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Abstract: Maintaining wild type protein–protein interactions is essential for the normal function
of cell and any mutation that alter their characteristics can cause disease. Therefore, the ability to
correctly and quickly predict the effect of amino acid mutations is crucial for understanding disease
effects and to be able to carry out genome-wide studies. Here, we report a new development of
the SAAMBE method, SAAMBE-3D, which is a machine learning-based approach, resulting in
accurate predictions and is extremely fast. It achieves the Pearson correlation coefficient ranging
from 0.78 to 0.82 depending on the training protocol in benchmarking five-fold validation test against
the SKEMPI v2.0 database and outperforms currently existing algorithms on various blind-tests.
Furthermore, optimized and tested via five-fold cross-validation on the Cornell University dataset,
the SAAMBE-3D achieves AUC of 1.0 and 0.96 on a homo and hereto-dimer test datasets. Another
important feature of SAAMBE-3D is that it is very fast, it takes less than a fraction of a second to
complete a prediction. SAAMBE-3D is available as a web server and as well as a stand-alone code,
the last one being another important feature allowing other researchers to directly download the
code and run it on their local computer. Combined all together, SAAMBE-3D is an accurate and
fast software applicable for genome-wide studies to assess the effect of amino acid mutations on
protein–protein interactions. The webserver and the stand-alone codes (SAAMBE-3D for predicting
the change of binding free energy and SAAMBE-3D-DN for predicting if the mutation is disruptive
or non-disruptive) are available.

Keywords: protein–protein binding; machine learning; stabilizing and destabilizing mutation;
disruptive and non-disruptive mutation

1. Introduction

Protein–protein interactions (PPIs) play crucial role in various biological processes including
cell regulation and signaling [1,2]. Disruption of PPIs away from native properties could cause
diseases [3–6]. Indeed various studies demonstrated that many disease-associated amino acid variants
are located at the protein–protein interfaces, and thus affect PPIs by either altering binding affinity or
specificity [7–11]. Knowledge of the impact of the mutation on PPIs is not only important to categorize
mutations into pathogenic and benign [12,13], but also to develop therapeutic solutions [14,15] and
understand the cause of drug resistance [16,17]. In terms of protein engineering, once the mutation
effects are known, one can engineer stable protein having a high affinity towards its partner as required
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for various applications [18,19]. These limited examples illustrate the importance of assessing the effect
of mutations on PPIs.

Experimentally the effect of mutations on PPIs is investigated either via detection of formation
of protein–protein complex or via measuring the change of the binding free energy. In the first case,
one categorizes the mutations as disruptive (complex is not formed) and non-disruptive (complex is
formed) [20,21]. Such experiments have been done on a large set of mutations providing genome-scale
investigations for assessing the effect of mutations on PPIs and results were collected into several
databases [22–24]. In the second case, one measures the binding affinity of wild type and mutant
proteins and then finds the change of the binding free energy (∆∆G), a procedure which is tedious and
time-consuming. Despite of that, over the years many such experiments were reported in literature and
collected in various databases as ASEdb [25], PINT [26], AB-bind [27], PROXiMATE [28], DACUM [29],
SKEMPI 1.1 [30], and SKEMPI v2.0 [31]. The main distinctions with respect to disease linkage between
these two approaches and corresponding databases are the following. Disruptive mutations almost
for sure are disease-causing, while non-disruptive may or may not be benign. Thus, a mutation
may not completely abolish complex formation, and will be classified as non-disruptive, but may
change the binding affinity or specificity to an extent to cause a disease. Regarding approaches and
databases inferring the change of the binding free energy caused by a mutation, there is no clear cut-off

(magnitude of the binding free energy) that can be used as a marker for identifying the mutation that is
disease-causing [12].

On the other side of the spectrum are computational methods to predict the effects of mutations
on PPIs [6]. To assess their performance (typically via the Pearson correlation coefficient, PCC) or to
train them, the developers use the abovementioned databases. This brings us to an important point
that the performance of the computational predictors is limited by the noise and the distribution
of experimental data [32]. The wide range of experimental conditions in which experiments are
performed to measure ∆∆G increases the uncertainty associated with the measured entries in the
database. Therefore, the quality of experimental ∆∆G is important to be considered since it influences
the assessment of performance of ∆∆G predictors. In most of the databases, multiple experimental
data points (∆∆Gs) using different experimental methods or conditions are reported for the same
mutation. Thus, some computational studies used all of these ∆∆Gs for training [33], some took
the average [34–37], and some works selected the value coming from the most reliable experimental
method [29,38]. It is also important to identify and exclude the mutations with binding affinity outside
the experimental detection range, which is not often mentioned in the databases. Therefore, to assure
the quality of the experimental data, a number of stringent checks are necessary before using those
data as a benchmark for the development of new predictors. Thus, depending on the applied criteria
to purge the database(s), one may end up with different set of entries for both the training and test sets,
which is one of the main obstacle for direct comparison of predictors performance [39,40].

Various computational methods have been developed to predict the binding affinity changes
due to mutation. The earlier methods mostly used physical energy features along with linear
regression analysis to predict ∆∆G. Thus, FoldX [41,42] is such a predictor, which uses physical
energies such as van der Waals, electrostatic energy, hydrogen bond and solvation energy and allows
for conformational changes of the side chains. Another predictor, the Rosetta [43], is based on a
linear combination of physical energies such as Lennard-Jones energy, solvation energy and hydrogen
bonding. The method also uses the rotamer approach but is restricted to alanine substitutions. In 2009,
Concoord/Poisson–Boltzmann surface area (CC/PBSA) method [44] was developed that generates
an ensemble of structures and uses the averaged energy of the ensemble to predict ∆∆G. In 2014,
another method [45] was developed based on a well-tested simulation protocol, modified MM/PBSA
and statistical scoring energy functions and achieved PCC of 0.69 and 0.63 for single and multiple
mutations respectively. In addition to physics-based energies, knowledge-based energy terms or
statistical potentials were also used to predict ∆∆G. For example, SAAMBE [36,46] uses a combination
of MM/PBSA and knowledge-based terms to predict ∆∆G. An important distinction of the SAAMBE
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method is the usage of amino acid-specific dielectric constant to mimic the conformational flexibility
induced by mutation. Another method, the BindProfX [47], combines a conservation profile with the
FoldX [41,42] to deliver ∆∆G. One should mention BeAtMuSiC [35], which is a statistical energy-based
∆∆G predictor using a coarse-grained model. All these methods based on either physical energy or
statistical potentials or combination of both were demonstrated to achieve PCC ranging from 0.38 to
0.69 on single mutations from SKEMPI 1.1 database.

In recent years, several methods [35,48,49] using machine learning were developed resulting in
improved PCC ranging from 0.68 to 0.83. The advantage of machine learning (ML)-based methods is
that it can utilize a variety of features based on structure, evolution, energy and others to predict ∆∆G,
thus allowing for more extensive “parametrization”. However, the intrinsic data-driven nature of the
ML method relies on a large and high-quality experimental dataset. The recent availability of databases
containing a large number of experimentally determined ∆∆G catalyzed the development of ML-based
method as ∆∆G predictor. The first ML-based predictor is mCSM [33]. It uses the atomic distance
pattern surrounding the mutation site to represent the neighboring environment and a regression
algorithm is used to train the model. mCSM method was reported to achieve a high PCC of 0.80 on 2317
single mutations from SKEMPI 1.1 database [30]. iSEE [48] is another predictor based on 31 features
involving structure interface profile, energy and evolution-based features. It uses a position-specific
scoring matrix generated from multiple sequence alignment to describe the evolutionary conservation
of the mutation site. iSEE was reported to achieve PCC of 0.8 on single mutations but involving
only dimeric complexes from SKEMPI 1.1. MutaBind [37] obtained PCC of 0.68 on the single point
mutations of SKEMPI 1.1 with leave one complex out cross-validation, which outperforms FoldX [41,42]
and BeAtMuSiC [35] with PCC of 0.40 and 0.39 respectively. Additionally, MutaBind is specially
trained on the protease-inhibitor complexes of SKEMPI 1.1, accomplishing PCC of 0.76. Recent
development of MutaBind, MutaBind2 [50], resulted in PCC of 0.82 in benchmarking test on SKEMPI
v2.0 database. Moreover, MutaBind2 can predict binding free energy change due to multiple mutations.
BindProfX [47] uses a structure interface profile to represent the conservation of interface residues.
BindProfX combines its estimation of ∆∆G using amino acid probabilities from Boltzmann distribution
and FoldX delivered ∆∆G and was shown to achieve PCC of 0.74 on 1131 single mutations from
SKEMPI 1.1. However, BindProfX [47] only predicts ∆∆G for mutations located at the interface in
the protein–protein complexes. Recently, Rodrigues et al. developed mCSM-PPI2 [49], an improved
version of mCSM method. The study demonstrated that mCSM-PPI2 outperforms 26 previous methods
on CAPRI blind tests [49]. TopNetTree [51] is another new method that utilized a topology-based
network tree by integrating a deep learning algorithm, NetTree, and the topological representation.
TopNetTree achieved PCC of 0.82 on SKEMPI v2.0 dataset. The improvement (PCC ranging from
0.75 to 0.83 on SKEMPI v2.0 database, depending on the benchmarking protocol used) is achieved
via integrating graph-based signature framework of mCSM method with evolutionary information,
inter-residue complex network metrics and energetic terms.

Here we report a new development of SAAMBE [36,46], the SAAMBE-3D, which is a
structure-based, ML-based method. The method is very fast and is available as a stand-alone code
and as a web server. It utilizes 33 knowledge-based features representing the physical environment
surrounding the mutation site. SAAMBE-3D is trained on 3753 single point mutations from 299
complexes from SKEMPI v2.0 [31] using the XGBoost machine learning method and achieves PCC
ranging from 0.78 to 0.82 depending on the training protocol. SAAMBE-3D uses a small number of
features to avoid the risk of overfitting and it is shown to outperform existing statistical potential and
machine learning-based methods on several blind test sets. Furthermore, SAAMBE-3D-DN method is
developed to predict disruptive versus non-disruptive mutations. The stand-alone code of SAAMBE-3D,
as well as SAAMBE-3D-DN, is available at http://compbio.clemson.edu/saambe_webserver/ and
https://github.com/delphi001/SAAMBE-3D.

http://compbio.clemson.edu/saambe_webserver/
https://github.com/delphi001/SAAMBE-3D
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2. Results and Discussion

We trained SAAMBE-3D on a large and diverse dataset containing experimental ∆∆G for 3753
single point mutations from 299 protein–protein complexes. In the dataset, 2892 mutations are at the
interface, 2085 are in loops, 1552 are non-alanine mutations, 313 are small to large size amino acid
substitutions and 1152 are either small to small or large to large substitutions. For predicting ∆∆G
upon a given mutation, we used 33 knowledge-based features only. In order to build a more reliable
and robust model, we performed five-fold cross-validation 100 times. Selection of the training and
test sets were repeated 100 times randomly, and the average PCC is reported. We trained our model
against 80% as well as 90% of the mutation entries present in dataset-1, as described in the method
section and tested against the remaining mutations. This way, our model shows a PCC of 0.78 with
MSE of 1.23 kcal/mol on 20% of dataset-1 when 80% of dataset-1 is used to train the model (Figure 1a).
We were able to obtain a correlation of 0.79 and MSE of 1.25 kcal/mol for 10% of dataset-1 when 90% of
the mutations from dataset-1 were used for training the model (Figure 1b). Similarly, for dataset-2,
where hypothetical reverse mutations were included to make a more balanced dataset including a
similar number of increasing and decreasing binding affinity cases, a correlation of 0.81 and MSE of
1.31 kcal/mol was obtained (Figure 1c). In this case, our model was trained on 80% of the mutations
from dataset-2 and tested against the remaining 20% mutations. Using 90% of the mutation data for
training the model and 10% for testing, we were able to achieve a correlation of 0.82 and MSE of
1.19 kcal/mol (Figure 1d). A similar performance irrespective of whether we chose 80% or 90% of the
mutations from either dataset-1 or dataset-2 to train our model indicates the high stability of our model.
To avoid any bias caused by including imaginary reverse mutations, we chose only the model, which
is trained against dataset-1 (original data coming from SKEMPI v2.0) for the rest of the validation cases
in this paper.

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 16 

 

substitutions and 1152 are either small to small or large to large substitutions. For predicting ΔΔG 
upon a given mutation, we used 33 knowledge-based features only. In order to build a more reliable 
and robust model, we performed five-fold cross-validation 100 times. Selection of the training and 
test sets were repeated 100 times randomly, and the average PCC is reported. We trained our model 
against 80% as well as 90% of the mutation entries present in dataset-1, as described in the method 
section and tested against the remaining mutations. This way, our model shows a PCC of 0.78 with 
MSE of 1.23 kcal/mol on 20% of dataset-1 when 80% of dataset-1 is used to train the model (Figure 
1a). We were able to obtain a correlation of 0.79 and MSE of 1.25 kcal/mol for 10% of dataset-1 when 
90% of the mutations from dataset-1 were used for training the model (Figure 1b). Similarly, for 
dataset-2, where hypothetical reverse mutations were included to make a more balanced dataset 
including a similar number of increasing and decreasing binding affinity cases, a correlation of 0.81 
and MSE of 1.31 kcal/mol was obtained (Figure 1c). In this case, our model was trained on 80% of the 
mutations from dataset-2 and tested against the remaining 20% mutations. Using 90% of the mutation 
data for training the model and 10% for testing, we were able to achieve a correlation of 0.82 and MSE 
of 1.19 kcal/mol (Figure 1d). A similar performance irrespective of whether we chose 80% or 90% of 
the mutations from either dataset-1 or dataset-2 to train our model indicates the high stability of our 
model. To avoid any bias caused by including imaginary reverse mutations, we chose only the model, 
which is trained against dataset-1 (original data coming from SKEMPI v2.0) for the rest of the 
validation cases in this paper. 

 
Figure 1. Prediction performance of SAAMBE-3D on dataset-1 for (a) 20% mutations as a test set and 
(b) 10% mutations as a test set and on dataset-2 for (c) 20% mutations as a test set and (d) 10% 
mutations as a test set. 

We further evaluated the performance of SAAMBE-3D to assess the quality of classification of 
mutations into both destabilizing (ΔΔG is positive) and stabilizing mutations (ΔΔG is negative) as 
well as highly destabilizing (ΔΔG > 1.5) and highly stabilizing mutations (ΔΔG < −1.5). The 
calculations are done on the dataset-1. First, we identified and put separate labels on the stabilizing 
and destabilizing or highly stabilizing and destabilizing mutations. We performed receiver operating 

Figure 1. Prediction performance of SAAMBE-3D on dataset-1 for (a) 20% mutations as a test set and
(b) 10% mutations as a test set and on dataset-2 for (c) 20% mutations as a test set and (d) 10% mutations
as a test set.

We further evaluated the performance of SAAMBE-3D to assess the quality of classification of
mutations into both destabilizing (∆∆G is positive) and stabilizing mutations (∆∆G is negative) as well
as highly destabilizing (∆∆G > 1.5) and highly stabilizing mutations (∆∆G < −1.5). The calculations are
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done on the dataset-1. First, we identified and put separate labels on the stabilizing and destabilizing or
highly stabilizing and destabilizing mutations. We performed receiver operating characteristic (ROC)
analysis to quantify the performance of SAAMBE-3D in estimating stabilizing and destabilizing as well
as highly stabilizing and highly destabilizing mutations separately. For doing the analysis, we divided
the mutations into two classes each time: (i) stabilizing (∆∆G < 0) and (ii) destabilizing (∆∆G > 0);
(i) highly stabilizing (∆∆G < −1.5) and (ii) highly destabilizing (∆∆G > 1.5). Prediction performance is
measured by area under the curve, accuracy, precision, sensitivity and Matthews correlation coefficient
(MCC) and presented in Table 1. The accuracy is defined as the percentage of correctly categorized
mutation (TP and TN) out of the total number of mutations i.e., (TP + TN)/total. Sensitivity is calculated
as (TP/TP + FN), specificity is defined as (TN/TN + FP). Additionally, the quality of the prediction is
described by MCC in order to account for imbalances in the dataset.

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
. (1)

Figure 2 indicates the excellent performance of SAAMBE-3D in predicting highly stabilizing and
highly destabilizing mutations. It achieves MCC of 0.82 and Area Under the Curve (AUC) of 0.99
with an accuracy and precision of 0.96 and 1 respectively. However, the accuracy of SAAMBE-3D in
classifying stabilizing and destabilizing mutations is less impressive (Table 1 and Figure 2), achieving
MCC of 0.34, AUC of 0.75 with a precision of 0.86 and accuracy of 0.76. The reason is that a significant
number of experimental ∆∆G values (1510) of stabilizing and destabilizing mutations are small, in the
range of −0.5 to 0.5 kcal/mol, and thus difficult to classify. A ∆∆G of order of ±0.5 kcal/mol is within
experimental error.
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Table 1. Performance of SAAMBE-3D in predicting stabilizing, destabilizing, highly stabilizing and
highly destabilizing mutations.

Stabilizing and Destabilizing Highly Stabilizing and Destabilizing

AUC 0.75 0.99
Sensitivity 0.82 0.95
Specificity 0.53 1
Precision 0.86 1
Accuracy 0.76 0.96

MCC 0.34 0.82
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2.1. Further Performance Assessment in Comparison with Existing Methods

All top-performing methods are ML-based method and thus their performance strongly depends
on the training and testing sets. For example, we noticed that our old method, SAAMBE, which achieved
PCC of 0.62 on the SKEMPI v1.1 database, performed really badly on SKEMPI v2.0, PCC = 0.45.
Similar observations were made by other researchers [50]. Therefore, in the next paragraph, we present
comparisons and benchmarking for (a) methods that are trained on the same dataset and (b) on blind
tests set of data not used in the training.

2.1.1. Comparison of Methods that were Trained on the Same Dataset (SKEMPI v2.0)

We compared the prediction performance of SAAMBE-3D with MCSM-PPI2 [49],
and MutaBind2 [50], which are the only two available methods in the literature, trained against
SKEMPI v2.0 [1]. We adopted similar purging procedures as the above references, resulting in two
datasets: dataset A (which is dataset-1) for comparison with mCSM-PPI2, and dataset B made of
3073 mutations from 257 proteins for comparison with MutaBind2. We believe this is the only way we
can make a fair comparison because there is no information available about the training and test sets used
for mCSM-PPI2/MutaBind2 methods. The performance of SAAMBE-3D and mCSM-PPI2/MutaBind2
is compared on 3753/3073 single mutation experimental ∆∆G from SKEMPI v2.0 and presented in
Figure 3a–c, respectively. The results indicate that SAAMBE-3D (PCC = 0.96 and MSE = 0.23 kcal/mol)
outperforms MCSM-PPI2 (PCC = 0.88 and MSE = 0.78 kcal/mol) and MutaBind2 (PCC = 0.89 and
MSE = 0.74 kcal/mol) in predicting ∆∆G caused by single mutations.
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For further comparison of SAAMBE-3D and mCSM-PPI2/MutaBind2, we considered four different
classes of mutations based on the location of mutation site (interface and non-interface), type of
secondary structure in which the mutation is located (helix, sheet and loop), type of mutant amino
acid (alanine and non-alanine) and change in the size of amino acid side chains (large to large, small
to large, large to small and small to small). We compared the predicted values in each of these
cases separately with experimental ∆∆G and calculated the PCC using both SAAMBE-3D as well as
mCSM-PPI2/MutaBind2 methods. Figure 4 reflects the performance comparison between SAAMBE-3D
and mCSM-PPI2/MutaBind2 on mutations present at the interface, non-interface, helix, sheet, loop and
involving mutant amino acid residue as alanine or non-alanine separately. Similarly, the performance
comparison between these two methods in the form of PCC is presented in Figure 4 for successful
prediction of ∆∆G over the mutation involving the different extent of changes in sizes of amino acids.

The results (Figure 4) indicate that SAAMBE-3D performs remarkably well for alanine as well
as non-alanine mutations, irrespective of whether mutations are placed at interface or non-interface
in the protein–protein complexes, various extent of change in different amino acid side chain sizes.
The results show that SAAMBE-3D performs well over wide ranges of mutation types.
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Here we continue our comparison between SAAMBE-3D and mCSM-PPI2/MutaBind2 based on
complex types. There are four different complex types present in SKEMPI v2.0: (i) protease-inhibitor
(ii) antibody antigen (iii) pMHC-TCR and (iv) miscellaneous complexes. (i) The experimental ∆∆G for
protease inhibitor complex type ranged from−12.4 to 12.4 kcal/mol. Figure 5 indicates that SAAMBE-3D
achieved a correlation of 0.97 with MSE of 0.35 kcal/mol using five-fold cross-validations, whereas
mCSM-PPI2 achieved PCC of 0.85 kcal/mol with MSE of 2.07 and MutaBind2 attains PCC = 0.96 and
MSE = 0.75 kcal/mol. (ii) pMHC-TCR complexes involve the receptor interacting with various ligands
and the experimental ∆∆G for this complex type lies in the range from −2.2 to 7.6 kcal/mol. The PCC
of 0.95 with MSE 0.1 kcal/mol were obtained while comparing the SAAMBE-3D predicted data with
experimental ∆∆G. On the other hand, PCC of 0.87 and MSE of 0.21 kcal/mol were achieved using the
mCSM-PPI2 method.
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Here we do not report results of MutaBind2 because the purged database, the database B, has only
a few such cases. (iii) Similarly, SAAMBE-3D and mCSM-PPI2 achieve a correlation of 0.95 with
MSE 0.28 kcal/mol and PCC of 0.91 with MSE of 0.52 kcal/mol respectively for antibody-antigen
complex irrespective of whether mutation present in antibody or antigen. Again, we do not report
benchmarking results of MutaBind2 due to limited cases in database B. (iv) The miscellaneous types
consist of complexes which do not belong to any of these or any other specific class. For miscellaneous
cases, experimental ∆∆G ranges from −5.9 to 8.1 kcal/mol. Figure 5 presents the performance of
both SAAMBE-3D and mCSM-PPI2/MutaBind2 on predicting ∆∆G over single mutation for these
cases. Figure 5 reveals that for each of these four types of complexes, SAAMBE-3D outperforms
mCSM-PPI2/MutaBind2. We can observe in Figure 5 that SAAMBE-3D achieved PCC between 0.95 to
0.97 for all these complex types, which reflects that the method predicts ∆∆G successfully irrespective
of complex type. On the other hand, mCSM-PPI2 can predict better for miscellaneous (PCC = 0.92) and
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antibody-antigen (0.91) compared to protease-inhibitor (PCC = 0.85) and pMHC-TCR complexes (PCC
= 0.87). Similarly, MutaBind2 is quite accurate in predicting ∆∆G of protease inhibitor complexes,
while less successful in case of miscellaneous.

2.1.2. Performance Comparison on Blind Tests on Set of Data not Used in the Training

Several small datasets available in the literature and not included in SKEMPI v2.0 were frequently
used by other researchers for benchmarking. We used these datasets to compare the performance of
SAAMBE-3D with other methods (not trained on the corresponding dataset).

First, we used the MDM2-p53 blind datasets presented in Table S8 in the supplementary information
of reference [48]. The dataset consists of 33 mutations among which 7 exceeded the experimental
detection limit and were removed. Thus, our blind test set consists of 26 mutations from a single
protein complex (PDB ID: 1YCR), which was not used for training. We compared PCC of experimental
and predicted ∆∆G for available methods. The methods considered for comparison here are iSee [48],
mcSM [33], BindProfX [47], FoldX [41], mCSM-PPI2 [49] and MutaBind2 [50]. The PCC values for this
dataset using iSee, mCSM, BindProfX and FoldX are taken from Geng et al.’s paper [48]. The results are
shown in Figure 6. It can be seen that SAAMBE-3D outperforms all the other methods and achieved
PCC of 0.41. Two other predictors with considerable performances are BindProfX (PCC = 0.36) and
mCSM-PPI2 (PCC = 0.35).
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test sets.

Another blind set was taken from Benedix el al.’s NM dataset [44]. We only selected single
mutations that were not present in our training dataset, further we removed the cases in which
mutation site is missing in PDB structure. In this way, 56 single mutations were selected from three
complexes (PDB ID: 1IAR, 1VFB and 1YCR). SAAMBE-3D was compared with mCSM-PPI2 [49] and
MutaBind2 [50] and the correlation between experimental and predicted ∆∆G for the 56 mutations is
presented in Figure 6. We could not calculate ∆∆G using BindProfX as two complexes contain more
than two chains and BindProfX can only predict ∆∆G for dimer protein complexes. We also could not
make the comparison with iSee, mCSM and FoldX because of the unavailability of the corresponding
web server. Figure 6 indicates that SAAMBE-3D is more successful in predicting ∆∆G caused by
single mutations compared with mCSM-PPI2. However, MutaBind2 outperforms these two methods
including SAAMBE-3D.

The last blind test set was the s487 dataset compiled by Geng et al. [48] The dataset contains
487 mutations from 56 complexes. Geng et al. [48] compared the performance of five different ∆∆G
predictors (iSee, BindProfX, FoldX, mCSM and MutaBind2) on these 487 mutations. To compare
SAAMBE-3D which was trained on SKEMPI v2.0 database, which in turn includes these mutations, we
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removed these mutations from our compiled dataset (dataset-1) and retrained our model on 80% of
the remaining mutations. Figure 6 represents a comparison of PCCs obtained using different ∆∆G
predictors. The PCC values, achieved by iSee, BindProfX, FoldX and mCSM, are taken from Geng at
al.’s paper [48] and for MutaBind2, PCC values are obtained from Zhang et al.’s paper [50]. We couldn’t
compare the prediction of mCSM-PPI2 as some or all of these 487 mutations are present on their
training dataset (SKEMPI v2.0). As shown in Figure 6, BindProfX and MutaBind2 both achieve the
highest PCC of 0.41 followed by SAAMBE-3D (0.39). Overall, if we consider the ∆∆G prediction over
the three blind datasets, SAAMBE-3D is the most consistent performer as indicated by the PCC values
ranging from 0.39 to 0.49. In contrast, some other predictor performance varies significantly depending
on the test set. For example, MutaBind2 was the worst performer for the MDM2-p53 test set but the
highest performer for NM and s487 dataset.

2.2. Further Development of SAAME-3D to Identify Disruptive and Non-Disruptive Mutations both in Homo-
and Hetero-Dimeric Protein Complexes (Cornell University Dataset)

We explored how successful our method is in classifying disruptive and non-disruptive mutations
in the case of both homo- as well as hetero-dimeric complexes. To detect amino acid mutations
that disrupt protein–protein interactions, a high-throughput mutagenesis and cloning platform
was previously used to generate clones for each of the mutations reported in our testing set.
These mutant clones were then transformed into yeast to perform yeast two-hybrid (Y2H) experiments
in which mutations were scored as disruptive if they resulted in significantly reduced Y2H reporter
activity relative to corresponding wild-type interactions [52]. A set of 2500 single mutations from
300 homo-dimeric protein complexes and 245 single mutations from 50 hetero-dimeric complexes
were measured in Yu lab at Cornell University (termed Cornell University dataset) [53]. The dataset
was split into 80% training and 20% test set. We used all the same features for this classification as
described in the method section and the resulting code is termed SAAMBE-3D-DN. We performed
ROC analysis and found that SAAMBE-3D-DN is 100% successful in classifying disruptive and non-
disruptive mutations for homo-dimers (Figure 7). Similarly, we plotted and analyzed ROC for the
prediction of disruptive and non-disruptive mutations for hetero-dimer complexes and compared with
homo-dimers in Figure 7.
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We were able to classify disruptive and non-disruptive mutations in hetero-dimeric protein–protein
complexes 96% of the time accurately using SAAMBE-3D-DN. One thing to notice here is that
SAAMBE-3D-DN performs well in classifying disruptive and non-disruptive mutations irrespective of
whether the complex is homo-dimer or hetero-dimer. Further prediction performance is measured
by area under the curve, accuracy, precision and sensitivity, which are presented in Table 2. It has
been mentioned in the literature [54] that disruptive mutation is associated with worse outcomes with
patients compared to non-disruptive mutations. In this case, SAAMBE-3D-DN is an excellent tool for
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early diagnostics: consider that one identifies a set of variants in a particular individual and wants to
test if these mutations may cause a disease, a disease which is known to be associated with alteration
of a set of protein–protein interactions. Then the variants can be subjected to SAAMBE-3D-DN and if
predicted to disrupt these interactions, the patient will be diagnosed as having a high risk of developing
this particular disease.

Table 2. Performance of SAAMBE-3D-DN in predicting disruptive and non-disruptive mutations for
both homo- and hetero-dimers.

Homo-Dimer Hetero-Dimer

AUC 1 0.96
Sensitivity 0.99 1
Specificity 0.99 0.95
Precision 1 0.8
Accuracy 1 0.96

2.3. Time of Calculations

One of the main considerations in developing SAAMBE-3D method was the prediction should be
performed quickly. We determined the time taken for the method execution for each of the entries
from dataset-1. The average time is 0.21 secs for one mutation calculation using a single processor.
It ranges from 0.18 sec for a small complex (for example 1KNE containing 58 residues) to 0.26 sec for
a large complex (4GXU containing 4636 residues). We could not make a fair comparison between
SAAMBE-3D and other popular existing methods, because these methods are only available as web
servers. However, we compared the time of calculation for a single ∆∆G (C182A) prediction from
a given complex (PDB ID: 1A22) using different methods and presented in Table 3 to have a rough
estimation of the execution time. One can see from Table 3 that SAAMBE-3D is the fastest method.

Table 3. Comparison of time of calculation for a single prediction between different ∆∆G predictors.

Method Time of Calculation

mCSM-PPI2 42 seconds
SAAMBE-3D 0.21 seconds
MutaBind2 10 minutes
BindProfX 50 minutes

BeAtMuSiC 2 seconds

3. Web Server

We implemented SAAMBE-3D as a user-friendly web server, freely available at http://compbio.
clemson.edu/saambe_webserver/. The server is built using JavaScript (Front end) and PHP (Backend).
It is hosted on a Linux server running in Apache. SAAMBE-3D can be run for two different kinds of
predictions: (i) ∆∆G due to single mutation and (ii) identify whether the given mutation is disruptive
or non-disruptive (SAAMBE-3D-DN). Both these predictors can be used in two different ways: (i)
predict the effect of mutation specified by the user in the given boxes. The user needs to provide the
3D structure of the protein–protein complex by uploading the coordinate file in PDB format. Users
must make sure that the PDB structure file contains at least two protein chains. Users need to provide
single mutation information specified by residue number according to PDB file, mutant chain ID, wild
type residue in one-letter code and mutant residue in one-letter code. By providing these information
in the appropriate box, the user can submit a single job. (ii) If the user wants to submit multiple
jobs at the same time, the user can do so by uploading a file called ‘List_Mutations.txt’. The file
must contain a list of mutations information in a text file for batch processing. A readme file and a
sample ‘List_Mutations.txt’ file are provided in the submission page in order to assist the user for the
submission of jobs. Users can also directly download the SAAMBE-3D code by clicking the download

http://compbio.clemson.edu/saambe_webserver/
http://compbio.clemson.edu/saambe_webserver/
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option available via the top navigation bar. A readme file will also be downloaded which will guide the
user on how to use the code. For each mutation in a given protein–protein complex, the SAAMBE-3D
server provides the predicted ∆∆G induced by given mutation. It is important to mention that positive
and negative signs in ∆∆G corresponds to destabilizing and stabilizing mutations respectively. For the
multiple job option, the predicted ∆∆G are summarized in a downloadable text file in the same order
as in the input ‘List_Mutations.txt’ file.

4. Methods

4.1. Dataset Creation

The dataset used in this work is taken from the SKEMPI v2.0 database [52], which compiles
experimental data of binding free energy changes upon mutation in protein–protein complexes.
For these complexes, Protein Data Bank (PDB) [55] structures are available. SKEMPI v2.0 contains
binding affinity data for both wild type as well as mutant protein–protein complexes for 7085 mutations.
These entries include both single point as well as multiple mutations. The database compiled the entries
from some earlier databases (ABbind [27], PROXiMATE [28] and dbMPIKT [56]), recent binding affinity
data from literature and was manually curated to avoid unreliable entries. Thus, we consider SKEMPI
v2.0 to be the gold standard of available experimentally measured binding affinities. In this work,
we only considered single point mutations. After filtering the data for only single point mutations, we
collected 4169 mutations from 319 different complexes. For some mutations, multiple measurements
were reported, and the binding affinity values for all the measurements were listed in the database.
If the standard deviation of changes in binding affinity for a given mutation is less than 1.0 kcal·mol−1,
we considered those cases and used average value for training and benchmarking. We removed all
other entries with standard deviation greater than 1 kcal·mol−1. As a result, the dataset consists of 4061
single point mutations from 313 different protein–protein complexes. Further, we removed structures,
where there are missing residues in the vicinity of the mutation site (five residues in both left and right
side from mutation site in the sequence). Thus, the final compiled dataset (dataset-1) is made of 3753
single point mutations from 299 different protein–protein complexes. We observed that among the 3753
entries, for 836 mutations, binding affinity increases going from wild type to mutant, and for 2810 cases,
it decreases, and for the rest of the 107 cases, binding affinity is exactly the same in wild type as well
as in mutant protein. Following other researchers’ work [49,50], we considered hypothetical reverse
mutations. Since the Gibbs free energy change is a thermodynamic state function, change in binding
affinity for a given mutation, from wild type to mutant will be equal to the negative change of binding
affinity from mutant to wild type. In order to build a balanced set (equal number of cases of positive
and negative ∆∆G), we created another dataset (dataset-2), which includes reverse mutations. Thus,
dataset-2 contains 7506 single point mutations and represents an increase up to two-folds in datapoints
compared to dataset-1. However, we consider this to be an artificial increase of experimental data
points, resulting in mirroring the datapoints from the first quadrant to the third one (and vice versa),
and providing easier way to obtain better PCC. Because of that, we do not emphasize much on the
results using this dataset (dataset-2).

4.2. Model Development

Our methodology of predicting binding free energy changes due to mutation in protein complexes,
incorporates only knowledge-based features. Overall, we used 33 features (detailed descriptions
are provided in the following section), that include the change in molar volume of mutated residue,
hydrophobicity, flexibility, hydrogen bond donor/acceptor, polarity, mutation type, chemical nature of
the amino acid residue, size of the amino acid due to mutation. The label encoding method is used for
incorporating mutation type, change in polarity, chemical properties, hydrogen bond donor/acceptor
and size features. We evaluated the performance of all the knowledge-based features separately using
the XGBoost machine learning method. In order to avoid overfitting and build a more reliable model,
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we chose 80% of all mutations as training dataset and used the remaining 20% for testing. To test
the stability of the model, we created another model where 90% mutations are selected for training
and the remaining 10% are for testing. If the model is not stable, we can expect a large change in
PCC between two models (using 80% and 90% as training dataset). For a robust estimate of the mean
squared error (MSE) and PCC, this procedure was independently repeated 100 times. For the model
building procedure, we performed 5-fold cross-validation to optimize the model parameters. Then, we
used the remaining 20% or 10% of mutations as a test set to estimate the performance of the model. For
both dataset-1 and dataset-2, we used the same protocol.

4.3. Features

4.3.1. Features Related to 3D Structures of the Protein–Protein Complex

• The temperature at which the crystal structure is obtained for each complex. This feature accounts
for the effect of temperature on the structure as structures obtained at room temperature are typically
more flexible (larger atomic B-factors) than structures crystalized at cryogenic temperature.

• pH of the crystallization for a given protein–protein complex. This feature reflects the fact that
ionization states of titratable groups depend on pH, and thus the electrostatic interactions are
affected [57–59].

• Resolution of the PDB structures of the complex. The feature account for the structural quality of
the corresponding protein–protein complex.

4.3.2. Features Related to Mutation Site

• Net volume: The feature represents the change in the molar volume of an amino acid due to
mutation. For example, if in a protein–protein complex, a given residue in the wild type is mutated
from arginine (R) to alanine (A), then volume change is calculated as molar volume (A)–molar
volume (R).

• Net hydrophobicity: The feature accounts for the change in hydrophobic index (HI) going from
wild type to mutant. For example, if in a wild type complex, alanine (A) is mutated to lysine
(K) in the mutant, net hydrophobicity will be estimated by HI(K)–HI(A). We considered Moon’s
hydrophobic index [60] in this study.

• Mutation type: We used the label encoding method for this feature. We labeled each different type
of mutation. For example, alanine to lysine is labeled 1, lysine to glycine is labeled 2, glutamic acid
to arginine is 3 and so on. In this way, there can be a possibility of 380 different types of labels.

• Net flexibility: The feature estimates flexibility through the presence of a number of rotamers for
each residue. Net flexibility represents a change in the number of rotamers going from wild type
to mutant residue (see [61] for more details).

• Chemical property: The label encoding method is applied to seven different chemical properties
associated to amino acid residues both for wild type as well as mutant amino acid residue: (i)
Aliphatic (A, G, I, L, P, V) (ii) aromatic (F, W, Y) (iii) sulfur (C, M) (iv) hydroxyl (S, T) (v) basic
(R, H, K) (vi) acidic (D, E) and (vii) amide (N, Q). Thus, mutations are divided into 49 different
categories corresponds to change from wild type to mutant residue through the use of this feature.

• Size: Amino acids are grouped into three classes according to their sizes: small (G, A, S, C, D, P, N,
T), medium (Q, E, H, V) and large (R, I, L, K, M, F, W, Y). The label encoding method is used to
create nine different labels representing small to medium, small to small, small to large, medium
to medium, medium to large, medium to small, large to small, large to medium and large to a
large change in the size of amino acid due to mutation.

• Polarity: Two polarity classes: polar (R, N, D, Q, E, H, K, S, T, Y) and nonpolar (A, C, G, I, L, M,
F, P, W, V) are defined. Therefore 4 different labels are used to represent polar to polar, polar to
nonpolar, nonpolar to polar and nonpolar to nonpolar change caused by mutation.
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• Hydrogen bond: Label encoding method uses 16 different labels representing interchange between
four classes: (i) donor (R, K, W) (ii) acceptor (D, E) (iii) donor and acceptor (N, Q, H, S, T, Y) and
(iv) none (A, C, G, I, L, M, F, P, V) over mutation.

• Label hydrophobicity: Nine classes are labeled corresponding to interchange between three
classes: (i) hydrophobic (A, C, I, L, M, F, W, V) (ii) Neutral (G, H, P, S, T, Y) and (iii) hydrophilic (R,
N, D, Q, E, K) due to mutation.

4.3.3. Sequence-Based Features

Along the sequence of the mutated chain, ten residues including five on the left and 5 on the right
side from the mutation site are labeled. Each position can be occupied by any of the 20 amino acids,
resulting in 20 labels for each position.

4.3.4. Distance-Based Features

We labeled ten nearest residues from the mutation site within 10 Å. These 10 residues belong to
chains other than the chain where the mutation site is. This feature captures the effect of inter-chain
interaction around the mutation site.

4.4. Feature Importance Analysis

We analyzed the importance of each feature selected for the prediction performance of the
SAAMBE-3D method. To evaluate the feature importance, we used the algorithm from the python
package, XGBoost. Figure 8 represents the contribution of each feature towards the prediction of ∆∆G
using SAAMBE-3D. The importance level of each feature is normalized so that the sum of importance
level of all the features will be equal to 1. It can be seen in Figure 8 that distance- and sequence-based
features are the two most contributing features in our model. The next three important features are the
crystallization temperature, change in hydrophobicity and molar volume.
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