
species belonging to the Lamiaceae family, i.e., Salvia macrosiphon, the content of TPC
decreased under salinity, but increased leaf antioxidant capacity was demonstrated [39].
In a mangrove halophyte Aegiceras corniculatum exposed to 250 mM NaCl, the levels of
(poly)phenols increased more than twofold, which may indicate their protective role under
salt stress [40].

In this study, the accumulation of anthocyanins increased several fold in response
to the salinity stress (Figure 6a). Changes in the anthocyanin content were also visible as
differences in the color of the lower leaf epidermis (Figure 6b). Analogous results were ob-
tained in a study conducted by Jahantigh et al. [41] on hyssop (Lamiaceae), which indicated
a significant increase in the level of both TPC and anthocyanins after application of saline
water (2–10 mS cm−1). The enhanced accumulation of anthocyanins in plants exposed to
salinity has been largely documented (e.g., [42,43]). The protective role of anthocyanins
under salt stress includes their antioxidant capacity in response to ROS overproduction
triggered by imbalance in Na+/K+ ion homeostasis [44]. Moreover, these compounds can
be involved in reduction of the leaf osmotic potential, which is directly related to improved
plant water status under osmotic stress, suggesting that accumulation of anthocyanins can
be a quick and beneficial plant response to salt stress [45]. It should also be emphasized
that the increase in the concentration of anthocyanins and rosmarinic acid, both with
well-known health-promoting properties [46,47], overcompensates the decrease in plant
biomass under salt stress (Supplementary Table S1).

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Twenty seeds of lemon balm (Melissa officinalis L.) were sown in 12 pots with a capacity
of 0.5 L and allowed to germinate. The soil substrate was the universal organic COMPO
BIO substrate with the addition of guano and compost produced on the basis of high peat,
with pH = 5.0–7.0. Seed germination as well as further growth and development of plants
took place in a phytotron room equipped with air conditioning and fluorescent lamps.
The plants were grown at photosynthetic photon flux density (PPFD) at the level of the
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tops of the plants of 170–200 µmol m−2 s−1, 14-h photoperiod, at day/night temperature
of 27/23 ◦C, and 60–65% relative humidity. Due to the uneven germination of the seeds,
the plants were thinned after about 21 days, and 12 plants were left in each pot.

The experiment was differentiated 36 days after sowing (DAS), and three treatments
were established. Control plants (in four pots) were watered with 50 mL of distilled
water, while the other plants were treated with the same volume of NaCl solutions with a
concentration of 50 mM (5.38 mS cm−1; four pots) or 100 mM (10.16 mS cm−1; four pots).
A similar irrigation scheme was applied after the next 2, 5, and 7 days. In total, 200 mL
of solutions with different NaCl concentrations (0, 50, or 100 mM) were introduced into
each pot.

After 10 days of lemon balm growth in the different experimental conditions (10 days
after the application of the first dose of NaCl), the biometric (biomass of shoots), physio-
logical (photosynthetic pigments, chlorophyll fluorescence), and phytochemical (concen-
tration of total phenolics, soluble flavonoids, and anthocyanins, quantitative analysis of
rosmarinic acid, identification of phenolic acids, free radical scavenging activity) parame-
ters were determined.

4.2. Determination of Biomass and Physiological Parameters

The chlorophyll a fluorescence parameters (the maximal, Fm; and minimal, F0 possible
level of fluorescence; the maximum quantum yield of PS II, Fv/Fm; where Fv = Fm − F0)
were measured on the fourth pair (from the top) of dark-adapted (15 min) leaves. Ten dif-
ferent individuals per treatment were randomly selected, and a chlorophyll fluorimeter
(Handy PEA, Hansatech Instruments, Pentney, UK) was used for fluorescence determinations.

The concentration of photosynthetic pigments (chlorophylls and carotenoids) was
measured using the method proposed by Lichtenthaler and Wellburn [48]. The leaf sam-
ples were taken from the fourth pair from the top, homogenized in 80% (v/v) acetone,
and filtered. Absorbance of the extracts was measured at 663 nm, 646 nm, and 470 nm
(Cecil CE 9500, Cecil Instruments, Cambridge, UK).

Then, the aboveground parts of four plants from each pot were collected (16 plants from
each treatment), and their fresh weight (FW) was determined using a laboratory balance.

4.3. Preparation of Extracts for Determination of Total Phenolics, Flavonols, Phenolic Acids,
and Free Radical Scavenging Activity

Plant material from each pot dried at 55 ◦C was used for preparation of extracts.
Samples were extracted with 5 mL of 80% (v/v) methanol at room temperature for 1/2 h
in an ultrasonic bath. The extracts were centrifuged (10 min at 4500× g), and the clear
supernatant was used for further analysis.

4.4. Analysis of Phenolic Compounds and Free Radical Scavenging Activity

The total phenolic content (TPC) was determined using the Folin-Ciocalteu phenol
reagent, following the method proposed by Wang [49] with slight modifications. The test
sample (0.1 mL) was mixed with 1.9 mL of re-distilled water and 1 mL of Folin-Ciocalteu’s
reagent. After 5 min, 3 mL of a saturated Na2CO3 solution were added. The reaction
mixture was kept at 40 ◦C in the dark for 30 min. Absorbance was measured at 756 nm
(Cecil CE 9500, Cecil Instruments, Cambridge, UK) against the reagent blank. The concen-
tration of phenolic compounds was calculated as gallic acid equivalents (GAE) per g of dry
plant material.

Soluble flavonols were determined with the colorimetric method as a complex with
aluminum ions [50]. The absorbance was read at 425 nm (Cecil CE 9500, Cecil Instruments,
Cambridge, UK) after 30 min of dark incubation of the test sample (0.3 mL) with 0.75 mL
of a 2% AlCl3 methanolic solution (w/v) and 0.45 mL of 80% methanol (v/v) against the
reagent blank. The concentration of flavonoids was calculated as rutin equivalents (RE)
per g of dry plant material.

The accumulation of anthocyanins in the fresh leaves (fourth pair from the top) was
determined using the method described previously [51]. Anthocyanins were extracted
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by maceration of leaf samples in a methanol:HCl solution (99:1, v/v). The extracts were
centrifuged, and their absorbances were read at 527 nm and 652 nm (Cecil CE 9500,
Cecil Instruments, Cambridge, UK). The concentration of anthocyanins was calculated
using the extinction coefficient (ε = 29,600 M−1 cm−1) for cyanidin 3-glycoside (C3G).

The methanol extracts were analyzed using an Agilent Technology 1290 Infinity Series
II ultra-high performance liquid chromatograph (UHPLC) equipped with a DAD detector
and an Agilent 6224 ESI/TOF mass detector (Agilent Technologies, Santa Clara, CA, USA).
The ion source operating parameters were as follows: drying gas temperature 325 ◦C,
drying gas flow 5.0 l min−1, and capillary voltage 3500 V. Ions were acquired in the range
from 100 to 1050 m/z in the negative ion mode. Agilent Technologies Mass Hunter software
version 10.00 00 (Agilent Technologies, Santa Clara, CA, USA) was used for data acquisition
and data analysis. The separation was performed with a method described previously [52].
Briefly, an RP18e LiChrosper 100 column (Merck, Darmstadt, Germany) (25 cm × 4.9 mm
i.d., 5 µm particle size) was used to separate phenolic acids. The linear gradient from 5% to
20% of acetonitrile in water within 45 min was applied. The flow rate was 1.0 mL/min.
The column temperature was set at 25 ◦C. The identity and quantification of rosmarinic
acid was performed based on comparison with a standard compound.

The identification of 13 different phenolic acids was possible using UPLC-TOF/MS
analysis (Figure 3), as in Ozarowski et al. [28] and Barros et al. [53].

The free radical scavenging activity (FRSA) was determined using DPPH (1,1-diphenyl-
2-picrylhydrazyl) stable radical. The test sample (50 µL) was added to 2 mL of a DPPH
solution (200 µmol L−1). A total of 50 µL of 80% methanol (v/v) was added to the control
sample. The absorbance of the control and test samples was determined at 517 nm (Ce-
cil CE 9500, Cecil Instruments, Cambridge, UK) after 15 min of dark incubation. Results
are reported as percentage DPPH reduction by the plant extracts.

4.5. Statistical Analyses

The data were subjected to one-way ANOVA followed by a Tukey’s post-hoc test
(p < 0.05). Statistica ver. 13.3 software (TIBCO Software Inc. 2017, Palo Alto, CA, USA) was
used for the statistical analysis. The heat map was constructed based on standardized data
with Microsoft Excel (2010).

5. Conclusions

Our study demonstrates that NaCl irrigation functions as an activator of accumulation
of (poly)phenolics. These results show, for the first time, enhanced accumulation of hy-
droxycinnamic acid derivatives in lemon balm under salinity. The increase in anthocyanin
concentration was several fold. It is worth emphasizing that the biomass of the above-
ground parts did not decrease significantly under the influence of 50 mM NaCl, and its
reduction in the 100 mM NaCl treatment was significant but not very large. In the salt
treatments, there were no significant disturbances in photosynthesis parameters and the
content of photosynthetic pigments. Therefore, NaCl is a cheap and efficient abiotic elicitor
that may be potentially used in elicitation of phenolic metabolites in lemon balm under pot
cultivation. However, we do not recommend this elicitation method in field conditions due
to the limited possibility of later removal of NaCl from the soil.
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