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Abstract: Music is an exclusive feature of humankind. It can be considered as a form of universal
communication, only partly comparable to the vocalizations of songbirds. Many trends of research in
this field try to address music origins, as well as the genetic bases of musicality. On one hand, several
hypotheses have been made on the evolution of music and its role, but there is still debate, and
comparative studies suggest a gradual evolution of some abilities underlying musicality in primates.
On the other hand, genome-wide studies highlight several genes associated with musical aptitude,
confirming a genetic basis for different musical skills which humans show. Moreover, some genes
associated with musicality are involved also in singing and song learning in songbirds, suggesting a
likely evolutionary convergence between humans and songbirds. This comprehensive review aims
at presenting the concept of music as a sociocultural manifestation within the current debate about
its biocultural origin and evolutionary function, in the context of the most recent discoveries related
to the cross-species genetics of musical production and perception.
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1. Introduction

Since ancient times music is paramount in many social and cultural activities, such
as rituals, education and performances, included choreutics [1]. Together with language,
it is present in all populations and cultures, around the world and over time: no human
group has been found, that does not bear at least a rudimentary form of music and verbal
communication [1,2]. Thus, these two forms of communication could be also useful to
highlight the patterns of human migration and cultural admixture [3].

Humans are able to perceive and define intrinsic characteristics in music, such as
structure, rhythm, intensity, pitch, and timbre [4]. Moreover, they have the capacity to
entrain to an isochronous pulse (co-coordination of movements to a rhythmic pulse), an
ability required for music production as well as vocal learning, or the skill of learning
new melodies [3,5–7]. Excluding humans, a phenomenon similar to music is referred to as
“vocalizations”, such as those of songbirds, although these are thought to be functionally
limited to mate attraction and territoriality [8].

However, what is music? It can simply be described as a periodic variation of pitches,
which, when combined, originate melodies. Nevertheless, a definition of music is nontrivial
and may be different in distinct cultures, although it always underlies a form of universal
communication that awakens an emotional response [7,9]. In any case, it is possible to
introduce a first distinction between music and musicality. Musicality can be defined as a
set of traits or abilities that allows us to perceive and produce any form of music, that has a
spontaneous development and is constrained by cognitive and biological systems. Music,
indeed, is a sociocultural concept based on that of musicality, in other words it is a product
of musicality, that varies among cultures and over time [10].
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The reconstruction of the spread and evolution of music, however, is not easy and
is challenged by the paucity and fragmentary conditions of archeological records. To
date, the oldest artifacts undoubtedly recognized as musical instruments are described as
pipes and flutes, recovered from the sites of Geißenklösterle, Hohle Fels and Vogelherd
in Germany [11], which date back to 43,150–39,370 years before present (BP) [12]. There
is also an ongoing debate about an osseous artifact of similar age, recovered in 1995 from
the Divje Babe I cave site in Slovenia and belonging to the Mousterian techno-complex
of Western Eurasia, arguably providing evidence for the active manipulation of bone to
obtain wind musical instruments in Neanderthals [13–15]. It is also noteworthy that the
sound produced by a seashell horn has been analyzed and recorded for the first time just
recently. This seashell, forgotten for many years and not considered until now a music
instrument, shows signs of human modifications, such that it can be classified as wind
instrument. It was found in a cave in Marsoulas (France), and it is attributed to the early
Pyrenean Magdalenian culture of the Upper Paleolithic (around 18000 years cal BP). These
results make it the oldest seashell horn of the Upper Paleolithic [16].

Despite the lack of ancient artifacts, a cross-cultural approach highlighted universal
features of music, for example related to pitch and rhythm; furthermore, some of these
features have parallels in non-human animals, such as songbirds [2]. The presence of
similarities across cultures supports musicality as a significant characteristic of humankind
and suggests underlying cognitive and biological mechanisms that may constrain and
shape music across cultures [9]. Therefore, these universal music features can be considered
as the ‘musical possibilities’ of the human being and are based on an anthropological and
phylogenetic substratum, which guarantees the existence of cultural universals [17].

2. Music–Language Universality and the Biocultural Origins of Music

Another debate arises around the evolutionary relationship between music and lan-
guage, since both possess emotional content, involve change of pitch, timbre, loudness,
rhythm processing [18–20], are rule-based and can be transmitted in written form [2,3]. It
has been proposed that music and language have originated from a common precursor
called musilanguage (or protolanguage) and then have differentiated by developing distinct
properties [21]. Since vocal learning is a feature shared by both language and music, it is
possible to argue that this characteristic emerged at the same time of protolanguage; so, its
appearance would also mark the passage from innate to learned vocalization [22]. This
common origin could be supported by positron emission tomography (PET) experiments,
which show a partial overlap between brain areas activated by music and by language,
such as Broca’s area, the prefrontal cortex and the amygdala [23,24].

The universality of music and its parallels with language raise questions around its
origin and function: how and when the ability to appreciate and produce music evolved
in our species? Its general features suggest that anyone has the potential to engage in
music-related activities [25]. Indeed, music may be perceived as a biological competence,
given that humans are responsive to it from a very early age [21]. A fundamental debate
among scientists relates to the possibility that music, then, originated as an evolutionary
adaptation, rather than a cultural product [26]: if music can be treated as a biological
trait under selective pressure, it may have played a role in the survival of the human
species [9,27]. It has been proposed, in fact, that music is a biological adaptation with at
least three different roles: the increase of reproductive success, strengthening mother–infant
connection and social cohesion.

The first hypothesis, dating back to the earliest observations by Charles Darwin
that animal vocalizations were of benefit for the reproductive success of the individual,
rather than its survival [28], has been recently corroborated by studies on the audio–visual
integration effect of music-elicited emotions in humans: a cross-modal transfer of musical
arousal seems to be responsible for increased levels of attraction towards opposite-sex faces
in women, and a congruent audio–visual presentation (pleasant music and a face with
sexually attractive characteristics) induces a stronger physiological response [29–31].
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The second hypothesis considers that cognitive skills and emotional sensibility to
music may have evolved gradually from affective interactions between ancestral mothers
and their infants since approximately two million years ago, involving vocalizations with
proto-musical features; mother–infant vocalization was, then, an adaptive character that
allowed to increase the survival of infants and, therefore, the reproductive success of the
mothers [32,33]. At a later time, the elements originating from mother–infant vocalizations
became music [34]. Reconnecting to the musilanguage theory [21], it may be speculated
that the prosodic maternal–infant communication is also a proxy for the communication
system used by our ancestors, prior to the separation of music and language [18,19].

The third adaptive hypothesis argues that music, and consequently language, evolved
to enhance cohesion in increasingly larger social groups [20]. Humans have a cross-cultural
and universal propensity to gather in groups to sing and dance rhythmically together,
often in a ritual setting; this behavior does not seem to generate an immediate benefit for
the survival of the human species and the biological background of this tendency may be
searched in the social displays that are typical of the apes, such as “loud calls” and physical
manifestations [5,6]. Social interactions and cohesion are facilitated by music, as they are
associated with common physiological arousal states in individuals who assist to musical
performances, therefore promoting the expression of emotions [3,34]. A significant support
to this theory could be provided by the overlap between brain regions activated when
listening to music and when performing cooperative tasks, and also by the neurochemical
and physiological evidence that both events stimulate dopamine release as a rewarding
response [19,35]. The nucleus accumbens, which has a role in this response during listening
to music [35], is also one of the brain regions activated when individuals are performing
reciprocally collaborative tasks that are rewarding and empathic [36,37], corroborating the
hypothesis of music as “social glue”. There is, indeed, direct evidence not only for the
causal role of dopamine in pleasure response when listening to music as compared to highly
rewarding hedonic experiences, but also for the stimulation of oxytocin and the consequent
inducement of prosocial behavior [38–41]. Neuroimaging, neuropsychological and brain
stimulation studies in musical anhedonia (the inability to find music pleasurable) also
seem to suggest that human appreciation of music emerges from the predictive process of
auditory perception, which connects to the structures involved in the brain’s dopaminergic
reward system, to the extent that it may function as a stimulus for verbal episodic memory
and learning [42–44].

Laurel J. Trainor [45] suggests that the adaptive benefits of musical abilities are not
obvious and that the rapid changing of music points towards strong cultural dependencies
and, indeed, an undeniable cultural origin for music [45]. However, it is also undeniable
that the emotional and social power of music may have determined benefits for the survival
of the group and eventually led to adaptations. The article concludes that the origins of
music are highly complex and probably involved, among others, exaptation from language,
cultural creation and evolutionary adaptation at different times and in different social
groups or populations [45–51].

Figure 1 shows the hypothesis on the evolution of music discussed above.
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Figure 1. Schematic representation of the hypothesis of the evolution of music.

3. Comparative and Cross-Species Behavioral Studies

Despite the absence of fossils from a remote past not allowing to provide a physical
evidence for the history of musicality, comparative research can be a very useful approach to
learn about the origins of music and can provide evidence of the adaptive roles of this trait
in other species. This can be done by focusing on the capacities which underlie musicality,
especially by studying animals that share specific musical characteristics with humans, such
as complex vocalizations, entrainment and beat perception [1,9]. These comparative studies,
mostly consisting of behavioral experiments, can provide insights about the neural activity
involved in musicality [51,52]. Among the species studied with a comparative approach,
Macaca mulatta (rhesus monkey) and Taeniopygia guttata (zebra finch) are much employed
animal models about auditory system, speech and the brain structure [1]. Moreover, in
non-human animals the ability to entrain movements to an auditory rhythmic beat has been
found in parrots (Cacatua galerita, [53]), sea lions (Zalophus californianus, [54]), chimpanzees
(Pan troglodytes sp. [55–57]) and bonobos (Pan paniscus, [58]). Despite this, humans are the
only which possess a motor synchronization based on temporal anticipation with a mental
model of time [59–61].

The finding that the skill to entrain to a rhythmic pulse is not exclusive of humans
could give support of the idea of Darwin that the perception of rhythm may be a shared
trait in animals [62,63], although other theories have been introduced in the last two
decades. Briefly, the vocal learning and rhythmic synchronization hypothesis [64] states
that beat perception and synchronization are a by-product of mechanisms underlying
vocal learning, which is prerequisite for the ability to move in time with complex musical
rhythms; nevertheless, the evidence of entrainment in a sea lion [54], which is not a vocal
learner, challenges this hypothesis. Moreover, several recent studies on rhesus monkeys
highlight the difficulty to synchronize their movements to complex auditory and visual
stimuli, and the preference for a visual cue to drive their movements [65–67]. The gradual
audiomotor evolution (GAE) hypothesis [68] suggests, instead, that rhythmic entrainment
has developed through a gradual series of changes, both anatomical and functional, mainly
in the brain of primates, without vocal learning being essential in this context. Studies on
chimpanzees and bonobos show that they naturally exhibit a rhythmic behavior through
body movement and drumming on objects (although not accurately aligned to an auditory
rhythm and appearing regardless of regularity in beat); this suggests that the last common
ancestor to humans and chimpanzees could have possessed fundamental characteristics
for music, while sexual dimorphism in sensitivity to auditory stimuli in chimpanzees may
indicate a characteristic acquired after the divergence from the common ancestor with
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humans, which do not show sex differences in music ability [55–57,69]. As a confirmation of
this hypothesis, the motor cortico-basal ganglia-thalamo-cortical (mCBGT) circuit, which is
involved in beat perception [70], shows to be more developed in humans than non-human
primates [71,72].

4. Twin Studies, Heritability and Hints to the Neuropsychology of Music

Twin studies have been extensively used to dissect the heritability of behavioral and
cultural traits, as they allow to estimate environmental and genetic influences on traits
with the use of identical (monozygotic) or non-identical (dizygotic) twins, and extend
these results to the general population. In the context of musical aptitude and music
achievement, studies on a large cohort of Swedish twins (n = 10.975) have shown moderate
genetic heritability for both traits, with estimated values up to 57% [73. The same study also
tested for associations between musical aptitude and achievement and phenotypic traits
descriptive of mating success, finding either nonsignificant or reverse associations that do
not support the theory of music abilities enhancing mate attraction and reproduction [73].

The relationship between music, verbal ability and the capacity to decode symbolic in-
formation has been also analyzed through twin studies. Results show that musical aptitude
and music training positively correlate with verbal abilities, an association mostly explained
by shared genetic factors (50%) and non-shared environmental influences (35%) [74]. In a
twin and adoption study performed on adolescents, it is shown that music engagement,
dance and singing are all heritable (h = 78%, 66% and 43%, respectively) and that correlation
between instrument engagement and verbal ability at 12 years of age is predictive of the
same relationship at 16 years of age, with possible direct benefits of musical practice in later
language abilities [75]. Interestingly, music is not only associated with increased speech
perception, but recent twin studies seem to provide evidence for heritability and a positive
relationship between sight-reading music ability and reading passage comprehension,
suggesting an influence of decoding mechanisms that are independent of working verbal
memory [76].

Other than twin studies, there has been growing interest in the neuropsychologi-
cal analysis of subjects with congenital amusia (the inability to process and recognize
music) and language impairments. These studies show that there is a strong correlation
between language and music related to the development of skills in these two domains
and their cognitive processing, independent of formal musical training [77–79]. Other
researchers highlight how music perception influences language acquisition [80], is linked
to spatial processing, visual memory and speech perception [81–83] and how the structural
redundancy of speech and musical communication shapes the individual’s perceptual
abilities [84,85]. Moreover, neuroimaging experiments document how music and language
are processed in the same areas of the brain and in similar ways, on the basis of their
syntactic integration mechanisms [86,87]. These observations suggest an intimate and
intricate relationship between music and language abilities, as well as a neuroarchitectural
overlap in their symbolic processing.

5. Genetic and Genomic Candidates for Musicality in Humans

Overall, humans show a musical aptitude, consisting of several skills such as discrim-
ination of pitch, tone duration and musical memory [4]. The ascertained variability in
this ability, starting from people unable to appreciate and engage with musical activities
(congenital amusia) to virtuoso musicians [88,89], suggest a genetic basis of musicality. It is
also well known that musicianship clusters in families, raising the question of the role of
environmental factors besides to specific genetic variants [90,91].

In this context, genomic approaches allow to identify the genes associated with a
specific trait (music, in this case) in an impartial way and without a priori hypothesis [92].
In the last decades, genome-wide studies have been carried out to find the genetic basis
of musicality and the genetic variants associated with it, even if the bulk of these studies
has been performed on Finnish individuals [93–101]. The results show that musical apti-
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tude and creativity display a percentage of heritability [93,94], and that there are several
genetic loci linked to musical aptitude, mainly including genes involved in neurocognitive
functions, auditory pathways and the development of the inner ear.

In candidate gene studies, the first genes to have been related to musical aptitude are
AVPR1A and SLC6A4, encoding, respectively, the arginine vasopressin receptor 1A and the
serotonin transporter (5-HTT) [101–110]. Haplotypes of microsatellites (RS1, RS3) in the
promotor region of AVPR1A were associated with dance performance [101], active listening
to music [95], musical aptitude and creativity in music [94,103]. AVPR1A is involved in
the control of higher cognitive functions such as memory and learning [103] and seems to
play a role in several social behaviors, such as altruism [104] and autism [105]. SLC6A4,
instead, was related to dance performance, together with AVPR1A [102], short-term music
memory [106] and choral singing [96]. It is expressed in brain areas implicated in emotions
and in reward-seeking behavior [107,108] and is involved in neuropsychiatric disorders
and depression [109,110]. Therefore, these two genes could be good candidates since one
of the adaptive roles of music is as “social glue” [20].

Overall, several genetic loci and specific variants have been identified, but the most
significant evidence of linkage to musical aptitude has been found on chromosome 4p15-
q24, both in Finnish and Mongolian populations [93,97,99]. This extended region contains
several genes that could be involved in musical abilities [91,93,97,99,111]. The overlap
of the results in populations of different ancestries (Finnish and Mongolian) increases
the confidence of the association of this region with musical ability. Among the genes
showing an association with musicality there are UNC5C [94], UGT8 [98], PCDH7 [99] and
SNCA [111]. UNC5C (4q22) is a strong candidate thanks to the overlap of associations
in Finnish [93] and Mongolian populations [98]. It encodes a netrin receptor (Unc-5
netrin receptor C) which, interacting with netrins, is implicated in axon extension and cell
migration during the development of nervous system. It is interesting to note that netrins
interact also with ROBO family receptors [112], one of which (ROBO1) is implicated in
dyslexia [113], reconnecting thus to a probable evolutionary relationship between music
and language.

In the Mongolian population SNPs of UGT8 gene, located on 4q23, showed the
strongest association with musicality [108]. It encodes UDP glycosyltransferase 8, highly
expressed in the brain and involved in in the biosynthesis of complex lipids in myelinating
oligodendrocytes and in the clearance of long-chain ceramides [114].

Another probable candidate gene localized on chromosome 4 is PCDH7 [99], encod-
ing the protocadherin 7. Like other protocadherins, it is highly expressed in the brain
and seems to be involved in brain development and neuronal survival, but the cellular
mechanisms in which is implicated are not yet understood [115]. Instead, in model ani-
mals, it is shown to be implicated in the development of the cochlea in chicken [116] and
expressed in the amygdala in mice [117]. In particular, the amygdala is the brain area
involved in the emotional processing of music [118], making this gene a good candidate
for musical aptitude.

Evidence of linkage was found also on other chromosomes, such as 18q [93]: this
region overlaps with the DYX6 locus, a gene associated with dyslexia [119], hinting at the
common origin of language and music.

Several copy number variations (CNVs) also showed association with musical aptitude
and a creative phenotype. For example, a duplication on 2p22.1, a genomic region that
contains the GALM gene, has been related to creativity through the implication of this gene
in the uptake of serotonin in the thalamus [96]. A deletion on 5q31.3, in which is located the
gene PCDHA 1–9, showed association with low scores in musical aptitude tests [96]. The
protocadherin-α gene cluster consists of 14 genes arranged in tandem [120], which encode
neuronal adhesion proteins involved in synaptogenesis and maturation of serotoninergic
projections in most brain areas [121], learning, and memory [122]. Interestingly, a 1.3 Mb
duplication associated with low scores of musical aptitude tests has been also identified
on 8q24.22 [96], overlapping with the region previously linked with absolute pitch in
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families with European ancestry [123]. The results of this genome-wide copy number
analysis [96] overall show that several CNVs regions associated with significant scores of
musical aptitude test contain genes involved in neuropsychiatric disorders.

Recently, the first genome-wide association study was published associating 67 loci at
genome-wide significance (p-value < 10−8) with self-reported beat synchronization in a
large cohort of more than 600,000 individuals, suggesting that this phenotype is a highly
polygenic trait with shared genetic architecture to breathing, motor function, processing
speed and chronotype [124].

Debate remains on whether music was subjected to positive selection. A study per-
formed to identify genomic regions under positive selection associated with musical
aptitude found several candidate regions, but no specific genetic targets. However, among
the genes contained in these regions, several are involved in brain functions and hearing,
but also in human language development and cognitive disorders, which makes them
plausible candidates [120].

Summarizing, the results of genome-wide linkage analysis suggest several candidate
genes for musical ability (Table 1), indicating that there is a basic, common musical com-
petence in humans and that music is a complex, polygenic trait. The genes associated
with musicality are involved in cognitive functions, neurodevelopment, neuronal plasticity,
inner ear development, dopamine release and transport, and singing in songbirds; many
have also been related to psychiatric disorders and neurodegenerative diseases. Therefore,
musical aptitude seems to be the result of several genomic variations, for the most part
still unknown, and complex gene–environment interactions. Two review papers identified
many top candidate genes associated with musicality, integrating the results of a wide
range of previous genetic and comparative studies on humans and other animals [91,111].
The involvement of several of these genes in singing and song learning in songbirds and
in human musicality demonstrates an evolutionary convergence in recognition and pro-
duction of sounds between humans and songbirds, and thus a common molecular basis of
musical features [111]. In general, the top ranked genes in these studies show involvement
in cognition, memory, learning, neuronal excitation and apoptosis, long-term potentiation
and neuronal plasticity. However, the current knowledge on genetic pleiotropy and the
small contributions of hundreds of genes to single traits (polygenic and omnigenic models)
urges for the use of genome-wide methodologies, rather than candidate gene studies, to
better disentangle the genetic contributions to music ability in humans.

Table 1. Main candidate genes for musical ability.

Gene Chr Position Association Function Refs.

AVPR1A 12q14.2
Dance performance, active
listening to music, musical

aptitude and creativity
Memory, learning, social behaviors [93,96,100–103]

SLC6A4 17q11.2 Dance performance,
short-term music memory

Implicated in emotions, neuropsychiatric
disorders and depression [96,101,105–109]

UNC5C 4q22.3 Musical aptitude Axon extension, cell migration in
developmental nervous system [92,111]

UGT8 4q23 Musical aptitude
Complex lipids synthesis in myelinating
oligodendrocytes, ceramides clearance

in neurons
[98,114]

PCDH7 4p15.1 Musical aptitude Cochlea development in chicken,
post-natal and adult amygdala [115–117]

GALM 2p22.1 Musical creativity
Involved in serotonin release and binding

potential of serotonin transporter
in thalamus

[95,123,125]
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Table 1. Cont.

Gene Chr Position Association Function Refs.

PCDHA 1–9 5q31.3 Musical aptitude Synaptogenesis, serotoninergic
projections’ maturation, learning, memory [95,120,121]

SNCA 4q22.1
Upregulated after musical
performance and listening

to music

Dopamine homeostasis, synaptic
plasticity, Parkinson’s disease, song

learning in songbirds
[126–132]

GATA2 3q21.3 Musical aptitude

Inner ear development, inferior colliculus
development, determination of

GABAergic neurons, expressed in
dopaminergic neurons

[99,133–135]

FOXP2 7q31.1
Targeted by upregulated

miRNAs after listen to and
music performance

Language development, song learning
and singing in songbirds [136–139]

6. The Effect of Music on Gene Expression and Brain Activity

Each individual, when listening to music, experiences different emotions, such as calm
or enthusiasm, and generally feels a sensation of wellbeing. In fact, using positron emission
tomography (PET) it has been determined that music-evoked pleasure is associated with
dopamine secretion in the mesolimbic reward centers, mainly in the right caudate and the
right nucleus accumbens located in the ventral striatum. This dopaminergic activity results
in emotional arousal, leading to rewarding feelings [35,140], and perhaps it also involves
the opioid circuit with the release of endorphins, as occurs in primary rewards [38].

On the other hand, many studies showed that musical training has several effects
on musicians’ brains, both in structure and function [141,142]. For example, musicians
have a greater volume in the auditory cortex [143], enhanced synaptic plasticity [144],
enhanced cognitive performances, visual attention abilities, verbal and long-term memory,
and reasoning [126,145,146].

At molecular level, it has been shown that both listening to and playing music deter-
mine epigenetic alterations, by mediating a differential expression of several genes and
microRNAs (miRNAs) [126,127,146,147]. Of note, there is overlap between the results of
microRNAs and those of genes differentially expressed; in particular, some of these genes
are target of the miRNAs with differential expression, both regarding the conditions of
music performance and listening to music. In this body of research, samples of peripheral
whole blood were used, as its transcriptome is shared for more than 80% with other tissues,
including the brain which is inaccessible [148–151]. It has been verified that, for professional
musicians, a concert of two hours induces a differential expression of 73 genes, involving
both upregulation (51 genes) and downregulation (22 genes) [127]. In an analogous way,
listening to music determines the differential expression of several genes and microRNAs,
but depending on the degree of musical education and musical aptitude [147,148]. It is
interesting to note that some of the genes are regulated both after music performance and
listening to music and there is also evidence that some genes are upregulated after music
performance but downregulated after listening to music [147,148]. Both after listening to
and playing music, the upregulated genes are involved in comparable functions, such as
the neuronal homeostasis of dopamine, cognitive functions, neuronal plasticity, learning
and memory [147,148]. On the other hand, the downregulated genes include the ones
targeted by transcription regulators for proinflammatory cytokines [147] and in neuronal
apoptosis [148]. Regarding the changes in microRNAs transcriptome, playing and listening
to music induce the up- and downregulation of different microRNAs, and some of these are
involved in the same pathways/functions. It has been found that some of the upregulated
microRNAs after both experiences target genes involved in negative regulation of neuronal
apoptosis and inhibition of the cell cycle, suggesting a neuroprotective role of music, and
in song perception and production in songbirds (for example, FOXP2) [148,149].
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Overall, the results of these studies show a correspondence between the upregulated
and downregulated biological functions after listening to and music performance. Interest-
ingly, several differentially regulated genes and microRNAs are involved in song learning
and singing in songbirds. Indeed, some of the genes and microRNAs differentially ex-
pressed [127,147,148] have been identified as essential for auditory perception and speech
production in both humans and songbirds [128]. For example, among the upregulated
genes after music performance, SNCA, FOS, and DUSP1 have been identified as biomarkers
of song perception and production in songbirds [128,129,152–154]. Therefore, these results
might indicate an evolutionary convergence in sound perception and vocal communication
between songbirds and humans.

The alpha-synuclein gene (SNCA) is located in a candidate region for musical aptitude
on chromosome 4q22.1 [92,97,98] and is regulated by GATA2 protein [133]. GATA2 (3q21.3)
is in turn one of the best associated genes with musical aptitude [71] and is fundamental for
inner ear development [134], the inferior colliculus, and in the determination of GABAergic
neurons in the midbrain [135]. In addition, several targeted genes of GATA transcription
factors resulted upregulated, indicating their probable main role in the alteration of gene
expression [127]. The activity of GATA transcription factors is in turn indirectly determined
by the activity of miR-222, which is upregulated after music performance [148]. SNCA,
which is upregulated not only subsequently to music performance but also after listening
to music [127,147], is involved in several functions, such as dopamine homeostasis (induces
dopamine release), synaptic plasticity, as well as in neuropsychiatric and neurodegenerative
diseases, such as Parkinson’s disease [130–133,153]. This finding is accordance with the
increase of dopamine secretion in brain reward centers during listening to music, as seen
using PET scanning [35].

Among the upregulated genes after music performance, there are target genes of
FOXP2, towards which it acts as a transcriptional repressor [136]. Noteworthy, recent works
showed that FOXP2 is in turn targeted by different microRNAs upregulated after playing
music (hsa-miR-93a-3p and hsa-miR-222-3p [148]; miR132 [150]). FOXP2 (forkhead box
protein P2) is a transcription factor which is involved in human language and speech devel-
opment [137] and is associated with song learning and singing in songbirds [138,139,155].
Findings of upregulation of different microRNAs after music performance [126] support
similar observations in songbirds, where these miRNAs are differentially regulated during
song learning and listening [156]. The transcription of miR-222 is activated by FOSL1 [157],
which is expressed thanks to downregulation of hsa-miR-6803-3p after playing music [148].
It is also coexpressed with FOS, one of the top candidate genes associated with musical
aptitude [111] and, in turn, upregulated after musical performance [127].

Songbirds show similarities with humans in this gene, in fact the corticostriatal FOXP2
is regulated by miRNAs and EGR1 [158], a gene which in turn is upregulated during song
listening and singing in zebra finch [159]. This mechanism allows for adaptations of the
brain structure for accurate song imitation [160].

Therefore, the clear involvement of FOXP2 in music activities in humans, and in song
production in songbirds, further supports a coevolution of music and language.

Moreover, among the upregulated microRNAs after music performance, there is hsa-
miR-30d-5p [148], whose gene is located on 8q24.22 near the region previously associated
with absolute pitch [123].

Both listening to and music performance induce a differential expression of microR-
NAs and genes involved in several functions, among which neuronal plasticity, learning
and memory dominate. Both actions enhance the expression of genes involved in dopamine
secretion and transport, coherent with the physical responses. Furthermore, the findings
could support a convergence between music and language and even between sound
perception and production in humans and songbirds.
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7. Concluding Remarks and Perspectives

Music is an everyday presence in our lives and each of us like some form of it.
The universality of music as a sociocultural component has prompted researchers to ask
themselves if musicality is an adaptive characteristic with biological functions. Several
different theories have been proposed, some regarding its evolutionary relationship with
language, which remain a notable matter of debate among the scientific community.

In the attempt to define its origins, neuroimaging studies have shown that the bi-
ological foundations of music are inherent in brain functions, and playing any musical
instrument requires neurocognitive functions, like learning and memory, a multicompo-
nent integration of auditory and visual stimuli, and a high complex motor control [142,161].
Furthermore, several works have highlighted differences in neural circuits involved in
rhythm perception between humans and non-human primates [68].

Moreover, several studies have been carried out to explicitly identify the genetic basis
of musicality and dozens of genes have been so far associated with musical aptitude, as
described in other relevant reviews by Oikkonen and colleagues [111], Järvelä [91] and most
recently by Szyfter and Witt [162]. With the discovery that FOXP2, the gene previously
regarded as the “language gene”, shows no prevalent signals of positive selection and
is, therefore, not the paramount responsible for language evolution in humans, there is
reason to believe that language actually arose as an extremely complex polygenic trait with
strong influences from societal structures and cultural practices [163–165]. There could be a
similar interpretation for the interplay of pleiotropic genes on strong cultural backgrounds
in music ability [166–168]. However, in the last decades, most of the genomic studies
have been carried out on Finnish population samples. The differences in genetic ancestry,
ancient and recent admixture events that characterize all human populations, as well as
prehistorical and historical sociocultural exchanges linked to instances of colonization, may
have radically shaped and even changed the substrate on which the intersection of genetics
and culture insists. Therefore, this review hopes to be a stimulus for novel genetic studies
considering other populations, so as to highlight if there are clear worldwide differences in
genes showing association with musical aptitude and to verify a possible universality of the
genetic basis of musicality in humans. In fact, the inclusion of a diverse genetic background
and comparative population studies could greatly benefit this highly interdisciplinary
research field.

Evidence of functional analogy and sequence identity with several genes involved
in vocal learning and singing in songbirds, mostly in the model species zebra finch [169],
adds support to the idea of a convergent evolutionary event between bird vocalizations
and human music as modulators of communication, even though further studies are
needed to disentangle the interplay between genetics and social interactions in a cross-
species perspective.

In a cultural setting, the intersection of music and speech can also generate new forms
of art, such as song and poetry, that acquire specific structural characteristics from both
language and music, and there is a tight cultural association between music, song and
dance. The fields of poetry, human song and literary production, as fundamental cultural
staples in human populations, could be more extensively analyzed from a genetic (possibly,
polygenic) and interdisciplinary point of view. One interesting example is reported by a
recent publication by Wassiliwizky and colleagues, in which it is demonstrated that, al-
though poetry can elicit strong emotional responses in an analogous way as those observed
when listening to music, the role of the nucleus accumbens and the whole neural circuitry
appears different [170]. Moreover, the sharing of symbolic meaning and rhythm among
speech, music and dance may be even better disentangled through novel transdisciplinary
studies [171,172].

A final key aspect of musicality in humans that still has to be properly disentangled,
however, pertains the presumed evolutionary advantages and related selective pressures
that would justify the universal diffusion and conservation of such characteristic social
behavior. In this framework, this comprehensive review suggests that a holistic approach
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integrating evolutionary genomics, archaeology and musicarcheology, ethnomusicology
and musicology, and cultural anthropology may shed new light on the emergence, nature
and evolution of social behaviors in human populations.
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