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Abstract: Herpes simplex virus type 1 (HSV-1) is a neurotropic alphaherpesvirus that can infect
the peripheral and central nervous systems, and it has been implicated in demyelinating and neu-
rodegenerative processes. Transposable elements (TEs) are DNA sequences that can move from one
genomic location to another. TEs have been linked to several diseases affecting the central nervous
system (CNS), including multiple sclerosis (MS), a demyelinating disease of unknown etiology influ-
enced by genetic and environmental factors. Exogenous viral transactivators may activate certain
retrotransposons or class I TEs. In this context, several herpesviruses have been linked to MS, and
one of them, HSV-1, might act as a risk factor by mediating processes such as molecular mimicry,
remyelination, and activity of endogenous retroviruses (ERVs). Several herpesviruses have been
involved in the regulation of human ERVs (HERVs), and HSV-1 in particular can modulate HERVs in
cells involved in MS pathogenesis. This review exposes current knowledge about the relationship
between HSV-1 and human ERVs, focusing on their contribution as a risk factor for MS.

Keywords: herpes simplex virus type 1; transposable elements; herpesviruses; endogenous retro-

viruses; demyelination; multiple sclerosis

1. Introduction

Herpes simplex virus type 1 (HSV-1) is a neurotropic human pathogen belonging
to the Alphaherpesvirinae subfamily [1]. It is one of the most widespread human viral
pathogens [2], and although humans are natural hosts, this virus can infect several species
and numerous cell types in vitro [3]. Primary infection takes place in epithelial cells, where
HSV-1 typically causes labial and oral lesions before spreading to the sensory neurons
of the peripheral nervous system (PNS). From there, it travels retrogradely towards the
trigeminal ganglia, where it establishes a latent infection [4]. However, HSV-1 may also
establish latency in central structures such as the olfactory bulb, the brainstem, or the
temporal cortex. HSV-1 may later reactivate, either spontaneously or in response to stimuli
such as fever, immunosuppression, or exposure to ultraviolet light [1]. During reactivation,
HSV-1 travels anterogradely along the axon, replicating in the dermatome innervated by
the sensory neuron latently infected.

In addition to labial and oral lesions, HSV-1 may cause more serious pathologies
such as encephalitis or keratoconjunctivitis, and studies in animals and human patients
have suggested a link between HSV-1 and demyelinating processes [5]. Among these
disorders, the most prevalent one is multiple sclerosis (MS), a neurodegenerative disease
of the central nervous system (CNS) characterized by demyelination, inflammation, gliosis,
and oligodendrocytic and axonal loss due to blood-brain barrier (BBB) disruption [6].
MS is typically multifocal and multiphasic (relapsing-remitting) and is recognized by
multifocal demyelinating lesions in both the white and gray matter of the brain and
spinal cord [6,7]. It is thought to be caused by infiltration of immune cells into the CNS,
and it can be associated with axonal degeneration. In addition, BBB damage has been
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suggested as an essential step in MS progression [8], although it is not clear whether BBB
impairment is a cause or rather a consequence of the disease [9]. MS is a multifactorial
disease whose unknown etiology is probably influenced by a complex web of interactions
between genetic and environmental factors [10-12]. However, several viruses may be
involved in this demyelinating disorder [13,14] including HSV-1, which may act as a risk
factor by mediating processes such as molecular mimicry, remyelination, or regulation of
endogenous retroviruses (ERVs) [5].

ERVs are remnants of ancient retroviral germline infections that persist in the genomes
of vertebrates [15,16]. These elements have been implicated in crucial physiological pro-
cesses such as placentation [17], immunity [18,19], and development [20-22], and their dys-
regulation can lead to different pathologies [16,23-26]. Several studies have demonstrated
a sound epidemiological relationship between MS and ERVs, which are up-regulated in
the brains of MS patients [27-32]. Herpesviruses have also been associated with regulation
of human ERVs (HERVs) [26,33,34], and HSV-1 in particular can modulate HERVs in cells
involved in MS pathogenesis [5]. Transcription of HERVs genes may be stimulated by
several herpesviruses [23] including HSV-1, HHV-6, and varicella-zoster virus (VZV) in
lymphocytes from MS patients [35]; HSV-1 in neuronal or brain endothelial cell lines [36];
cytomegalovirus (CMV) in kidney transplant recipients [37]; HHV-6 in T cell leukemia
cell lines [38]; and Epstein—Barr virus (EBV) in T cell lines [39] and in peripheral blood
mononuclear cells (PBMCs) from MS patients and astrocytic cell lines [40]. Here, we focus
on current knowledge about the relationship between HSV-1 and HERVs as a risk factor
for MS.

2. Transposable Elements

Transposable elements (TEs), discovered by the Nobel Laureate Barbara McClintock
and described for the first time in 1950 [41], are mobile DNA sequences that have the
capacity to move around within genomes [42]. For decades, TEs were considered “junk
DNA”, although some researchers such as Roy Britten, Eric Davidson, and McClintock
herself, defended a relevant and active role for TEs in biology [43]. Currently, it is widely
recognized that TEs exert a relevant influence on genome structure and function, and play
a direct role in the generation of morphological innovations [44]. In addition, TEs are
essential elements in the regulation of gene expression including chromatin modification,
splicing, and translation [45].

TEs, which have been found across all three domains of life (bacteria, archaea, and eu-
karya), can be divided into two major categories: retrotransposons or class I elements; and
DNA transposons or class II elements (Figure 1). Retrotransposons constitute the majority
of the TEs present in the human genome [46]. Both retrotransposons and DNA transposons
can be either autonomous or non-autonomous (Figure 1). Autonomous TEs encode reverse
transcriptase (RT)—the enzyme that transcribes RNA back into DNA—and other proteins
required for replication and transposition, and therefore do not need another element in
order to move. On the contrary, non-autonomous elements do not encode these proteins
and need other functional TEs for their mobilization [47]. Therefore, non-autonomous
elements rely on an autonomous partner to provide the necessary proteins in trans [48].
In addition, retrotransposons can be divided into two groups, according to the presence
or absence of long terminal repeats (LTRs) flanking internal coding regions (Figure 1).
LTRs regulate expression, since they control the promoter activity and transcription of
the retroelement [48]. LTR retrotransposons are abundant in animals and plants, whereas
non-LTR elements are especially widespread in plant genomes. Non-LTR retrotransposons
include long interspersed nuclear elements (LINEs) and short interspersed nuclear ele-
ments (SINEs) [49] (Figure 1). Retrotransposition of non-autonomous SINEs depend on
proteins encoded by LINE-1 elements.



Int. J. Mol. Sci. 2021, 22, 5738

STOR>>{ gag | pol |370R>

Retrotransposons

(e.g. Saccharomyces Ty1, Drosophila Copia)

/ gag [ pol ] env [3TR>
(e.g. HERV-K, HERV-W)

\ ORF 2
(o) oGRS
CRetroeIements) S'UTR| ORF 1 3'UTR [—Poly (A)

LINEs
(e.g. human LINE-1 and L2)

(Non-autonomous) (A)Polv (A)

SINEs
(e.g. human Alu and MIR)

@NAtransposona Transposase

Transposons (e.g. Mariner)

Figure 1. Transposable Elements (TEs). TEs can be organized into two major categories: retrotransposons (retroelements or
class I elements) and DNA transposons (class II elements). Both types of TEs can be either autonomous or non-autonomous.
Autonomous TEs encode reverse transcriptase (RT) and other proteins required for replication and transposition, whereas
non-autonomous elements do not encode these proteins and need other TEs for their mobilization. Retrotransposons can be
divided into two groups, according to the presence or absence of long terminal repeats (LTRs) flanking internal coding
regions. The canonical autonomous LTR retrotransposons contain a small number of open reading frames (ORFs). Most
elements contain an ORF including gag and pol domains, and endogenous retroviruses (ERVs) contain an ORF for env.
Gag encodes a structural polyprotein, and pol encodes enzymatic activities: protease, RT, integrase, and ribonuclease H.
ERVs contain a primer-binding site (PBS) located between the 5'LTR and gag, and a polypurine trait (PPT) located between
env and the 3'LTR. The PBS binds the cellular tRNA priming the synthesis of the (-)strand DNA, and the PPT acts as a
primer for the (+)strand DNA. Non-LTR retrotransposons include long interspersed nuclear elements (LINEs), and short
interspersed nuclear elements (SINEs). The canonical LINE-1 element has two ORFs (ORF1 and ORF2) flanked by 5" and 3
UTRs; the 5’ UTR includes an RNA polymerase II promoter, and the element ends with a poly (A) tail. The canonical Alu
element consists of two monomers (A and B) separated by an (A)-rich linker region, and ends with a poly (A) tail. A and B
boxes are transcriptional promoters for RNA polymerase III. In DNA transposons, the transposase is flanked by terminal
inverted repeats (TIRs).
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DNA transposons are widespread across the three domains of life, although they
are currently inactive in most mammals. These transposons move via a “cut and paste
mechanism (Figure 2A) by which a transposase mediates transposon movement by double-
strand DNA cleavage and insertion. Thus, a DNA sequence is excised by the transposase
from one region and integrated into another region of the genome [42,50]. Transposases are
flanked by terminal inverted repeats (TIRs) (Figure 2A). On the contrary, retrotransposons
move via a “copy and paste” mechanism (Figure 2B), using RT to transcribe the RNA back
into DNA and an integrase or endonuclease to insert it into a new genomic location [51].
Therefore, unlike DNA transposons, retrotransposons are not replicated. When transposons
are inserted into the new genomic location, the DNA at the target site duplicates, producing

target site duplications (TSDs) (Figure 2A,B).
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Figure 2. Mechanisms for mobilization. (A) DNA transposons move via a “cut and paste” mechanism, by which a
transposase (T) mediates double-strand DNA cleavage and insertion. The DNA sequence is excised by the transposase
from one region (donor DNA) and integrated into another region of the genome (target DNA). Transposases are flanked by
terminal inverted repeats (TIRs). (B) Retrotransposons move via a “copy and paste” mechanism, using RT to transcribe the
RNA back into DNA and integrases or endonucleases to insert it into a new location. After insertions, the DNA at the target
site duplicates, producing target site duplications (TSDs).

Almost half of the human genome is derived from TEs, with DNA transposons making
up around 3% of the human genome [46]. Though this class of transposon is currently not
mobile in the human genome, they were active during early primate evolution. On the other
hand, LTR retrotransposons constitute around 8% of the human genome, whereas non-
LTRs comprise about one-third of our DNA. The most abundant retroelements in mammals
are the non-LTR retrotransposons of the LINE-1 family (L1), which alone comprise nearly
17% of the human genome [46].

Regarding integration, both retrotransposons and DNA transposons seem to insert
non-randomly into the host genome and, generally, TEs integrate preferentially into specific
domains of chromosomes where they can be less harmful [52]. LTR retrotransposons use
RT to synthesize a double-stranded DNA (dsDNA) intermediate from the RNA template
(Figure 2B). Then, that complementary DNA (cDNA) is inserted in the target DNA by an
integrase; retroviruses also use integrases as a DNA insertion mechanism. On the contrary,
non-LTR retrotransposons encode endonucleases, and copy their RNA directly into the
target DNA via a target-primed reverse transcription mechanism [42,52].

Occasionally, transposition events can occur in the germline, leading to changes that
pass on to the next generations. On the contrary, transposition events that take place in
somatic cells can give rise to mosaicisms within individuals [53].
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3. Transposable Elements, Exaptation, and Human Evolution

Although many TEs do not exert a relevant effect in the host genome, some insertions
can be mutagenic, and therefore hosts have developed a variety of strategies to repress
TE expression [54]. Although random mutation is an important source of TE inactivation,
hosts have evolved other adaptive responses to impede retrotransposon proliferation, in-
cluding transcriptional silencing through epigenetic modifications and post-transcriptional
silencing through RNA interference [48,55]. In fact, only a small proportion of TEs remains
actively mobile [56]. The non-LTR retrotransposon L1 and the SINEs Alu and SVA, as well
as the LTR retrotransposons belonging to the HERV-K family, are the only currently active
TEs in humans [46,57].

However, the host’s silencing mechanisms are not always effective, and the evolution-
ary success of TEs is undeniable. They are ubiquitous and account for a large fraction of
eukaryotic genomes; they have driven many key evolutionary innovations and resulted in
genetic diversity and evolutionary success [51,58]. They have even been suggested to play
a possible role in speciation [59]. The evolutionary success of TEs may be due to several
factors, including evasion from host epigenetic modifications and silencing. However,
TEs have also evolved symbiotic relationships with the hosts that diminish their cost of
propagation [60].

TEs are considered “selfish” genetic elements, since they exploit host cellular functions
to increase in copy number and enhance their own transmission without a benefit to
the host [61,62]. In fact, most TEs are neutral to the host, and they have been fixed
through genetic drift. However, TEs can also be advantageous by generating evolutionary
innovations [63]. A relevant mechanism by which TEs contribute to genome evolution is
through exaptation [63,64] (Figure 3). This term was conceived and reported for the first
time by Stephen J. Gould and Elisabeth Vrba in 1982 [65]. Exaptations are features that
increase fitness in the present, but were not acquired by natural selection for their current
role [65]. The classic example is the exaptation of feathers; the initial function of feathers in
a flightless ancestor was insulation, but later in evolution, feathers were co-opted for flight
in birds.

There are several well characterized exapted TEs, such as RAG genes in vertebrates,
FHY3 transcription factors in plants, and several mammalian env genes (derived from ERVs)
that are involved in placental development, including ERV-3, Peg10, or syncytins [63,66]. In
addition, several TEs have been co-opted by prokaryotes and eukaryotes to be used as part
of defense systems against infectious agents, including viruses and TEs themselves [67].
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Figure 3. Retrovirus endogenization and exaptation. During replication, retroviral RNA is reverse-
transcribed, giving rise to a double-stranded cDNA provirus that will be then integrated into the
cellular genome of somatic cells. However, when the exogenous retroviruses infected germline cells,
the integrated retroviruses began to be inherited in a Mendelian fashion. Endogenized retroviruses
were vertically transmitted and fixed into the human genome. Over the course of evolution, endoge-
nous retroviruses accumulated mutations (white boxes) and underwent gene capture and exaptation,
by which retroviral genes started to perform new physiological functions. For example, syncytins are
env genes of retroviral origin captured by mammals.

4. Transposable Elements and Human Disease

Once considered “junk” DNA, it is currently clear that TEs exert functional roles in
physiological and pathological processes. TEs are important gene regulatory elements that
act as alternative promoters, enhancers, or other elements [53]. In the human brain, TEs
are usually silenced. However, dysregulation of those silencing mechanisms can lead to
TE activation, giving rise to neurological disease [53,68]. In fact, it has been suggested
that dysregulation of TEs might be involved in the etiology of neurodevelopmental and
neurodegenerative disorders [69-71]. TEs have also been linked to cancer; a high level of
somatic LINE-1 retrotransposition has been associated with epithelial tumors [55].

TEs can induce disease in different ways. First, although the genetic content of many
TEs does not have a relevant effect on the host, sometimes insertions can disrupt genes.
Second, the transcripts of TEs alone can be harmful, with TE-derived cytosolic nucleic
acids leading to immune response. Organisms have developed several pathways for the
sensing of intracellular nucleic acids (pattern recognition receptors [PRRs]), presumably in
order to detect viruses within infected cells. While these pathways are crucial to trigger
an effective antiviral response, unfortunately nucleic acid sensors may also be involved
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in several human autoimmune diseases [19]. Regarding TEs, the innate immune system
may sense the cDNA, activating antiviral responses [19]. Thus, PRRs can detect TE-derived
molecules, leading to nuclear activation of immune genes, which encode pro-inflammatory
effectors such as cytokines and interferon (IFN) [53]. Third, some TE transcripts can also
be translated into cytotoxic proteins. For instance, the HERV-K env protein contributes to
neurotoxicity and neuronal death, and it has been suggested as a factor involved in the
pathogenesis of amyotrophic lateral sclerosis (ALS) [72].

DNA methylation is the main strategy to silence TEs in higher eukaryotes, and genome
expansion may be largely dependent on the action of DNA methyltransferases, which
have evolved with TEs [73]. Typically, cancer cells display focal hypermethylation, often in
5'-cytosine-phosphate-guanine-3’ (CpG) islands, and global hypomethylation, particularly
in repeated DNA sequences, retrotransposons, and endogenous retroviral elements [74,75].
Global DNA hypomethylation such as that seen in cancer [76,77] has also been associated
with TE reactivation [78-80].

On the other hand, the brain can be considered to be a genomic mosaic, given the
somatic mutations that appear during neurodevelopment. TEs are one source of somatic
mosaicism, and interestingly, in mice, retrotransposition has been shown to be affected by
experience, in particular by maternal care in the first weeks of life [81].

5. Human Endogenous Retroviruses (HERVs)

ERVs are vestiges of ancient retroviral infections that remain in the eukaryotic genomes.
These TEs were acquired over thousands of years of evolution by the integration of retro-
viruses in the chromosomes of the host germline cells. Several HERVs [82,83], which
collectively make up around 8% of the human genome, have been identified and character-
ized during the last decades [84-87]. HERV expression may be triggered by environmental
factors. Although some HERVs may provide biological advantages, they also may induce
pathogenesis in some circumstances; in fact, HERVs have been implicated in cancer and
autoimmune diseases [72,88-91].

Exogenous retroviruses usually infect somatic cells and pass from one host to another
by horizontal transmission. However, when certain ancestral exogenous retroviruses
infected the germline, those proviral sequences were endogenized (Figure 3). From then
on, the retroviral sequences started to be vertically transmitted to the offspring, being fixed
in the whole population [16].

HERVs and exogenous retroviruses share the canonical proviral structure, composed
of gag, pol, and env genes flanked by two LTRs. The retroviral pol gene encodes the enzymes
protease, RT and integrase; the gag gene encodes the structural components matrix, capsid
and nucleocapsid; and the env gene encodes the envelope surface and transmembrane
proteins. However, during evolution, accumulation of mutations altered the structure of
the majority of HERVs, which lost their coding capacity. Therefore, HERVs are inactive and
cannot replicate, remaining only in a limited protein coding capacity or, more frequently,
producing non-coding RNAs. Unlike mouse ERVs, no replication-competent HERVs have
been described to date, although some maintain intact ORFs [92]. Thus, in contrast to the
exogenous human retroviruses, HERVs are not infectious. In some cases, recombination
between homologous LTRs resulted in the removal of the internal portion of DNA and
giving rise to a solitary LTR. Exceptionally, HERV-K viruses can maintain a certain degree
of activity and may transmit viral RNA to other cells [93].

The transcripts of HERVs are not pathogenic alone, and do not seem to exert relevant
biological effects [23]. Furthermore, not even the proteins from HERVs have been shown to
be pathogenic. A recombinant MS-associated retrovirus (MSRV) env protein, for instance,
triggered an abnormal immune response in vitro, whereas, on the contrary, no significant
effect was observed with the gag protein produced in the same system [94].

Several systems have been proposed to classify and name HERVs. A widely used
nomenclature is based on the amino acid specificity of the tRNA that binds to the primer-
binding site (PBS) to elicit reverse transcription. The one-letter code for the corresponding
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amino acid is added to the acronym HERV: HERV-H, -T, -W, -K, etc. [71,95]. On the other
hand, an accepted classification is based on similarity to their exogenous counterparts.
Thus, HERVs can be organized into three classes: class I (genus Gammaretrovirus), class
II (genus Betaretrovirus), and class III (genus Spumavirus-related) (Figure 4). Families
HERV-E H, L E, R, P, T, W as well as ERV-FTD and FRD belong to genus Gammaretrovirus.
Betaretroviruses contain the HERV-K family (HML1-10 subfamilies), and the Spumavirus-
related family includes the HERV-L family (Figure 4).

Human

endogenous

retroviruses
CLASS | CLASS I CLASS Il
Genus Genus Genus

Gammaretrovirus Betaretrovirus Spumavirus-related
Families Family Family
HERV-F, H,|,E,R, P T,W HERV-K HERV-L
ERV-FTD, FRD (HML 1-10)

Figure 4. Classification of human endogenous retroviruses (HERVs). HERVs can be classified into
three groups: class I (genus Gammaretrovirus), class II (genus Betaretrovirus), and class III (genus
Spumavirus-related). Genus Gammaretrovirus includes families HERV-E H, L, E, R, P, T, W as well
as ERV-FTD and FRD. Genus Betaretrovirus includes the HERV-K family (HML1-10 subfamilies).
Genus Spumavirus-related family includes the HERV-L family.

5.1. Endogenous Retroviruses and Multiple Sclerosis

HERVs expression has been linked to several diseases affecting the CNS [96], especially
MS and ALS. Regarding ALS, several studies have associated this neurodegenerative
disease with the HERV-K family [23,72], although recent reports have questioned this
hypothesis [97], opening up an interesting field of debate [98,99]. Concerning MS, in 1998,
Christensen and colleagues observed that PBMCs from the serum of patients with MS
produced type C retrovirus-like particles, which were different from known retroviruses
and had RT activity [100]. Later, the authors found an increased level of antibodies against
HERV-H peptides in the serum and cerebrospinal fluid (CSF) of MS patients [101]. Those
early observations suggesting activation of ERVs in MS patients supported these TEs
as possible pathogenic factors for this disease [29,102]. Several HERV transcripts and
proteins have been associated with neuroinflammation, which can activate HERVs through
epigenetic dysregulation [23]. For instance, pro-inflammatory cytokines may up-regulate
transcription of MSRV in cultured cells from MS patients [103]. In contrast, [IFN-{3 therapy
reduced the anti-env antibody reactivity for HERV-H and HERV-W [104] and, similarly, the
MSRYV load in the blood of MS patients decreased after one year of therapy with IFN-f3 [105].
MSRV may also induce human monocytes to produce major pro-inflammatory cytokines,
and the increased IFN-vy, IL-6, and IL-12p40 found in PBMCs of MS patients correlated
with disease severity in most cases [106,107].

It is established that HERVs are up-regulated in the brain of MS patients compared
to healthy controls, and there is a strong epidemiological association between MS and
the expression of HERVs [28,30,31,91,108-110]. The HERV-W family is a large group of
TEs found in humans and also in non-human primates, and it is mobilized by the LINE-1
machinery [111]. Two retroviruses belonging to the HERV-W family have been proposed
as major MS risk factors: MSRV and ERVWET [91].



Int. J. Mol. Sci. 2021, 22,5738

9 of 22

5.1.1. Multiple Sclerosis-Associated Retrovirus

MSRYV is an important TE belonging to the HERV-W family [112] that has been linked
to MS [27,30,31]. It has been proposed as a biomarker for MS behavior and therapeutic
outcomes, supported by several facts. For instance, the presence of MSRV in the CSF of
patients with optic neuritis (a disease that can precede the development of MS) can predict
conversion to MS. MSRV in the CSF of patients at MS onset correlates with worst prognosis
and disease progression. The genome of MS patients contains more MSRV DNA copies
than in controls [91]. MSRV env expression has been observed in glial cells at the periphery
of MS lesions and in astrocytes within the plaques [113]. Surprisingly, comparisons of
peripheral blood between MS patients and healthy controls showed that MSRV expression
is higher in an Eastern European population (with a lower risk of the disease) compared to
the Northern European cohorts [114].

A more recent study demonstrated that the HERV-W env protein impaired oligoden-
droglial precursor cell (OPC) differentiation and remyelination. It mediated activation of
Toll-like receptor 4 (TLR4) and induced pro-inflammatory cytokines and inducible nitric
oxide synthase (iNOS), with a subsequent inhibition of oligodendroglial differentiation
and decrease in myelin proteins [115]. In fact, MSRV env is a potent agonist of human
TLR4 that induces TLR4-dependent pro-inflammatory stimulation of immune cells in vitro
and in vivo, impairing OPC differentiation [116]. Another study tackled whether the
pathogenic HERV-W env protein also plays a role in axonal damage in MS, finding that
in MS lesions, the HERV-W env protein induced a degenerative phenotype in microglia,
which then promoted damage to axons [117]. Besides the HERV-W env protein, HERV-
H env expression is also increased in the B cells and monocytes of patients with active
MS [118].

One early event during MS development is the compromise of the BBB, with major
steps of pathogenesis being the adhesion of activated leukocytes to brain endothelial cells,
and subsequent trans-endothelial migration through the impaired BBB [119]. In healthy
individuals, brain-endothelial tight junctions limit adhesion and migration of immune cells
into the CNS, but inflammation can increase expression of adhesion molecules such as
intracellular adhesion molecule 1 (ICAM-1) and permit cells to cross the BBB. A recom-
binant MSRV env was able to stimulate expression of ICAM-1 and the pro-inflammatory
interleukins IL-6 and IL-8 in an endothelial cell line [120]. Env protein was recognized
via the TLR4 receptor, and treatment of brain endothelial cells with this MSRV protein
significantly stimulated adhesion and trans-endothelial migration [120], demonstrating
that MSRV can trigger TLR4-directed inflammation and increase BBB permeability.

Regarding prevention, management, and treatment of MS, research on HERV-W family
can yield useful outcomes. For instance, Temelimab, or GNbAC1 antibody, is a monoclonal
antibody that selectively binds to the HERV-W-Env and neutralizes it [121]. This drug is
currently in clinical development for MS and type 1 diabetes mellitus, and phase 2 clinical
trials have been completed with positive results.

5.1.2. ERVWE1/Syncytin-1

Syncytin-1 is an env glycoprotein encoded by the replication-incompetent HERV-W
element and is involved in mammalian placental morphogenesis [15,122]. It is encoded
by a gene located on chromosome 7 (ERVWE1 locus), which contains a complete ORF,
and it plays a crucial role in placental trophoblastic formation (Figure 5A). Syncytin-1 is
involved in cell-to-cell fusion, and in addition, it exerts an immunosuppressive function
that inhibits rejection of the fetus by the maternal immune system (Figure 5B). The process
of fusion between cells and development of syncytia is similar to the process of fusion
between viruses and cells during viral entry. Syncytin-1 can be found in eutherians and
marsupials, all of which possess a placenta, and it has even been found in non-mammalian
vertebrates [123].
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Figure 5. Physiological and pathological functions of syncytin. (A) When the embryo reaches the blastocyst stage, it

undergoes implantation into the endometrium of the uterine wall. During implantation, the trophoblast (cells that

form the outer layer of the blastocyst) develops into two layers: the cytotrophoblast and syncytiotrophoblast. The

syncytiotrophoblast invades the maternal endometrium and directly contacts the maternal capillaries. Syncytin-1 plays

a major role in syncytiotrophoblast cell fusion and, therefore, in embryonic development. (B). Besides cell-to-cell fusion,

syncytin-1 exerts an immunosuppressive function that inhibits rejection of the fetus by the maternal immune system.

However, syncytin-1 exerts also pathological functions, such as neuroinflammation and tumor-endothelial cell fusion. (OLs

= oligodendrocytes).

A decrease in syncytin-1 expression and abnormal localization has been found in
preeclampsia, a pregnancy disorder characterized by poor trophoblast differentiation and
placental dysfunction [124]. On the other hand, syncytin-1 is up-regulated in glial cells of
demyelinating lesions and in brain tissue of MS patients [109,125]. It is currently established
that syncytin-1 can activate pro-inflammatory and autoimmune processes, triggering
neuroimmune activation and oligodendrocyte injury [33,126] (Figure 5B). Syncytin-1 is
also increased in breast cancer cell lines [127] and in endometrial carcinoma [128,129],
and it is also an important mediator of tumor-endothelial cell fusion [130] (Figure 5B).
The expression of syncytin-2, another fusogenic protein encoded by an HERV-FRD env
gene [131], is also decreased in placentas from preeclamptic patients [132].

Syncytin-1 is different from MSRV env, although they share some sequence simi-
larities [33,133]. Despite the fact that the pol sequences of MSRV and ERVWEI share
around 92% identity, HERV-W env genes are more heterogeneous [134]. MSRV env and
syncytin-1 share several biological characteristics: both are potentially pathogenic, have
pro-inflammatory and superantigenic properties, may trigger neurotoxicity, may cause
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neuroinflammation and neurodegeneration, and both have been proposed as risk factors
for MS [91]. MSRYV env and syncytin-1 are absent in healthy white matter, whereas they are
up-regulated within acute and chronic MS lesions [134]. A significant difference between
syncytin-1 and MSRV env is their localization: syncytin-1 is found inside the cell and
on the plasma membrane, whereas MSRV can be visualized by electron microscopy as
extracellular virus [134]. However, current tools do not permit easy discrimination between
MSRYV env and syncytin-1, and the origin of MSRYV is not still clear; MSRV might be either
an exogenous HERV-W, or a non-ubiquitous replication-competent member, or a partially
defective but non-ubiquitous copy, occasionally complemented or recombined within the
HERV-W retroviral family [40,91,135].

5.1.3. HERV-H

In 2000, Christensen and colleagues [136] demonstrated a specific association between
MS and the HERV-H family of retroviruses in cell cultures from MS patients. In a sub-
sequent study, an increased immune response to HERV-H env correlated with disease
activity [137]. However, a later study did not find HERV-H or HERV-W sequences in
the CSF of MS patients [138]. Later reports suggested that HERV-H up-regulation in the
lymphocytes of MS patients might induce anti-HERV antibodies or cell-mediated immune
responses against gag and env peptides [33]. In 2002, Patzke and colleagues [85] identified
and characterized a HERV gag transcript in a human pre-B cell leukemia cell line whose
PBS was complementary to phenylalanine tRNA, common for the HERV-F family [139],
although the overall genome sequence was related to the HERV-H family. Therefore, this
retroviral sequence was named HERV-H/F [85]. HERV-Fc1, which belongs to the HERV-
H/F subfamily, has been linked to MS [140]. Regarding genetic susceptibility, a single
nucleotide polymorphism in the HERV-Fc1 locus on the X chromosome has been linked to
an increased MS risk [30,141-143].

5.2. Herpesviruses and MS

Several studies have suggested herpesviruses as risk factors for MS pathogenesis and
other demyelinating processes [5,13,14,144-146]. Epidemiological studies have found a
correlation between VZV and MS [147], and VZV DNA isolated from the CSF and PBMCs
of MS patients was increased during relapses compared to during remission and in healthy
controls [148]. Oligoclonal bands (OCBs) directed against HHV-6 and EBV have been
identified in MS patients [149], and OCBs against HSV-1 in the CSF of MS patients has also
been reported [150], although this was not corroborated in all studies [151]. HSV-1 has
been linked to demyelination in animal models [152-159] and in humans [160-168], and
several studies have suggested other herpesviruses including HHV-6 [146,164,169-174],
EBV [144,175-181] and HHV-8 [168,170,182] are risk factors for MS. In general, herpesvirus
infections are more frequent in MS patients than in patients with other neurological dis-
eases [138]. It has been postulated that EBV might initially activate HERV-W /MSRV, which,
in turn, would trigger a future MS that would emerge years later [91]. HERV-W /MSRYV has
been proposed as a direct contributor to MS neuropathogenesis, both before and during
the disease, or it might be a common link between several co-factors [91].

5.3. Herpesviruses, HERV's and MS

HERVs do not contain intact ORFs of essential retroviral genes, although several
chromosomal copies may retain potential ORFs [183]. Hence, it has been proposed that
exogenous viral transactivators, such as herpesviruses, might be key to reactivation of
endogenous retroviral expression. Several studies have demonstrated that herpesviruses
may activate HERVs, consistent with herpesviruses as risk factors for MS. Several studies
have identified HSV-1, VZV, HHV-6, and EBV in MS patients, and it has been demonstrated
that those viruses can trigger the expression of HERVs [184]. Transactivation of HERVs
by exogenous viral infection might stimulate their expression in MS patients [184,185].
For example, EBV can transactivate the env gene of HERV-K18 in infected B cells [39], via



Int. J. Mol. Sci. 2021, 22,5738

12 of 22

the latent membrane proteins LMP-2A and LMP-1 [186]. HERV-K18 elicits superantigen
activity, stimulating a large number of lymphocytes. EBV transactivates the HERV-K18 env
gene through interaction with its entry receptor CD21 [187]. Therefore, a superantigen that
was originally thought to be encoded by EBV itself was actually found to be a superantigen
of HERV-K18 that was transactivated by EBV infection. The reactivation of endogenous
viral superantigens by an unrelated herpesvirus, such as EBV or HSV-1, has been proposed
as the “missing link” to explain the role of viral infection in the etiology of MS and other
autoimmune diseases [188]. Apart from HERV-K18, the HERV-W family (which includes
MSRV) exerts superantigen activity [188]. HHV-6 can also transactivate HERV-K18, either
during latent or acute infection, through IFN-« produced by infected cells [38]. HSV-1
can also up-regulate the expression of HERV-W env protein in human neuroblastoma cell
lines [188].

6. HSV-1 and HERVs: Implications for MS
6.1. HSV-1 and MSRV

Focusing on HSV-1, early studies showed that leptomeningeal cells from an MS patient
expressed specific viral RT activity, whereas electron microscopy analysis revealed the
presence of unidentified viral particles. RT activity was enhanced after viral transactivation
by HSV-1 infection [189] (Figure 6). Similar findings were later obtained in monocyte
cultures from MS patients [190]. The authors were able to transfer those unidentified viral
particles, initially named LM7, to non-infected leptomeningeal cells in vitro [191]. After
those first observations, HSV-1 infection of leptomeningeal cells from a MS patient demon-
strated that the increased RT activity was mediated by ICP0 and ICP4 immediate early
(IE) proteins, which strongly enhanced the expression of retrovirus-like particles harbored
by the leptomeningeal cells [192]. These unknown retrovirus-like particles would be later
identified as a novel HERYV, belonging to the HERV-W family, and named MS-associated
retrovirus, MSRV [193]. Later, a Danish group would also visualize retrovirus-like particles
by electron microscopy of T cell cultures obtained from a patient with progressive MS [194].
To date, MSRV, which has been repeatedly isolated from MS patients, is the only HERV-W
expressed as viral particles, and its association with MS has been later confirmed by several
studies [195-198]. The presence and viral load of MSRV in blood and CSF of MS patients
and healthy controls from different European regions were significantly associated with
MS in all ethnic groups [102]. In addition, its presence in the CSF of MS patients has been
related with a greater rate of disability and progression of the disease [33,199].

6.2. HSV-1 and ERVWE1/Syncytin-1

Using a HERV-W LTR reporter plasmid, early studies showed that HSV-1 infection
can induce the LTR-directed transcription of HERV-W via the action of IE protein 1 (IE1)
(Figure 6). This effect also required an Oct-1 binding site that is located in the LTR,
suggesting that HSV-1 stimulates the LTR by increasing the DNA binding activity of Oct-1
transcription factor [200]. Syncytin-1 expression can be induced by viruses, such as HSV-1
or influenza, and cytokines such as TNF-« [134]. Research with MS patients demonstrated
that syncytin-1 was up-regulated in MS lesions [125]. In addition, this env protein activated
pro-inflammatory molecules in vitro (including IL-1f and iNOS), causing oligodendrocyte
injury. This finding led to the hypothesis that syncytin-1 is involved in demyelination,
mostly via cellular damage in the brain caused by redox reactants [125]. Subsequent in vitro
studies found that HSV-1 can also induce HERV-W gag and env proteins in neurons and
brain endothelial cells [36].
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Figure 6. Role of HSV-1 in HERVs activation and immune response. The figure summarizes relevant effects of HSV-1 on
HERVs transcription and the synergistic effects of both viruses on immune response.

6.3. HSV-1 and HERV-K

HERV-K is the most recently acquired HERV family in humans (400,000-250,000 years
ago) [33]. Unlike the majority of HERVs, the HERV-K family maintains intact ORFs for
all retroviral genes [201]. HERV-K includes 11 subfamilies, HML-1 to HML-11. The K18
member of the HML-2 subfamily (HERV-K18) has found to be a risk factor for MS [202] and,
as explained before, the HERV-K18 env gene can be transactivated by EBV in infected B
cells [39]. It has been demonstrated that HSV-1 can induce the LTR-directed transcription of
HERV-K (Figure 6), an effect mediated by the action of the IE protein ICP0 and that requires
the AP-1 binding site on the HERV-K LTR. ICP0 up-regulated AP-1 activity, suggesting that
this IE protein increased transcription of HERV-K via AP-1 site [203].

6.4. HSV-1 and HERV-H

It has been demonstrated that a simultaneous presence of HERVs and herpesvirus
antigens has a strong effect on immune responses. Thus, combinations of inactivated
herpesviruses (especially HHV-6A and HSV-1) and HERV-H antigens greatly increased
immune responses in vitro in PBMCs from MS patients and healthy controls [204]. This
increase was synergistic for HHV-6A, HSV-1, and VZV antigens combined with HERV-H,
whereas there was no such effect with CMV. To investigate whether the in vitro findings
were relevant in vivo, the authors analyzed the ability of herpes antigens to activate
HERVs [35]. The results showed that HSV-1, HHV-6A, and VZV, but not CMV, induced
endogenous RT activity [35] mediated by HERV-H activation. The experiments were
performed with inactivated herpesviruses and thus were infection-independent, suggesting
that activation of HERVs was directly due to viral proteins. Once activated, HERVs may
promote several mechanisms, such as molecular mimicry, neurotoxicity, or up-regulation
of immune mediators [35].

A later study analyzed the synergy between herpesvirus antigens and HERVs in
the release of pro-inflammatory cytokines in PBMCs [205]. When combined with HSV-1
and VZV, HERV-H significantly increased IFN-y, a pro-inflammatory cytokine which is
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recognized to exacerbate MS. However, HERV-H alone did not induce cytokine production
or cell proliferation. HHV-6A also induced RT activity and proliferative responses [205].

7. Conclusions

Numerous studies have demonstrated that herpesviruses may activate HERVs. In
addition, HERV expression has been linked to MS. This is in accordance with experimental
and epidemiological studies which suggest herpesviruses as risk factors for MS. Thus,
transactivation of HERVs by herpesvirus infections might stimulate their expression in
MS patients, triggering demyelination or contributing to disease severity. Among her-
pesviruses, HSV-1 may play a role in demyelination mediated by HERVs, and in this
regard, it has been shown to up-regulate expression of the HERV-W env protein. HSV-1
infection may also enhance MSRV RT activity, induce the LTR-directed transcription of
HERV-W, and up-regulate syncytin-1, which may activate pro-inflammatory molecules
causing oligodendrocyte injury. HSV-1 can also induce HERV-W gag and env proteins
in neurons and brain endothelial cells, and it can induce the LTR-directed transcription
of HERV-K. Finally, HSV-1, HHV-6A, and VZV, but not CMV, can induce HERV-H RT
activity. When combined with HSV-1 and VZV, HERV-H significantly increased IFN-y, a
pro-inflammatory cytokine which may exacerbate MS. These data encourage further study
of the role of HSV-1 as a risk factor for MS and other demyelinating processes.
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