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Abstract: Obesity is an important aspect of the metabolic syndrome and is often associated with
chronic inflammation. In this context, inflammation of organs participating in energy homeosta-
sis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation
of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained
C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflam-
mation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and
fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)—major
components of triglycerides stored in lipid droplets—from saturated fatty acid (SFA) substrates.
In this review, we describe the molecular effects of specific classes of fatty acids (saturated and
unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on
inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet,
we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced
chronic inflammation.

Keywords: monounsaturated fatty acids (MUFA); stearoyl-CoA desaturase-1 (SCD1); chronic inflam-
mation; saturated fatty acid (SFA); metabolic syndrome

1. Inflammation in the Metabolic Syndrome

Obesity is the main factor responsible for the development of the metabolic syn-
drome, which is characterized by metabolic complications including visceral adiposity,
hypertension, high circulating cholesterol and elevated glycemia [1–3]. This pathological
combination often leads to insulin resistance and type 2 diabetes and is associated with a
sustained inflammation profile [4,5]. In North America, people with a body mass index
(BMI) superior to 30 are considered obese. This represents approximatively 36% of the
population of North America and 13% worldwide [6].

Obesity is characterized by an excessive accumulation of lipids in adipose tissue.
This accumulation becomes deleterious when it occurs in visceral fat [7]. In fact, waist
circumference (as an indirect measure of visceral fat accumulation) is correlated with the
development of specific metabolic disorders including cardiovascular diseases, hyperc-
holesterolemia and type 2 diabetes [8]. When excessive lipid accumulation in adipose
tissues occurs, ectopic accumulation (steatosis) appears in other tissues such as liver and
muscle [8–10]. Saturated adipocytes release free fatty acids into the blood through the
action of the Fatty acid translocase (FAT/CD36), the plasmatic Fatty acid binding protein
(FABPpm) and the Fatty acid transport proteins (FATPs). These circulating free fatty acids
are then captured by other organs, especially the liver and muscle, which gives rise to
steatosis [11,12]. Accumulation of long chain fatty acids in non-adipose cells leads to
the formation of toxic lipids such as ceramides and cholesterol esters [13]. These lipids
induce lipotoxicity, leading to deleterious metabolic consequences including endoplasmic
reticulum (ER) stress and inflammation [14,15].
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Several population studies reveal that a low-grade and chronic inflammation is often
developed in obese patients [16]. This is characterized by increased circulating levels
of pro-inflammatory cytokines—especially Interleukin-6 (IL-6)—and of the chemokine
MCP-1, both produced by the adipose tissue. Consequently, monocytes are recruited to
the adipose tissue, inducing the secretion of other cytokines such as IL-1β and amplifying
the inflammatory state [17,18]. In response to elevated cytokines levels, the liver secretes
C-reactive protein (CRP), a key marker of inflammation associated with several metabolic
diseases including type 2 diabetes and cardiovascular diseases [19–22]. CRP also aggra-
vates disease development by activating the NF-κB signaling pathway, which is directly
implicated in the expression of pro-inflammatory cytokines [23].

2. The Molecular Mechanisms of Inflammation

There are two main types of inflammation: acute and chronic. Acute inflammation ap-
pears in response to infections or injuries. This type of inflammation involves polynucleolar
neutrophils and is characterized by apparition of swelling and heat around the damaged
tissues. Activation of Toll-like receptors (TLRs) triggers the expression of inflammation
effectors such as cytokines, prostaglandins, platelet activation factors, inflammasomes
complexes, CRP, as well as NF-κB [24]. The resolution of this inflammation requires several
conditions: destruction of the cause of inflammation, neutralization of pro-inflammatory
markers (cytokines and prostaglandins) and clearance of neutrophils. These events typi-
cally occur in a few days, making this type of inflammation transient by nature [25].

The second type of inflammation, chronic inflammation, is sustained over time and is
more deleterious for health. It often appears in individuals with poor feeding habits and
a sedentary lifestyle, features strongly correlated with obesity development [26,27]. It is
also present in different pathologies such as Alzheimer disease and asthma, and in several
diseases associated with unbalanced metabolism such as atherosclerosis, cardiovascular
diseases and type 2 diabetes [28–31]. Often named microinflammation or metabolic inflam-
mation, it entails a complex mechanism involving crosstalk between various tissues (such
as liver and adipose tissue) across the entire body. In general, this low-grade inflammation
appears when cellular stress is recognized by the immune system [32]. Consequently,
monocytes are recruited and infiltrate the tissues, becoming macrophages [24].

In inflammatory conditions such as obesity, two distinct macrophage subpopulations
can be found in the affected organs. These are associated with different functions. The so-
called M1 macrophages display an extreme pro-inflammatory state. They express high
levels of pro-inflammatory receptors such as TLRs, Tumor necrosis factor receptors (TNFRs)
and Interleukin-1 receptor (IL-1R), and exhibit a powerful activation of the NF-κB tran-
scription factor necessary for the expression of pro-inflammatory cytokines. Conversely,
the M2 macrophages are anti-inflammatory and are characterized by a higher expression of
the Interleukin-4 receptor (IL-4R) whose activation downregulates inflammatory mediators
such as TNF-α and IL-6. They also display an activation of the transcription factors PPARγ
and PPARδ, which leads to higher expression of anti-inflammatory cytokines such as
IL-10 [33]. The inflammation level present in tissues is therefore dependent on the balance
between infiltrated M1 and M2 macrophages. This balance can be modulated by diet and
hormonal status and is regulated by the PPARγ transcription factor [34].

A number of potential inflammation triggers have been identified in the context of
chronic inflammation. TLR4 is activated by circulating long chain saturated fatty acids [35].
Consequently, the IKK-IκB signaling cascade leads to NF-κB nuclear translocation, where
it activates the transcription of several pro-inflammatory cytokines and interleukins [36].
High circulating levels of pro-inflammatory cytokines such as TNF-α, MCP-1, TGF-β and
IFN-γ, as well as of interleukins IL-6, IL-1β, IL-18, and IL-8, are observed in patients
presenting an inflammatory state [37]. TLR4 activation is also linked to the increased
expression of several proteins involved in the formation of inflammasomes, multiprotein
complexes responsible for the activation of inflammatory responses. In particular for



Int. J. Mol. Sci. 2021, 22, 330 3 of 22

NLRP3 (NOD-like receptor family, pyrine domain containing 3), an inflammasome complex
involved in several diseases associated with chronic and low-grade inflammation [38,39].

NLRP3 is considered an intracellular receptor responsible for the activation of inflam-
matory responses. Several factors can activate NLRP3 including elevated concentration
of intracellular ATP, reactive oxygen species (ROS), mitochondrial oxidized DNA, and
lysosomal destabilisation [40]. It can also be activated by low intracellular potassium or
high calcium concentrations, which arise in response to cellular stress [40]. As NLRP3
is activated, the caspase 1 subunit of the NLRP3 complex cleaves pro-interleukins into
mature IL-1β and IL-18, key circulating markers of low-grade inflammation [41]. NLRP3
is considered as a key factor responsible for the induction and progression of chronic
inflammation. In fact, disruption of NLRP3 in adipose tissues decreases the concentration
of pro-inflammatory cytokines and restores insulin sensitivity in obese mice [42].

Another mechanism involved in the development of chronic inflammation involves
excessive storage of triglyceride (TG) lipids within adipose tissues. Sedentary lifestyles
and poor eating habits aggravate this unbalanced TG storage. In mice, excessive TG
storage in white adipose tissue (WAT) induces secretion of pro-inflammatory adipokines
such as IL-1β, TNF-α, MCP-1, and IL-6, triggering systemic metabolic inflammation [43].
In addition, excessive TG storage feeds lipolysis and increases the amount of intracellular
and circulating free fatty acids (FFAs) (Figure 1). These fatty acids act as stress-inducing
molecules which, captured by TLR4, induce activation of NF-κB and, in turn, induce NLRP3
expression in macrophages (Figure 1). In addition, intracellular FFAs can impair mitochon-
dria and lysosome integrity, generating ROS (Figure 1) [44]. FFAs can also inactivate the
serine-threonine kinase AMPK, an intracellular energy sensor. In this situation, secretion of
IL-1β (via activation of the NLRP3 inflammasome) is increased and leads to lower insulin
sensitivity [45]. Several authors even suggest that activation of AMPK can be considered
as an anti-inflammatory marker in the context of metabolic inflammation [46,47].
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protein-1), IL-6 (Interleukin-6) and TNF-α (Tumor necrosis factor alpha) secretion by adipocytes via NF-κB (Nuclear
factor-kappa B) nuclear translocation. TNF-α activates TNFR (Tumor necrosis factor receptor) on recruited macrophages
which, in combination with the TLR4 pathway, triggers NF-κB nuclear import and production of NLRP3 (NOD-like receptor
family, pyrin domain containing 3), pro-IL-1β and pro-IL-18. Lysosomal disruption, as a consequence of ATP (adenosine
triphosphate) and ROS (reactive oxygen species) accumulation, triggers NLRP3 activation and results in IL-1β/IL-18
maturation and secretion. This figure was generated with BioRender.

3. Overview of Lipid Metabolism

Fatty acid molecules are structurally very diverse and, accordingly, are involved in
several different biological functions. For example, phospholipids are an integral part of
cell membranes while TGs are mainly involved in energy storage. There are two sources of
lipids in the organism: dietary intake and de novo synthesis.

In humans, dietary lipids such as cholesterol, TGs, as well as long-chain saturated and
unsaturated fatty acids are absorbed in the form of micelles by the intestinal enterocytes.
Meanwhile, short and medium-chain fatty acids (2 to 10 carbon chain length) can directly
cross enterocyte membranes and reach the bloodstream [48,49]. Enterocytes secrete lipids
into the lymphatic and blood circulation in the form of chylomicrons. The liver then
captures part of the chylomicrons, using the extracted lipids to assemble very low-density
lipoproteins (VLDLs) containing Apolipoprotein B-100 (apoB-100). Secreted, circulating
VLDLs transfer their lipids to the rest of the organism, becoming low-density lipoproteins
(LDLs) in the process. In parallel to this system, enterocytes and hepatocytes secrete
Apolipoprotein A-I (apoA-I) which, in complex with the uncaptured chylomicrons, forms
high-density lipoproteins (HDLs) [50]. The main know function of HDLs is to sequester
the cholesterol coming from peripheral organs and bring it to the liver [51].

Several mechanisms allow the intake of lipids into cells. Cholesterol is captured via
the transmembrane Scavenger Receptor class B type I (SRB1) [52], while TG integrated
into lipoproteins are hydrolyzed by the Lipoprotein lipase at the surface of epithelial cells.
The FFAs generated are then absorbed by cells through different transporters such as the
Fatty acid transport proteins (FATPs) and the Fatty acid translocase (FAT/CD36). The in-
ternalized FFAs are rapidly esterified into fatty acid-CoA, which can be then transformed
back into TG. This esterification process involves various fatty acyltransferases such as
GPAT (Glycerol-3-phosphate acyltransferase) and DGAT (Diacylglycerol O-acyltransferase).
Newly formed TG are subsequently integrated into intracellular lipid droplets (LDs) where
they are stored [53]. LDs are present in all eukaryotic cells. In normal conditions, lipids
are preferentially stored into adipocytes, forming very large LDs. Under conditions where
adipocytes are saturated (like obesity), lipids can be stored in other cells such as hepato-
cytes and myocytes, forming much smaller LDs [54]. This ectopic storage often leads to
metabolic disorders and their associated inflammation.

The other source of lipids in the organism comes from de novo lipid synthesis, also
termed lipogenesis. This process occurs in most cells but, in humans, it principally occurs
in hepatocytes (Figure 2) and adipocytes [55]. Lipogenesis synthesizes long-chain saturated
fatty acids (palmitate) from acetyl-CoA generated by glucose hydrolysis. This synthesis
is catalysed by the combined actions of Acetyl-CoA carboxylase (ACC) and Fatty acid
synthase (FAS). Subsequently, saturated fatty acids (SFAs) are elongated by Fatty acid
elongases (ELOVLs) [56] and/or desaturated by Stearoyl-CoA desaturases (SCDs), forming
monounsaturated fatty acids (MUFAs) [57].



Int. J. Mol. Sci. 2021, 22, 330 5 of 22
Int. J. Mol. Sci. 2021, 22, 330 5 of 22 
 

 

 

Figure 2. Triglyceride production in the liver. The chylomicrons bring fatty acids (mostly palmitate and oleate) to the liver, 

where they are used by GPAT (Glycerol-3-phosphate acyltransferase), AGPAT (1-Acylglycerol-3-phosphate-O-acyltrans-

ferase) and DGAT (Diacylglycerol-O-acyltransferase) enzymes to produce triglycerides. Alternatively, fatty acids can be 

synthesized de novo Figure 1. (Stearoyl-CoA desaturase-1) and ELOVL6 (Fatty acid elongase 6). Triglycerides are assem-

bled into LDs (lipid droplets) and/or associated with apoB-100 (Apolipoprotein B-100) for secretion as VLDL (very low-

density lipoproteins). This figure was generated with Servier Medical ART. 

SCDs are the rate-limiting enzymes of MUFA formation. They are integrated into the 

ER membrane and are highly regulated by nutritional status and by hormonal regulators 

of appetite such as insulin [58,59]. SCDs introduce a delta-9 desaturation in SFAs stearate 

(C18:0) and palmitate (C16:0), forming the MUFAs oleate (C18:1n-9) and palmitoleate 

(C16:1n-7), respectively. These MUFAs are the main components of TGs (fatty acids that 

are preferentially stored) [60], cholesterol esters (cellular membrane components, precur-

sors to steroid hormones and biliary acids) [61] and wax esters (compounds preventing 

evaporative water loss) [62]. They also constitute a large proportion of phospholipids 

comprising cellular membranes [57]. As such, SCDs are considered key regulators of lipid 

homeostasis, especially in liver and adipose tissue where lipogenesis is predominant. 

Modulation of SCD activity has been implicated in the development of the metabolic syn-

drome and its associated inflammatory state. Therefore, several studies have suggested 

targeting SCDs in order to treat various aspects of the metabolic syndrome, including type 

2 diabetes and cardiovascular diseases [63–65]. 

In humans, there are two SCD isoforms, SCD1 and SCD5. SCD5 is mainly expressed 

in the brain, while SCD1 is more ubiquitously expressed [66,67]. In mice, the situation is 

more complex as four isoforms have been characterized (SCD1-4). They all share 85% 

amino acids homology with human SCD1, while SCD5 appears to be specific to primates. 

Mouse SCD1 is mainly expressed in lipogenic organs such as liver and adipose tissues. 

SCD2 is chiefly expressed in the brain, while SCD3 is found in the harderian, preputial 

and sebaceous glands. SCD4 expression has only be reported in the heart [68–72]. 

4. Stearoyl-CoA Desaturase-1 

SCD1 is the most characterized SCD isoform. SCD1 transforms 85% of stearate and 

51% of palmitate (from both dietary and lipogenesis origin) into MUFA [68]. Many studies 
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low-density lipoproteins). This figure was generated with Servier Medical ART.

SCDs are the rate-limiting enzymes of MUFA formation. They are integrated into the
ER membrane and are highly regulated by nutritional status and by hormonal regulators
of appetite such as insulin [58,59]. SCDs introduce a delta-9 desaturation in SFAs stearate
(C18:0) and palmitate (C16:0), forming the MUFAs oleate (C18:1n-9) and palmitoleate
(C16:1n-7), respectively. These MUFAs are the main components of TGs (fatty acids that are
preferentially stored) [60], cholesterol esters (cellular membrane components, precursors to
steroid hormones and biliary acids) [61] and wax esters (compounds preventing evapora-
tive water loss) [62]. They also constitute a large proportion of phospholipids comprising
cellular membranes [57]. As such, SCDs are considered key regulators of lipid homeostasis,
especially in liver and adipose tissue where lipogenesis is predominant. Modulation of
SCD activity has been implicated in the development of the metabolic syndrome and its
associated inflammatory state. Therefore, several studies have suggested targeting SCDs in
order to treat various aspects of the metabolic syndrome, including type 2 diabetes and
cardiovascular diseases [63–65].

In humans, there are two SCD isoforms, SCD1 and SCD5. SCD5 is mainly expressed
in the brain, while SCD1 is more ubiquitously expressed [66,67]. In mice, the situation
is more complex as four isoforms have been characterized (SCD1-4). They all share 85%
amino acids homology with human SCD1, while SCD5 appears to be specific to primates.
Mouse SCD1 is mainly expressed in lipogenic organs such as liver and adipose tissues.
SCD2 is chiefly expressed in the brain, while SCD3 is found in the harderian, preputial and
sebaceous glands. SCD4 expression has only be reported in the heart [68–72].
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4. Stearoyl-CoA Desaturase-1

SCD1 is the most characterized SCD isoform. SCD1 transforms 85% of stearate and
51% of palmitate (from both dietary and lipogenesis origin) into MUFA [68]. Many studies
have been performed in SCD1 knockout mice to better understand its role in metabolic
processes. Global SCD1 knockout mice, in which every cell of the organism is SCD1
deficient, present with lack of sebum secretion and of lacrimal surfactant [73]. The lack of
sebum gives rise to very dry skin with less hair and has led to the consideration of topical
SCD1 inhibition as a potential treatment for acne.

Global SCD1 knockout mice are protected against obesity [74], insulin resistance [75]
and fatty liver disease [61], as induced by both high-carbohydrate diet (HCD) [76] and high-
fat diet (HFD) [74,75]. These mice display increased levels of plasma ketone bodies while
the levels of circulating insulin and leptin are reduced [75]. Glycemia is also improved,
as determined by a glucose tolerance test. The metabolic profiles of global knockout mice
are more beneficial than their wildtype counterpart, as seen through the upregulation of
lipid oxidation and the downregulation of lipid synthesis genes [74,76]. Because of the
difference of global knockout mice, mice with a specific deletion of SCD1 in the liver are
only protected from the deleterious effects of HCD (and not HFD). Under HCD, liver-
specific knockout mice show a reduction of hepatic lipogenic enzyme gene expression
as well as a reduction of plasmatic TG relative to controls [76]. As could be expected,
these mice display a decrease of hepatic steatosis and associated metabolic complications
such as hypercholesterolemia. This is consistent with diminished activation of SREBP-1
(as measured by protein maturation and nuclear localization levels) and with increased
protein expression of the lipolysis transcription factor PPARα and the mitochondrial uptake
acyl transporter Carnitine O-palmitoyl transferase 1 (CPT1) in the liver of global SCD1-
deficient mice [77]. However, under HFD, liver-specific knockout mice develop hepatic
steatosis and insulin resistance [78]. The steatotic effect of HFD on liver-specific knockout
mice is probably due to the presence of SFA in the diet, which can be desaturated and
integrated into TG, and, subsequently, into chylomicrons by enterocytes that still express
SCD1. The chylomicrons can then be captured by the liver leading to hepatic steatosis and
associated hepatic dysfunctions [76,79].

SCD1 expression is chiefly controlled by the lipogenic transcription factor SREBP-
1c [77,80]. Under post-prandial conditions, the rise of lipemia and glycemia induce insulin
secretion, one of the most important lipid anabolic hormones. Insulin activates the PI3K-
PKB-mTORC1 signaling pathway, which induces the nuclear translocation of SREBP-1c and
activates expression of enzymes involved in lipogenesis, including SCD1 [81]. There are
others lipogenic transcription factors activated by dietary and hormonal factors such as
insulin and glucose. Expression of lipogenic genes such as SCD1, FAS and ELOVL6 is trig-
gered by the Liver X receptor (LXR), which is activated by insulin and by the Carbohydrate
response element binding protein (ChREBP), itself activated by glucose [82]. One of the
main LXR targets in lipid metabolism (especially of the LXRα isoform) is SREBP-1c, driving
the expression of SCD1 [83]. Furthermore, MUFA (products of SCD activity) can regulate
lipogenesis through AMPK phosphorylation [84,85]. Phosphorylated AMPK inhibits the
mTORC1 complex [86], reducing the nuclear translocation of SREBP-1c and the expression
of lipogenic genes like SCD1.

5. Role of Saturated Fatty Acids in Inflammation
5.1. Human Studies—Effect of Dietary SFAs

The type of lipids present in animal organisms is strongly influenced by diet [87].
Dietary SFAs are deleterious to metabolic health as they play an important role in the
development of obesity, metabolic syndrome and chronic inflammation [88]. In fact, high
SFA levels in the diet can be considered a pro-inflammatory factor in itself. Several studies
have described clear correlations between the consumption of Western diets, rich in SFA,
and the presence of obesity, hepatic steatosis and type 2 diabetes in humans [89–91].
Acute intake of SFA-rich diets triggers the development of an inflammatory profile in
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human subcutaneous adipose tissues, which includes increased expression of several genes
involved in the synthesis of pro-inflammatory chemokines and cytokines [92]. In addition,
compared to unsaturated fatty acid-rich diets, SFA-rich diets increase lipid storage within
adipose tissues [90]. The adipocytes develop larger LDs and, therefore, contain more TGs.
This increased intracellular TG pool leads to increased leptin secretion by adipocytes [93].
Furthermore, high circulating leptin is correlated with increased macrophage secretion of IL-
1β, IL-6 and TNF-α [94,95]. A clinical trial has shown that a single 1000 kcal meal containing
60% fat (mainly SFA) leads to elevated plasmatic IL-6 concentrations [96]. This type of
systemic inflammation is associated with vascular damages leading to coronary heart
disease [96].

5.2. Animal Studies—Effect of Dietary SFAs

In agreement with observations made in humans, feeding rodents with diets rich in
saturated fat increases hepatic and plasmatic TG levels and raises circulating IL-6 concen-
tration [97,98]. Animals also develop glucose intolerance while macrophage recruitment
in the liver is increased [97,99]. This suggests that inflammation is a consequence of diet-
induced metabolic changes. Indeed, mice fed during 15 weeks with a HFD containing a
majority of SFAs display an increased expression of hepatic TLR4 [98]. These animals also
show elevated plasmatic concentration of IL-6, TNF-α and MCP-1, and lowered plasmatic
concentration of the anti-inflammatory cytokine IL-10 [98].

Mice under SFA-rich HFD develop muscle steatosis due to accumulation of palmitate
and stearate [100]. SFAs can also induce inflammation in the central nervous system.
Brains of mice fed during 8 weeks with a HFD (composed mainly of SFA) display high
concentrations of inflammatory markers (IL-6, IL-1β and TNF-α) and low levels of IL-
10 [101]. Mice on a SFA-rich diet for as little as 4 weeks show elevated activation of NF-κB
and, through TLR4 activation in the hypothalamus, expression of inflammatory markers
(IL-1β, TNF-α and IFN-γ) in the brain as well as in the plasma [102,103]. This inflammation
can even contribute to the development of obesity, at least in mice. Sustained HFD-
induced inflammation in the arcuate nucleus, a specific region of the hypothalamus that
regulates energy homeostasis, triggers microglia recruitment and fosters the death of satiety
neurons [104].

5.3. Cellular Models—Effect of Exogenous SFAs

In vivo studies are realized with diets containing a mix of several types of fatty acids,
which are at least partially transformed during the digestion process. This complicates
interpretation of the results of these studies. Therefore, treatment of cultured cells with
exogenous fatty acids has been used to determine the effect of specific SFAs expected to be
found in post-prandial circulation.

Adipocyte cell models can provide insight into the in vivo mechanisms taking place
within adipose tissue. Incubation of 3T3-L1 preadipocytes and rat primary epididymal
adipocytes with palmitate for 24 h induces TNF-α and IL-6 secretion [105]. This treat-
ment also increases the release of Monocyte chemoattractant protein-1 (MCP-1) [106,107],
which has the potential to induce the recruitment of macrophages in vivo as well as their
polarization into a M1 pro-inflammatory state. Exposition of pancreatic β cells (1.1B4
human cell line and rat primary cells) to palmitate increases secretion of IL-6 and IL-8,
as well as ROS production. It is also associated with impaired insulin secretion [108,109].
This process has the potential to explain, at least in part, why saturated fat-rich diets lead
to the development of type 2 diabetes.

In mouse microglia BV2 cells, palmitate treatment during 4 h induces IL-1β, IL-6
and TLR4 gene expression, as well as NF-κB induction [103]. In the RAW 264.7 mouse
macrophage cell line, lauric acid (a 12-carbon chain SFA) can directly bind TLR4 and
activate the nuclear translocation of NF-κB. This subsequently activates the expression
of pro-inflammatory cytokines, especially TNF-α [110,111]. Treatment of RAW 264.7 cells
with palmitate inhibits the expression of the transcription factor PGC-1β, which indirectly
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activates the nuclear translocation of NF-κB [112]. This leads to increased secretion of
inflammatory cytokines TNF-α and IL-1β in the medium. Interestingly, when this medium
is added to cultured 3T3-L1 preadipocytes, activation of the PI3K-PKB pathway is impaired,
suggesting a decrease in insulin sensitivity [113].

The effect of SFAs on muscle cells has also been studied in vitro. Treatment of C2C12
mouse myotube cells with palmitate increases lipid storage as observed via lipid droplet
size [114]. As for other cell types, this intracellular lipid accumulation causes lipotoxi-
city (elevated ROS and ER stress) and insulin resistance (disruption in PKP signaling).
It also triggers NF-κB nuclear translocation, leading to the expression of pro-inflammatory
cytokines such as TNF-α [114].

6. Role of Monounsaturated Fatty Acids in Inflammation
6.1. Human Studies—Effect of Dietary MUFAs

While SFAs increase inflammation, unsaturated fatty acids often have the opposite
effect. Polyunsaturated fatty acids (PUFAs), especially the omega-3 class, have favorable
effects on health. Several population studies have indeed demonstrated that, compared to
SFA-rich Western diets, diets rich in omega-3 PUFAs exert beneficial metabolic effects at
least in part by decreasing inflammation [115–117]. The effects of MUFAs on inflammation
are less documented, but more and more evidences link MUFAs to anti-inflammatory
states [92].

Dietary lipids are assimilated in the gut and then transported throughout the entire
organism where they influence organ metabolism. Higher MUFA consumption increases
MUFA levels, and reduces both SFA and PUFA, throughout the body [118]. The type of
lipids present in our body can therefore be modulated through nutrition.

The impact of the Mediterranean diet has been studied in humans, including in
several randomized crossover studies (Table 1) [119–121]. This diet is characterized by a
high consumption of fish, olive oil, fruits and vegetables, and whole grains. In this type of
diet, fat constitutes one third of the total kcal absorbed with almost 60% MUFA and 20%
SFA [122]. For comparison, the Western diet has a similar amount of total fat but with a
much lower proportion of MUFA (36% MUFA and 33% SFA) [119]. Compared to other
diets, the Mediterranean diet is associated with lower blood pressure, as well as improved
glucose and lipid blood profiles [123–125]. The Mediterranean diet lowers cardiovascular
disease risk and even leads to beneficial gut microbiome changes: increasing bacteroides,
prevotella and faecalibacterium genera, which are known to improve general metabolic health
and prevent atherosclerosis and thrombosis (Table 1) [121,126]. In fact, olive oil, one of
the main components of the Mediterranean diet, has been characterized as a prebiotic
improving the host-microbial ecosystem (Table 1) [120].

Interestingly, supplementation of food with olive oil (an oil that is naturally enriched
with the SCD1 product oleate) correlates with low occurrences of obesity and metabolic
syndrome, and therefore, less chronic inflammation and mortality [127,128]. Furthermore,
people consuming a Mediterranean diet generally show lower levels of the systemic
inflammation profile that often appears when Western or carbohydrate-rich diets are
consumed (Table 1) [129–132]. Consumption of Mediterranean diet for 3 to 4 weeks is also
correlated with increased secretion of adiponectin, an adipokine with anti-inflammatory
effects [94,133]. Similar observations on inflammation are made when subjects are fed
with olive oil (Table 1) [131,134,135]. Subjects fed with a diet rich in olive oil for a period
ranging from 3 weeks to 2 years display lower levels of circulating mononuclear cells
(monocytic cells involved in the inflammatory response). In addition, their plasmatic pro-
inflammatory cytokine levels (such as TNF-α, MCP-1, IFN-γ, CRP, IL-18, and IL-6) are lower
when compared to subjects on a Western diet for the same period of time [131,136–138].
Compared to a one-time oral dose of a fat emulsion containing cow’s milk cream (25% oleate
and 26% palmitate), an emulsion of olive oil (70% oleate and 15% palmitate) generates a
more favorable lipid plasmatic profile, including a higher plasmatic concentration of MUFA-
rich TG. Interestingly, in the same study, the authors incubated mouse BV2 microglia cells
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with purified plasmatic lipoproteins from these subjects. Upon treatment, the incubated
cells switched from a M1 pro-inflammatory state to a M2 anti-inflammatory state in the
presence of MUFA-rich TG (Table 1) [139]. This observation has been confirmed in another
study on isolated human blood monocytes [140].

Anti-inflammatory effects of MUFA have been reported when MUFA are part of a
dietary intervention. However, increased MUFA levels in vivo do not always have positive
impacts on inflammation. In patients with chronic kidney disease, an elevated MUFA/SFA
ratio in blood lipids—presumably reflecting increased SCD1 activity—is correlated with
high levels of circulating CRP, suggesting an aggravation of inflammation [141]. In obese
patients that underwent bariatric surgery, the concentration of lipids in SAT (subcutaneous
adipose tissue) and VAT (visceral adipose tissue) was measured by gas chromatography.
The MUFA proportion in these SAT and VAT samples is negatively correlated with inflam-
mation and obesity-related conditions such as insulin resistance and type 2 diabetes, as
measured by gene expression [91].

Though the beneficial effects of the Mediterranean diet cannot simply be attributed to
its high olive oil content, as it also contains many omega-3 fatty acids, these population
studies strongly suggest that dietary MUFA have anti-inflammatory effects, especially
compared to SFA-rich diets such as the Western diet.

6.2. Animal Studies—Effect of Dietary MUFAs

To further investigate the effects of MUFA in the diet, several studies have been
performed on HFD-fed mice. These animals allow for measurements of metabolic and
inflammatory markers throughout the organism, rather than only in the blood or on
surgical samples. Mice raised for 4 weeks on a diet rich in olive oil show elevated plasmatic
concentration of MUFA with no change in hepatic SCD1 gene expression [142]. As in
humans then, MUFA-rich diets can be used to study the effects of MUFA on systemic
responses in rodents.

Studies performed in mice raised on a MUFA-rich diet for 15 weeks show higher
circulating levels of anti-inflammatory markers (IL-4 and IL-10) and lower levels of pro-
inflammatory markers (IL-6, MCP-1, IL-1β and TNF-α) compared to mice fed with a
SFA-rich diet [98]. Even in obese and hypercholesterolemic mouse models, a MUFA-rich 8-
week-long diet improves metabolic features, increasing the expression of anti-inflammatory
markers such as IL-4, IL-10 and PPARγ. In addition, a decrease in circulating level of pro-
inflammatory IL-6, MCP-1, TNF-α, and IL-1β, and a larger proportion of M2 macrophages
(compared to M1) is observed in adipose tissues [143]. In a study performed in male
Wistar rats, animals were raised 12 weeks on HFDs (35% kcal from fat) with different
SFA/MUFA/PUFA ratios [144]. Compared to a diet containing a higher proportion of
SFA, increasing the proportion of MUFA improves insulin sensitivity and induces expres-
sion of the anti-inflammatory cytokine adiponectin, especially in subcutaneous adipose
tissue. However, MUFAs are less effective than PUFAs in inducing the expression of the
adiponectin gene. Higher MUFA or PUFA proportions are also correlated with lower
circulating LDL-cholesterol levels [145]. The effects of fatty acids on inflammation were
studied in mice fed for 15 weeks with isocaloric diets rich in either SFA or MUFA [98].
Compared to the SFA group, liver analysis of mice fed with MUFA shows less macrophage
infiltration as well as a decrease in TG content and lipid peroxidation (measured via thio-
barbituric acid reactive substances). The plasmatic lipid profile is improved, as well as
insulin sensitivity (as measured by HOMA-IR). The levels of circulating pro-inflammatory
CRP and MCP-1 are also decreased [98]. Interestingly, a very recent study has shown that
switching mice from a SFA-based HFD to a MUFA-based HFD partially attenuates the
progression of hyperglycemia, diminishing pancreatic inflammation and ameliorating β

cell function [146]. Macrophage infiltration in the pancreas was lower in MUFA-HFD fed
mice. The authors suggest that this effect is mediated by AMPK [147]. Interestingly, when
compared to a diet rich in n-6 PUFA, an olive oil-rich 24-month-long diet protects cardiac
mitochondria from age-related damages in rats [148]. A very promising study has recently
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shown that, compared to SFAs, dietary MUFAs reduce the pro-inflammatory profile in the
mouse brain (and in human blood), stimulating M2 macrophage polarization. The authors
even propose to use olive oil in nutraceutical strategies to treat diseases associated with a
neuro-inflammatory profile [139].

6.3. Cellular Models—Effect of Exogenous MUFAs

Oleate protects HepG2 cells (a human hepato-carcinoma cell line) against SFA-induced
lipotoxicity, decreasing ER stress, ROS production, and activation of inflammation markers
(NLRP3, IL-6, MCP-1 and IL-1β) [149]. In primary murine hepatocytes, intracellular
LD-derived MUFAs bind to SIRT1 (NAD-dependent protein deacylase sirtuin-1/silent
information regulator 1), resulting in the activation of PPARα via PGC-1α. Oleate is also a
direct PPARα agonist [150]. These mechanisms inhibit NF-κB activity (Figure 3) [151,152],
explaining, at least in part, the resorption of hepatic inflammation by MUFAs.

Table 1. Main outcome of human clinical trials involving MUFA-rich diets.

Studies Participants Duration Population Diet Main Outcome

Martin-Pelaez
2017 [120]

12 volunteers, aged
46–67 years 3 weeks Hypercholesterolemic

volunteers
25 mg/day of virgin

olive oil
Improved cholesterolemia

profile

De Filippis 2016
[126] 153 individuals 1 week

Healthy people, om-
nivore/vegetarian or

vegan
Mediterranean diet

Increase of Prevotella and
Firmicutes within gut

microbiota, improvement of
atherosclerosis profile

Cesari 2018 [128] 421 subjects, aged >
90 years 12 months NA Mediterranean diet

Decreased risk factors for
cardiovascular disease

development

Schwingshackl
2015 [131] 3106 participants >4 weeks NA Olive oil

interventions

Improvement of inflammatory
profile, CRP plasma level

decreased
Paniagua 2007

[133] 11 volunteers 4 weeks Diabetic subject Mediterranean diet Improved insulin sensitivity
and adiponectin secretion

Konstandinidou
2013 [136]

90 participants, aged
20–50 years 1 year Healthy volunteers Mediterranean diet

Protective gene expression
associated with inflammation

improvement

Esposito 2004
[138] 90 patients 3 years Diabetic patient Mediterranean diet

Decreased insulin resistance,
reduced plasma CRP and IL-6

level

Toscano 2020
[139]

6 volunteers, aged
25–35 years NA Healthy volunteers One oral emulsion of

olive oil

Enhanced M2 macrophage
polarization, reduced

proinflammatory profile

Abbreviations: NA (not applicable), CRP (C-reactive protein), IL-6 (Interleukin-6).

In the 3T3-L1 murine preadipocyte cell line, oleate treatment increases expression of
the adiponectin gene [153], probably through PPARγ activation [154,155]. Adiponectin
induces IL-10 secretion and inhibits IL-6 and TNF-α secretion [153], which has the potential
to reduce local inflammation in vivo. Adiponectin can also reduce peripheral inflammation
by enhancing M2 macrophage polarization (Figure 3) [154–161].

Bone marrow-derived macrophages prepared from HFD-fed mice present a pro-
inflammatory profile including macrophage M1 polarization and elevated secretion of
IL-6 and TNF-α (Figure 3) [162]. The treatment of these macrophages with palmitoleate
can switch the polarization of macrophages to M2 (Figure 3) [162]. Palmitoleate also
activates AMPK, leading to a decrease of NF-κB nuclear translocation (Figure 3). This
increases the expression of several anti-inflammatory factors such as MGL2, IL-10, TGFβ1,
and MRC1 [162,163]. Incubation of mouse adipose stromal vascular fraction and bone
marrow primary cultures with oleate inhibits LPS-induced IL-1β secretion [45,164]. In this
situation, AMPK is activated, which in turn inhibits NLRP3 activation (responsible for
IL-1β maturation) (Figure 3) [45,164]. Similar observations were reported on primary rat
pancreatic islet cells [165].

MUFA also display protective effects in several other cell lines. For instance, oleate
protects mouse muscle C2C12 cells from palmitate-induced insulin resistance and ER
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stress [166]. In mouse podocyte cells, derived from kidney epithelium, SFAs activate the
cell death pathways associated with ER stress. This effect is reversed by oleate [167]. In the
human endothelial EAHy926 cell line, palmitoleate decreases pro-inflammatory IL-6, IL-8
and MCP-1 secretion, and downregulates NF-κB (via PPARγ stimulation), as compared to
palmitate [168].
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7. The Role of Stearoyl-CoA Desaturase-1 in Inflammation
7.1. Human Correlation Studies

Given that SCD1 is the major enzyme involved in MUFA synthesis, several authors
have hypothesized that an increase in expression and/or activity of SCD1 could be corre-
lated with an improvement of patient inflammatory profile.

In a study performed on young adults [169], a clear correlation was observed between
the rs2060792 (A/G) single nucleotide polymorphism (SNP) upstream of the SCD1 gene
and the level of circulating SFAs palmitate and stearate. European women bearing the
major allele present with higher palmitate and lower stearate concentrations. Interestingly,
this SNP was positively associated with obesity and a higher level of the circulating pro-
inflammatory factor CRP, especially in women. In a study analysing surgical samples from
human visceral adipose tissue of obese individuals, an enrichment of histone methylation
(H3K4me3) in the SCD1 and IL-6 promoters was correlated with increased BMI. This
histone methylation enrichment pattern was associated with lower SCD1 expression and
higher pro-inflammatory TNF-α and IL-6 expression [170].

However, in overweight adults, high palmitoleate plasma concentrations, reflecting
high SCD1 activity, is correlated with the occurrence of inflammatory fatty liver dis-
ease [171]. This increased SCD1 activity could be due to a compensatory mechanism
triggered by high circulating concentrations of its substrate palmitate [20,172].
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The results obtained in these human studies have not always shown a strict correlation
between SCD1 activity and inflammation. This suggests that the level of endogenous
synthesis is not the only factor behind the modulation of inflammatory state by MUFA.

7.2. Animal Genetic Models

Both human and animal dietary studies clearly argue for a beneficial role of MUFA on
the inflammatory status. Given that MUFAs are a product of SCD1 activity, the deletion
of this enzyme should reduce the availability of MUFA (and increase SFA accumulation),
leading to increased inflammation.

SCD1-deficient mice are a useful tool to study the effect of endogenous MUFA synthe-
sis on lipid metabolism and inflammation processes. The asebia mouse model is deficient
for SCD1 due to a naturally occurring genomic deletion. As in the SCD1 knockout mice,
asebia animals display eye inflammation, a lack of sebaceous glands, and an absence of
hair within scarred dermis [173,174]. In skin-specific SCD1 knockout mice, expression of
pro-inflammatory genes IL-6, TNF-α and IL-1β is increased around hair follicles [175,176].
By inducing follicle cell death, this inflammation contributes to hair loss [177].

Like SCD1 knockout mice, asebia mice are protected from HFD-induced obesity,
hepatic steatosis and glucose intolerance [178–180]. However, compared to wildtype
mice, they exhibit a complex inflammatory profile including circulating pro-inflammatory
markers such as IL-6 and IL-1β [181]. Adipose tissue-specific SCD1 knockout mice are
protected against Western diet-induced obesity and fatty liver disease [74]. Their WAT
displays a lower concentration of MCP-1 and TNF-α compared to WAT from wildtype
mice, even when they are raised on HFD (60% kcal fat, mainly lard).

Enterocyte-specific SCD1 knockout mice display an increase in pro-inflammatory
markers IL-6 and TLR4 within their colon and ileum [182]. Interestingly, these enterocyte-
specific effects can be rescued by an oleate-rich diet [183]. Intriguingly, enterocyte-specific
SCD1 knockout mice show diminished expression of the TLR4 receptor in the jejunum,
suggesting a protection against inflammation [182].

Liver-specific SCD1 knockout mice display an increase in pro-inflammatory markers
IL-1β and TNF-α within their liver [184]. These knockout mice models exhibit a reduc-
tion in the expression of lipogenic markers ACC, FAS and SREBP-1c. This potential for
diminished palmitate synthesis could attenuate the inflammatory effects of SCD1 depletion.

7.3. Cellular Models

Several studies address the specific role of SCD1 in cellular models of inflammation.
Silencing or inactivation of the SCD1 gene in the murine preadipocyte 3T3-L1 cell line
exacerbates the effects of SFAs, increasing the expression of the pro-inflammatory markers
TGF-β, IL-6 and MCP-1, and decreasing the anti-inflammatory IL-10 [185,186]. Similar
results are observed in the EndoC-βH1 human pancreatic β cell line. Silencing SCD1
aggravates the lipotoxic effect of palmitate on inflammatory marker expression and, in-
terestingly, oleate and palmitoleate treatments rescue these effects [187]. Incubating RAW
264.7 macrophages with a conditioned media obtained from primary adipocytes isolated
from global SCD1 knockout mice decreases expression of both TNF-α and IL-1β pro-
inflammatory cytokines [188]. SCD1 silencing in mouse primary macrophages renders the
TLR4 receptor hypersensitive, which exacerbates the gene expression of pro-inflammatory
cytokine (IL-1β, MCP-1 and IL-6) [189]. TLR4 hypersensitivity is thought to stem from
increased SFA proportions within membrane phospholipids [189].

Other technical approaches allow for insight into the effect of SCD1 overexpression.
In primary human myotube cells, overexpression of SCD1 prevents palmitate-induced ER
stress and IL-8 gene expression [190]. Mesenchymal stromal cells (MSC) can be prepared
from posterior iliac crest bone marrow extracted from patients [191]. When these MSC
cells are treated with T0901317 (an LXR agonist), SCD1 and LXRα expression are increased.
This treatment reduces palmitate-induced Caspase 3/7 activation and expression of pro-
inflammatory IL-6 and IL-8. When MSC cells are incubated with the specific SCD1 inhibitor
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CAY 10566, the effect of the LXR agonist is abrogated. This suggests that, at least in
bone marrow stromal cells from these patients, SCD1 is involved in the prevention of
inflammation and apoptosis induced by palmitate [191].

More recently, a study has been performed using primary hepatic cell isolated from G-
protein coupled receptor 120 (GPR120) deficient mice. This receptor interacts with MUFA,
especially palmitoleate [192]. The activation of GPR120 by palmitoleate, is involved in
the resolution of palmitate-induced inflammation through a reduction of NF-κB activity.
Interestingly, in these cells, a correlation between SCD1 expression and GPR120 activity is
observed [193].

Inhibiting SCD1 in cells leads to increased inflammation. This is probably due to a com-
bination of lower intracellular MUFA concentration and, undoubtedly, higher intracellular
SFA concentration.

8. Conclusions

As presented throughout this text, dietary fat intake has an undeniable impact on
inflammation. There is evidence that chronic low-grade inflammation can be prevented
by lifestyle interventions. The SFA-rich Western diet can induce chronic inflammation
and increase the risk of developing obesity-related metabolic disorders such as cardiovas-
cular diseases, type 2 diabetes, and hepatic steatosis. At the opposite, a Mediterranean
diet especially rich in oleate is favorable to an anti-inflammatory state and is associated
with a decreased risk of metabolic syndrome development. Indeed, both human and
animal diet studies have shown that substitution of SFA by MUFA activates beneficial
anti-inflammatory mechanisms (M2 macrophage polarization, adipocyte IL-10 secretion,
inhibition of NLRP3 inflammasome) and reverses the deleterious effect of SFAs on adipose
tissues, hepatic tissue and β cells. Many mechanisms presented here can account for the
protective effects of dietary oleate and high levels of circulating MUFAs. The addition
of MUFA in diets can therefore be a potential nutraceutical avenue to decrease chronic
inflammation and, subsequently, to ameliorate the general metabolic profile. In accordance
with the beneficial effects of dietary MUFAs, some studies have shown that inhibiting
SCD1 aggravated the deleterious effects of SFAs. This is probably due to an increase of
SFA levels (SCD1 substrates). Thus, SCD1 is an interesting therapeutic target to decrease
intracellular SFA concentration in favour of MUFA. However, other studies have shown
that SCD1 inhibition can have favourable outcomes. SCD1 deletion protects mice against
the deleterious effects of SFA-rich HFD and even improves the metabolic profile of humans
and animals. In this case, the protective effects of SCD1 deletion cannot be attributed to
MUFA activity in the organism. In fact, we and others have shown that SCD1 deletion
inhibits lipogenesis [74,76,77,79,182]. This can be attributed to inhibition of SREBP-1c
oleylation, decreasing its transcriptional activity [77]. This aspect of SCD1 activity deserves
to be further investigated to better understand its specific role in inflammation.
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Abbreviations
ACC Acetyl-CoA carboxylase
AGPAT Acylglycerol-3-phosphate-O-acyltransferase
AMPK AMP-activated protein kinase
apoA-I Apolipoprotein A-I
apoB-100 Apolipoprotein B-100
ATP Adenosine Triphosphate
BMI Body mass index
ChREBP Carbohydrate-responsive element-bonding protein
CPT-1 Carnitine palmitoyltrasnferase-1
CRP C-reactive protein
DGAT Diglyceride acyltransferase
DNA Desoxyribonucleic acid
ELOVL Elongation of very long chain fatty acid
ER Endoplasmic reticulum
FABP Fatty acid binding protein
FAS Fatty acid synthase
FAT/CD36 Fatty acid translocase/cluster of differentiation 36
FATP Fatty acid transport protein
FFA Free fatty acid
GPAT Glycerol-3-phosphate acyltransferase
GPR120 G-protein-coupled receptor 120
HCD High carbohydrate diet
HDL High density lipoprotein
HFD High fat diet
hMSC Human mesenchymal stromal cells
HOMA-IR Homeostatic model assessment of insulin resistance
IFN-γ Interferon-gamma
IKK-IκB IκB kinase-inhibitor of nuclear factor kappaB
IL-1β Interleukin-1 beta
IL-10 Interleukin-10
IL-18 Interleukin-18
IL-1R Interleukin-1 receptor
IL-4R Interleukin-4 receptor
IL-6 Interleukin-6
IL-8 Interleukin-8
LD Lipid droplet
LDL Low density lipoprotein
LPS Lipopolysaccharide
LXR Liver X receptor
MCP-1 Monocyte chemoattractant protein-1
MGL2 Macrophage galactose N-acetyl-galactosamine specific lectin 2
MRC1 Macrophage mannose receptor 1 precursor
mTORC1 Mammalian target of rapamycin complex 1
MUFA Monounsaturated fatty acids
NF-κB Nuclear factor-kappaB
NLRP3 NOD-like receptor family, pyrin domain
PGC-1β Peroxysome proliferator-activated receptor 1-beta
PI3K Phosphoinisitide-3-kinase
PKB Protein kinase B
PPARα Peroxysome proliferator-activated receptor alpha
PPARδ Peroxysome proliferator-activated receptor delta
PPARγ Peroxysome proliferator-activated receptor gamma
PUFA Polyunsaturated fatty acid
ROS Reactive oxygen species
SAT Subcutaneous adipose tissue
SCD Stearoyl-CoA desaturase
SFA Saturated fatty acid
SNP Single nucleotide polymorphism
SRB1 Scavenger receptor class B type 1
SREBP-1 Sterol regulatory element-binding protein-1
TG Triglycerides
TGF-β Transforming growth factor-beta
TLR Toll-Like receptor
TNF-α Tumor necrosis factor-alpha
TNFR Tumor necrosis factor receptor
VAT Visceral adipose tissue
VLDL Very low-density lipoprotein
WAT White adipose tissue
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