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Abstract: HER3-binding affibody molecules are a promising format for visualization of HER3
expression. Cobalt-55, a positron-emitting isotope, with a half-life of 17.5 h, allows for
next-day imaging. We investigated the influence of the charge of the radiocobalt–chelator
complex on the biodistribution of anti-HER3 affibody molecule (HE)3-ZHER3 and compared the
best radiocobalt-labeled variant with a recently optimized gallium-labeled variant. Affibody
conjugates (HE)3-ZHER3-X (X = NOTA, NODAGA, DOTA, DOTAGA) were labeled with [57Co]Co
(surrogate for 55Co). Affinity measurements, binding specificity and cellular processing
were studied in two HER3-expressing cancer cell lines. Biodistribution was studied 3 and
24 h post-injection (pi) in mice with HER3-expressing BxPC-3 xenografts and compared to
[68Ga]Ga-(HE)3-ZHER3-NODAGA. Micro-single-photon emission tomography/computed tomography
(microSPECT/CT) and micro-positron emission tomography/computed tomography (microPET/CT)
imaging was performed 3 and 24 h pi. Stably labeled conjugates bound to HER3 with subnanomolar
affinity. [57Co]Co-(HE)3-ZHER3-DOTA had the best tumor retention and a significantly lower
concentration in blood than other conjugates, leading to superior tumor-to-blood and tumor-to-liver
ratios 24 h pi. Compared to [68Ga]Ga-(HE)3-ZHER3-NODAGA 3 h pi, [57Co]Co-(HE)3-ZHER3-DOTA
provided superior imaging contrast in liver 24 h pi. Concluding, the composition and
charge of the [57Co]Co–chelator complex influenced the uptake in tumors and normal tissue.
[57Co]Co-(HE)3-ZHER3-DOTA provided the best imaging properties among the cobalt-labeled
conjugates. Delayed imaging of HER3 expression with [57Co]Co-(HE)3-ZHER3-DOTA improved
imaging contrast compared to early-time-point imaging with [68Ga]Ga-(HE)3-ZHER3-NODAGA.

Keywords: HER3; PET; gallium-68; radiocobalt; cobalt-55; affibody; NOTA; NODAGA;
DOTA; DOTAGA

1. Introduction

Upregulation of the human epidermal growth factor receptor type 3 (HER3) is associated with the
progression of several solid cancers, such as prostate, breast, pancreatic or colorectal cancer [1–3]. HER3
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activates the potent PI3K/AKT/mTor signaling pathway, affecting cell proliferation and survival [1],
and upregulation of HER3 can be a bypass mechanism for signaling loss of other HER-family members
due to HER-targeted therapy [4,5]. Co-expression of HER3 is, therefore, considered a cause for the
development of therapy resistance, which has, for instance, been documented for the tyrosine kinase
inhibitors (TKIs) lapatinib and gefitinib, targeting epidermal growth factor receptor (EGFR) and
HER2 [6–8]. Thus, inhibition of HER3-mediated signaling might have potential to overcome therapy
resistance [4,9] and monitoring of HER3 expression could, therefore, aid strategic decision making for
cancer therapy.

Radionuclide molecular imaging with positron emission tomography (PET) or single-photon
emission tomography (SPECT) is a promising non-invasive and repeatable alternative to traditional
biopsies for molecular profiling of cancer, allowing for detection of target expression as well as
treatment monitoring. HER3 imaging is challenging due to the relatively low overexpression in
malignant lesions and moderate endogenous expression in healthy tissue and potential metastatic sites,
especially the liver. Radiolabeled antibodies and antibody fragments have been suggested for imaging
of HER3-expression [10–12]. For example, the anti-HER3 antibody 89Zr-lumretuzumab provided good
imaging contrast 4–7 days after injection and enabled quantification of the uptake in HER3 positive
tumors in a small clinical study. However, only in non-hepatic cancer lesions [13]. A major drawback
of radiolabeled antibodies for imaging is the long residence time in blood and their hepatobiliary
elimination pathway.

Besides HER3-targeting antibodies and antibody fragments, the use of an affibody molecule,
a type of engineered scaffold protein (ESP) [14], is a promising and potentially favorable approach
for the detection of HER3 expression [15,16]. Affibody molecules are derived from the Z-domain of
staphylococcal protein A and are three-helical proteins consisting of 58 amino acids. The binding motif
consists 13 amino acids located on helices 1 and 2. By randomization of these amino acids, affibody
molecules have been designed against a number of different targets (e.g., EGFR, HER2, IGF1-R) [17,18].
The smaller size of affibody molecules (7–8 kDa) and their fast pharmacokinetics increases extravasation
and tumor penetration, reduces enhanced permeability and retention (EPR) effects and might, therefore,
improve imaging contrast compared to antibodies and their derivatives [17–19]. Typically, a high
contrast is obtained on the same day as the injection, as early as three to four hours post-injection (pi).
We and others have previously shown the feasibility of anti-HER3 affibody molecules for imaging of
HER3 expression with different radioisotopes for PET and SPECT [16,20–22].

Generally, PET is preferred over SPECT because of higher sensitivity and possibility for
quantification. Gallium-68-PET has been very successful in preclinical and clinical settings for imaging
of different molecular targets [23]. Furthermore, the gallium-68-labeled anti-HER2 affibody ABY-025
has shown clinical success for imaging of HER2-positive primary tumors and metastases shortly after
injection [24]. Compared to HER2, the level of HER3 overexpression in cancer cells is low [25] and
uptake in normal tissue complicates image interpretation. However, it was previously observed that
uptake of HER3 affibody molecules in normal organs decreases over time, while tumor-associated
activity cleared more slowly [26,27]. Therefore, HER3 imaging contrast could potentially benefit from
delayed imaging (up to 24 h pi), which was previously observed for indium-111-labeled anti-HER3
affibody molecules [26] and for radiolabeled anti-HER1 (EGFR) affibody molecules [28–30]. For PET
imaging of HER3 expression, 18F- and 68Ga-labeled ZHER3 affibody molecules were able to visualize
tumor uptake already 1 and 3 h pi in rodents. However, the tumor-to-liver contrast did not exceed
1 [21,31]. Unfortunately, these two commonly used PET isotopes have short half-lives (t1/2(18F) = 110
min, t1/2(68Ga) = 68 min) and are not suitable for next-day imaging.

The long-lived PET isotope zirconium-89 (t1/2 = 78.4 h) has been used for preclinical and clinical
imaging of HER3 expression in combination with antibodies, and nanobodies [10,13,32]. Recently,
a HER3-targeting affibody molecule was labeled with 89Zr and used to detect changes in HER3
expression in response to treatment of breast cancer xenografts with an HSP90 inhibitor [22]. However,
the fast kinetics of affibody molecules would also allow the use of PET isotopes with intermediate
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half-lives (shorter than 89Zr but longer than 18F and 68Ga). The use of such radioisotopes would
also lower the radiation dose burden to the patients compared to 89Zr. Cobalt-55 is a somewhat
more unconventional PET isotope, with a half-life of 17.5 h. It can be produced with a medical
cyclotron; preclinical evaluation of cobalt-55-labeled tracers targeting PSMA and GRPR, as well as
clinical application of cobalt-55 to study brain injuries has been reported [33–35].

An initial study of a radiocobalt-labeled affibody ZHER3-NOTA showed promising results,
reporting for the first time a tumor-to-liver ratio above 1 [27]. Cobalt participates in radiolabeling
in a divalent state, thus decreasing the charge of the metal–chelator complex by 1 compared to
similar complexes with trivalent metals, such as gallium-68 or indium-111. It was hypothesized
that an increased negative charge can reduce unspecific hepatic uptake and, therefore, enhance
the tumor-to-liver contrast [27]. This hypothesis was further supported by comparing the effect of
differently charged radiometal-chelator complexes on the biodistribution of ZHER3 labeled with 68Ga
and 111In and HER2-targeting affibody molecules [26,31,36].

The present study had two aims. Firstly, to evaluate whether the imaging properties of (HE)3-ZHER3

might be improved by modification of the radiocobalt–chelator complex. Secondly, to investigate the
potential benefit of using cobalt-55 as an option for later-time-point PET imaging of HER3 expression
instead of imaging with gallium-68 shortly after injection. We, therefore, studied the in vitro and in vivo
properties of four different variants of (HE)3-ZHER3 (further denoted as (HE)3-ZHER3-X, with X = NOTA,
NODAGA, DOTA, DOTAGA) labeled with cobalt-57 and compared the most promising radiocobalt
variant with 68Ga-(HE)3-ZHER3-NODAGA. Cobalt-57 is a convenient surrogate for cobalt-55 [35,37]
due to its commercial availability and long half-life (272 d). A potential drawback could be different
metal impurities for 55Co and 57Co, which may require re-optimization of the labeling procedure.

2. Results

2.1. Radiolabeling and Stability Assessment

The production and purification of the different affibody molecules (HE)3-ZHER3-NOTA,
(HE)3-ZHER3-NODAGA, (HE)3-ZHER3-DOTA, and (HE)3-ZHER3-DOTAGA are described in Dahlsson
Leitao et al. [31]. An overview of the different chelators is depicted in Figure 1.
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triazacyclononane-N,N’,N’’-triacetic acid), DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic 
acid), DOTAGA (1,4,7,10-tetraazacyclododecane, 1-(glutaric acid)-4,7,10-triacetic acid)). 

All new variants were labeled with 57Co, with almost quantitative radiochemical yield 
determined by instant thin-layered liquid chromatography (ITLC) (Table 1, Figure S1). The labeled 
conjugates were stable in PBS and in human serum determined by ITLC. [68Ga]Ga-(HE)3-ZHER3-
NODAGA was labeled with high radiochemical yield (89 ± 1%, determined by ITLC) and 
radiochemical purity exceeding 98% (ITLC) after purification with size-exclusion chromatography. 

Figure 1. Structural overview of the macrocyclic chelators conjugated to the C-terminus of
the HER3-targeting affibody molecule (HE)3-Z08698 via a C-terminal cysteine (further denoted
(HE)3-ZHER3-X, with X = NOTA (1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane),
NODAGA (1,4,7-triazacyclononane-N,N′,N”-triacetic acid), DOTA (1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid), DOTAGA (1,4,7,10-tetraazacyclododecane, 1-(glutaric acid)-4,7,10-triacetic acid)).

All new variants were labeled with 57Co, with almost quantitative radiochemical yield determined
by instant thin-layered liquid chromatography (ITLC) (Table 1, Figure S1). The labeled conjugates were
stable in PBS and in human serum determined by ITLC. [68Ga]Ga-(HE)3-ZHER3-NODAGA was labeled
with high radiochemical yield (89 ± 1%, determined by ITLC) and radiochemical purity exceeding 98%
(ITLC) after purification with size-exclusion chromatography.
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Table 1. Labeling and stability of [57Co]Co-(HE)3-ZHER3-X.

NOTA * NODAGA DOTA DOTAGA

Radiochemical yield (%) 81 ± 11% (n = 6) 99.7 ± 0.2 (n = 2) 99.7 ± 0.4 (n = 2) 99.3 ± 0.7 (n = 2)
% Release in PBS, 24 h, RT stable 0 ± 0 0 ± 0 0.2 ± 0.3
% Release in human serum,

24 h, 37 ◦C 0 ± 0 0.4 ± 0.8 0.03 ± 0.05

Radiochemical yield and stability were determined with instant thin-layered liquid chromatography (ITLC). Stability
data is expressed as % release. * Labeling and stability test of [57Co]Co-(HE)3-ZHER3-NOTA were previously
published by [27]. Purity of [57Co]Co-(HE)3-ZHER3-NOTA was >99% after purification with NAP5 size-exclusion
chromatography [27].

2.2. In Vitro Characterization of [57Co]Co-(HE)3-ZHER3-X

HER3-expressing cell lines BxPC-3 and DU145 were used for the in vitro characterization. The
receptor density was 17180 ± 1369 receptors/cell for BxPC-3 cells and 9931 ± 430 receptors/cells for
DU145 cells (Figure 2A).
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Figure 2. Receptor quantification and in vitro specificity. (A) HER3 expression was quantified for
BxPC-3 (n = 2) and DU145 (n = 2) cells by incubation with [57Co]Co-(HE)3-ZHER3-NOTA until
saturation. For the in vitro specificity test in (B) BxPC-3 and (C) DU145 cells, binding to HER3 was
inhibited by addition of 50 nM HER3 binding affibody in the blocked groups. Specificity data is
presented as the average of three dishes ± SD.

Pre-saturation of HER3 receptors significantly reduced (90–97% reduction) the binding of
all conjugates to HER3-expressing cells (Figure 2B,C). Thus, binding of [57Co]Co-(HE)3-ZHER3-X
conjugates was HER3 specific. Binding specificity of [57Co]Co-(HE)3-ZHER3-NOTA was previously
demonstrated [27].

Binding kinetics were measured in real time on BxPC-3 cells (Figure S2). The KD was in the
subnanomalar rage for all conjugates without significant differences between the conjugates (Table 2)
and without significant differences in association and dissociation rates.

Table 2. Affinity measurements. Association rate (ka), dissociation constant (kd) and equilibrium
dissociation constant (KD) measured on living BxPC-3 cells in real time using Ligand Tracer.

NOTA (n = 3) NODAGA (n = 3) DOTA (n = 4) DOTAGA (n = 3)

ka (1/Ms) 2 × 105
± 2 × 105 1.19 × 105

± 0.09 × 105 1.0 × 105
± 0.3 × 105 1.2 × 105

± 0.8 × 105

kd (1/s) 1.28 × 10−5
± 0.10 × 10−5 1.0 × 10−5

± 0.7 × 10−5 2 × 10−5
± 1 × 10−5 1.4 × 10−5

± 0.4 × 10−5

KD (nM) 0.1 ± 0.1 0.09 ± 0.07 0.2 ± 0.1 0.2 ± 0.1

To study the internalization properties of the labeled conjugates, BxPC-3 and DU145 cells were
continuously incubated with [57Co]Co-(HE)3-ZHER3-X for 24 h (Figure 3). No differences were observed
between the conjugates and cell lines. Binding to cells was rapid and total cell-bound activity continued
to increase up to 24 h. The fraction of internalized activity did not exceed 5% for any conjugate at the
end of the observation period.
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Figure 3. Internalization assay in BxPC-3 cells (black) and DU145 (grey) cells. Fractions of internalized
and cell-associated activity of [57Co]Co-(HE)3-ZHER3-X are shown as normalized to the maximum
cell-associated activity. Each data point is the average of three dishes ± SD, n = 3.

2.3. In Vivo Evaluation

In vivo experiments were performed on female Balb/c nu/nu mice bearing HER3-expressing BxPC-3
xenografts injected with 2 µg [57Co]Co-(HE)3-ZHER3-X. The results from the in vivo experiments are
shown in Tables 3 and 4, Figure 4.

Table 3. Ex vivo biodistribution. Female Balb/c nu/nu mice with HER3-expressing BxPC-3 xenografts
were injected with 2 µg [57Co]Co-(HE)3-ZHER3-X (X = NOTA, NODAGA, DOTA, DOTAGA).

Organ
NOTA NODAGA DOTA DOTAGA

3 h 24 h 3 h 24 h 3 h 24 h 3 h 24 h

Blood 1.0 ± 0.1 a,b,c,* 0.31 ± 0.04 a,b,c,* 0.61 ± 0.09 a,d,* 0.18 ± 0.02 a,* 0.33 ± 0.04 b,d,f,* 0.14 ±0.02 b,f,* 0.52 ±0.04 c,f,* 0.22 ±0.02 c,*

Salivary Gland 0.9 ± 0.2 a,b 0.6 ± 0.2 1.6 ± 0.4 a,e 1 ± 1 1.5 ± 0.1 b,f,* 0.9 ± 0.1 * 0.64 ±0.09 e,f 0.4 ±0.1

Lung 1.0 ± 0.1 a,b,* 0.41 ± 0.07 * 1.7 ± 0.3 a,e,* 0.47 ± 0.04 * 1.7 ± 0.2 b,f,* 0.6 ± 0.2 e,* 0.8 ± 0.1 e,f,* 0.33 ± 0.04 e,*

Liver 1.56 ± 0.52 a,b 1.1 ± 0.2 3.3 ± 0.8 a,* 1.4 ± 0.2 * 3.7 ± 0.5 b,f,* 1.6 ± 0.2 * 2.4 ± 0.2 e,f,* 1.5 ± 0.2 *

Spleen 0.57 ± 0.04 c 0.6 ± 0.2 0.47 ±0.09 e 0.35 ±0.05 e 0.43 ± 0.05 f 0.42 ± 0.08 0.8 ± 0.1 c,e,f 0.7 ± 0.1 e

Stomach 0.78 ± 0.06 a,b,* 0.35 ± 0.04 a,b,* 1.5 ±0.5 a,e,* 0.65 ± 0.06 a,e,* 1.5 ± 0.3 b,f,* 0.65 ± 0.05 b,f,* 0.6 ± 0.1 e,f,* 0.31 ± 0.05 b,f,*

Small intestine 1.6 ±0.3 a,b,* 0.7 ± 0.1 a,b,* 4 ± 1 a,e,* 1.6 ±0.3 a,e,* 4.6 ± 0.8 b,f,* 2.1 ± 0.04 b,f,* 0.9 ± 0.2 e,f 0.6 ± 0.10 e,f

Kidneys 194 ± 17 * 106 ± 67 a,b,* 279 ± 84 213 ± 7 a 253 ± 54 223 ± 23 b,f 156 ± 27 c 131 ±13 f

Tumor 1.55 ± 0.26 a,b 1.1 ± 0.3 b 2.6 ± 0.6 a,e,* 1.4 ± 0.4 d,* 2.8 ± 0.4 b,f 2.4 ± 0.4 b,d,f 0.9 ± 0.2 e,f 0.8 ± 0.1 f

Muscle 0.19 ± 0.04 0.13 ± 0.04 0.20 ± 0.06 * 0.09 ± 0.02 * 0.19 ± 0.01 * 0.09 ± 0.02 * 0.16 ± 0.02 0.11 ± 0.03

Bone 0.3 ± 0.1 0.25 ± 0.05 0.3 ± 0.1 0.15 ±0.05 0.25 ± 0.06 0.20 ± 0.03 0.28 ± 0.09 0.19 ± 0.07

GI (%ID) 2.4 ± 0.5 a,b,* 1.3 ± 0.2 * 5.0 ± 0.4 a,* 2.8 ± 0.7 * 5.7 ± 0.9 b,f,* 2.7 ± 0.7 * 4.78 ± 0.9f 1.13 ±0.2

Body (%ID) 5.9 ± 0.4 a,b 3 ± 2 a,b 10 ± 2 a,e,* 4.5 ± 0.7 a,e,* 9.0 ± 1.0 b,f,* 4.9 ± 0.56 b,f,* 2 ± 0.6 e,f,* 3.1 ±0.3 e,f,*

Data presented as % ID/g and average ± SD of n = 4 animals per group. Significant difference (p < 0.05) between
a: NOTA vs. NODAGA, b: NOTA vs. DOTA, c: NOTA vs. DOTAGA, d: NODAGA vs. DOTA, e: NODAGA vs.
DOTAGA, f: DOTA vs. DOTAGA. * Significant difference between 3 and 24 h.
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Table 4. Tumor-to-organ ratios. Female Balb/c nu/nu mice with HER3-expressing BxPC-3 xenografts
were injected with 2 µg [57Co]Co-(HE)3-ZHER3-X (X = NOTA, NODAGA, DOTA, DOTAGA).

Tumor/Organ
Ratios

NOTA NODAGA DOTA DOTAGA

3 h 24 h 3 h 24 h 3 h 24 h 3 h 24 h

T/Blood 1.5 ± 0.2 a,b,* 3.4 ± 0.6 b 4 ± 1a,d,e 8 ± 3d 8 ± 1 b,d,f,* 18 ± 5 b,d,f 1.8 ±0.3 e,f,* 3.4 ± 0.5 f

T/Salivary
gland 1.8 ± 0.3 1.7 ± 0.3 1.7 ± 0.3 1.3 ± 0.7 d 1.9 ± 0.2* 2.9 ± 0.6 d 1.5 ± 0.3 2.1 ± 0.9

T/Lung 1.6 ±0.3 * 2.6 ± 0.4 1.6 ± 0.6 3 ± 1 1.6 ± 0.4* 4.1 ± 0.9 e 1.1 ±0.1* 2.3 ± 0.4 e

T/Liver 1.06 ± 0.31 c 1.0 ± 0.2 b 0.78 ± 0.09 e 1.0 ± 0.3 0.74 ± 0.08 f,* 1.6 ± 0.3 b,f 0.44 ± 0.09 c,e,f 0.50 ± 0.07 f

T/Spleen 2.7 ± 0.3 a,b,* 1.89 ±0.08 b 6 ± 2 a,e 4 ± 2 e 6 ± 1 b,f 6 ± 1 f 1.2 ± 0.2 e,f 1.2 ± 0.3 e,f

T/Stomach 2.0 ± 0.2 * 3.1 ± 0.8 1.7 ±0.4 2.1 ± 0.7 2 ± 0.2 * 3.8 ± 0.9 1.6 ± 0.5 * 2.5 ± 0.4

T/Small
intestine 1.0 ± 0.2 b,* 1.6 ± 0.2 0.6 ± 0.2 0.9 ± 0.4 0.60 ± 0.05 b,f 1.3 ± 0.6 1.0 ± 0.1 e,f 1.3 ± 0.2

T/Muscle 8 ± 2 a,b 8 ± 1 b 14 ± 4 a,e 17 ± 7 d,e 15 ± 1 b,f,* 28 ± 4 b,d,f 6 ± 1 e,f 7 ± 2 e,f

T/Bone 6 ± 3 4.3 ± 0.4 b 10 ± 3 10 ±7 11 ± 2 f 12 ± 3 e 5 ± 3 f 4 ± 1 e

Data presented as the average ± SD of n = 4 animals per group. Significant difference (p < 0.05) between a: NOTA
vs. NODAGA, b: NOTA vs. DOTA, c: NOTA vs. DOTAGA, d: NODAGA vs. DOTA, e: NODAGA vs. DOTAGA, f:
DOTA vs. DOTAGA; * significant difference to 24 h.
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Figure 4. In vivo specificity. Tumor-bearing female Balb/c nu/nu mice were injected with 2 µg of labeled
conjugates or excess amount (70 µg) of non-labeled anti-HER3 affibody molecules. Data presented as
the average ± SD of n = 3–4 animals/group. * Indicates significant difference p < 0.05 between the 2 and
70 µg groups.

[57Co]Co-(HE)3-ZHER3-X accumulated in tumors and mErbB3-expressing organs (salivary glands,
lungs, liver, stomach, small intestine). Increasing the injected protein dose to 70 µg significantly
reduced the uptake of [57Co]Co-(HE)3-ZHER3-NODAGA and [57Co]Co-(HE)3-ZHER3-DOTA in tumors
and mErbB3-expressing organs (Figure 4). In the case of [57Co]Co-(HE)3-ZHER3-DOTAGA, the excess
amount of protein resulted in a significant decrease in uptake in liver and small intestine. However, this
was less pronounced than for the other [57Co]Co-(HE)3-ZHER3-X conjugates. No significant decrease in
uptake was observed in tumors in the case of [57Co]Co-(HE)3-ZHER3-DOTAGA. In vivo specificity of
[57Co]Co-(HE)3-ZHER3-NOTA was previously demonstrated [27].

The biodistribution of the new conjugates was comparable with [57Co]Co-(HE)3-ZHER3-NOTA
in tumor-bearing mice 3 and 24 h pi (Table 3). As expected for affibody molecules, the
[57Co]Co-(HE)3-ZHER3-X conjugates were eliminated via the renal pathway with high degree of
activity accumulation in the kidneys. Already at 3 h pi, the blood activity concentration of all
[57Co]Co-(HE)3-ZHER3-X variants was below 1% ID/g and decreased further after 24 h. The blood activity
concentration of [57Co]Co-(HE)3-ZHER3-NOTA was the highest and [57Co]Co-(HE)3-ZHER3-DOTA was
the lowest at both time points. Tumor uptake was influenced by the different cobalt–chelator complexes.
NODAGA- and DOTA-conjugated variants had significantly higher uptake in tumors than NOTA- and
DOTAGA-conjugated variants. Tumor uptake of [57Co]Co-(HE)3-ZHER3-DOTAGA was below 1% ID/g,
the lowest among the tested conjugates. After 24 h, tumor uptake of [57Co]Co-(HE)3-ZHER3-NODAGA
reduced by almost 2-fold. The other variants did not show a significant decrease in tumor uptake
between 3 and 24 h pi.
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Overall, [57Co]Co-(HE)3-ZHER3-NODAGA and [57Co]Co-(HE)3-ZHER3-DOTA had a similar uptake
to the other conjugates in non-expressing organs and tissues (blood, muscle, bone). However, higher
uptake was observed in HER3-expressing organs, which also correlated with higher uptake in tumors.
The uptake in normal organs and tissues, such as lung, liver, stomach, and small intestine, significantly
decreased with time.

Generally, tumor-to-organ ratios tendended to to be higher at 24 h pi. However, there
was no significant difference in tumor-to-non-tumor ratios for [57Co]Co-(HE)3-ZHER3-NODAGA
between 3 and 24 h pi. At 3 h, [57Co]Co-(HE)3-ZHER3-NOTA had the highest tumor-to-liver
ratio and [57Co]Co-(HE)3-ZHER3-DOTA the highest tumor to blood ratio (Table 4). Most
notably, tumor-to-liver-ratio of [57Co]Co-(HE)3-ZHER3-DOTA doubled after 24 h. Overall,
[57Co]Co-(HE)3-ZHER3-DOTA had the highest tumor-to-blood, -liver and -muscle ratios among all
cobalt-labeled variants at 24 h.

The biodistribution of [68Ga]-Ga-(HE)3-ZHER3-NODAGA 3 h pi was directly compared with
[57Co]Co-(HE)3-ZHER3-DOTA 24 h pi in the same batch of Balb/c nu/nu mice bearing BxPC-3
xenografts (Table S1, Figure 5). Data for [68Ga]-Ga-(HE)3-ZHER3-NODAGA was in agreement
with previously published data [31]. Comparing [68Ga]Ga-(HE)3-ZHER3-NODAGA at 3 h pi with
[57Co]Co-(HE)3-ZHER3-DOTA at 24 h pi, the cobalt-labeled variant had significantly lower activity
concentration in blood, liver and stomach, and slightly higher uptake in tumor. However, the difference
in tumor was non-significant.
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Figure 5. Comparison of the biodistribution of [57Co]Co-(HE)3-ZHER3-DOTA (3 and 24 h pi) and 
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Figure 5. Comparison of the biodistribution of [57Co]Co-(HE)3-ZHER3-DOTA (3 and 24 h pi)
and [68Ga]Ga-(HE)3-ZHER3-NODAGA (3 h pi) in BxPC-3 xenografted Balb/c nu/nu mice. Data
is presented as the average ± SD of n = 4 animals per group. Statistical significance (p <

0.05) between a [68Ga]Ga-(HE)3-ZHER3-NODAGA and [57Co]Co-(HE)3-ZHER3-DOTA 3 h pi and b

[68Ga]Ga-(HE)3-ZHER3-NODAGA and [57Co]Co-(HE)3-ZHER3-DOTA 24 h pi was determined with
unpaired, two-tailed t-test. Numerical data is available in Table S1.

At 3 h pi, the tumor-to-blood, tumor-salivary gland, tumor-lung, tumor-liver and tumor-small
intestine ratios were higher for [68Ga]Ga-(HE)3-ZHER3-NODAGA than for [57Co]Co-(HE)3-ZHER3-DOTA
3 h pi. However, because tumor-to-organ ratios of [57Co]Co-(HE)3-ZHER3-DOTA increased with time,
the tumor-to-liver and tumor-to-lung ratios of [57Co]Co-(HE)3-ZHER3-DOTA at 24 h were significantly
higher than for [68Ga]Ga-(HE)3-ZHER3-NODAGA at 3 h. Tumor-to-blood and tumor-to-bone ratios for
[57Co]Co-(HE)3-ZHER3-DOTA were also higher. However, the differences were non-significant. There
was no difference in the remaining organs and tissues (Figure 5).

2.4. Imaging

Results from microSPECT imaging for [57Co]Co-(HE)3-ZHER3-NOTA, [57Co]Co-(HE)3-
ZHER3-NODAGA and [57Co]Co-(HE)3-ZHER3-DOTA at 3 and 24 h pi are displayed in Figure 6.
Uptake in tumors and HER3-expressing organs and kidneys could be visualized clearly, and images
resembled the results from the biodistribution studies.
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3. Discussion
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investigated the potential of radiolabeled affibody molecules as HER3-targeted imaging agents for 
PET and SPECT [15,16,20–22,27]. It has been shown that an increase in the negative charge of the 
radionuclide–chelator complex can improve tumor-to-liver contrast for affibody molecules [26,36]. In 
addition, retention of activity in tumors is better than in normal tissues for several types of imaging 
probes. Thus, imaging at later time points enables further increase of imaging contrast, and hence 
sensitivity, even for imaging probes with rapid in vivo kinetics and tumor targeting, such as 
bombesin analogues [38], somatostatin analogues [39], single chain variable fragments (scFv) [40], 
and affibody molecules [41]. Later-time-point imaging has been shown to improve the imaging 
quality of HER3-targeting affibody molecules [20,26,27]. The use of PET for imaging provides better 
sensitivity, spatial resolution and accuracy of quantification, and therefore a positron-emitting label 
is desirable. The use of a long-lived positron emitter (e.g., 89Zr) in combination with efficient 
reabsorption of affibody molecules in kidney would result in an appreciably elevated dose burden to 
patients. Therefore, the use of positron-emitting nuclides permitting next-day imaging seems to be a 
reasonable compromise. A list of such nuclides with half-lives between 9 and 20 h is provided in 

Figure 6. (A) Micro-single-photon emission tomography/computed tomography (microSPECT/CT)
imaging of [57Co]Co-(HE)3-ZHER3-X at 3 and 24 h pi in mice bearing HER3-expressing BxPC-3
xenografts. [57Co]Co-(HE)3-ZHER3-DOTAGA was excluded from the imaging study because of
unfavorable biodistribution prolife. (B) Micro-positron emission tomography/computed tomography
(microPET/CT) imaging of [68Ga]Ga-(HE)3-ZHER3-NODAGA 3 h pi in a mouse with HER3-expressing
BxPC-3 xenograft. Images are displayed as maximum intensity projections (MIP). White arrows indicate
the HER3-expressing BxPC-3 xenografts.

3. Discussion

HER3 has evolved into an important molecular target in cancer. We and others have previously
investigated the potential of radiolabeled affibody molecules as HER3-targeted imaging agents for
PET and SPECT [15,16,20–22,27]. It has been shown that an increase in the negative charge of the
radionuclide–chelator complex can improve tumor-to-liver contrast for affibody molecules [26,36].
In addition, retention of activity in tumors is better than in normal tissues for several types of
imaging probes. Thus, imaging at later time points enables further increase of imaging contrast, and
hence sensitivity, even for imaging probes with rapid in vivo kinetics and tumor targeting, such as
bombesin analogues [38], somatostatin analogues [39], single chain variable fragments (scFv) [40], and
affibody molecules [41]. Later-time-point imaging has been shown to improve the imaging quality of
HER3-targeting affibody molecules [20,26,27]. The use of PET for imaging provides better sensitivity,
spatial resolution and accuracy of quantification, and therefore a positron-emitting label is desirable.
The use of a long-lived positron emitter (e.g., 89Zr) in combination with efficient reabsorption of affibody
molecules in kidney would result in an appreciably elevated dose burden to patients. Therefore, the
use of positron-emitting nuclides permitting next-day imaging seems to be a reasonable compromise.
A list of such nuclides with half-lives between 9 and 20 h is provided in Table 5. All these nuclides can
be produced by low-energy cyclotrons using isotopically enriched targets.

The use of the radiohalogen 76Br would be associated with a non-residualizing label, and our
latest study showed that this type of label is suboptimal for affibody-mediated HER3 imaging [42].
The chemistry of labeling with 90Nb has not been established yet. For 64Cu, a low positron yield
and an appreciable β− branching ratio is of concern. Among other radiometals, 55Co has the lowest
positron energy, which is favorable for imaging resolution, and the branching ratio of the positron
decay is the highest among the positron emitting nuclides. Previous studies have demonstrated that
radiocobalt forms stable complexes with macrocyclic chelators, such as DOTA, NOTA, DOTAGA and
NODAGA [37,39]. This makes it a promising candidate for later-time-point PET imaging.

Based on this, the first aim of this paper was to select the chelator providing the most favorable
properties for PET imaging of HER3 expression using radiocobalt. The second aim of this study was
to investigate the potential benefit of using cobalt-55 for later-time-point PET imaging compared to
early-time-point imaging with the well-established PET isotope gallium-68.
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Table 5. Positron-emitting nuclides with potential for imaging at 24 h after injection (https://www.nndc.
bnl.gov/nudat2/indx_dec.jsp).

Nuclide Half-Life (Hour) Mode of Decay Mean Positron
Energy (keV) Principal Photon Emissions

55Co 17.5 β+ 76%
EC 24% 570 511 (152%), 477 (20.2%), 931 (75%),

1317 (7.1%), 1408 (16.9%)

64Cu 12.7
β+ 17.6%
β− 37%
EC 24%

278 511 (35.2%), 1346 (0.5%)

66Ga 9.49 β+ 57%
EC 43% 1750 511 (114%), 834 (5.9%), 1039 (37.0%),

2752 (22.7%)

86Y 14.7 β+ 31.9
%EC 67% 660

511 (66%), 443 (16.9%), 628 (32.6%),
646 (9.2%), 703 (15.4%), 777 (22.4%),

1077 (82.5%), 1153 (30.5%), 1854
(17.2%), 1920 (20.8%)

90Nb 14.6 β+ 51.2%
EC 49.8% 660 511 (102%), 141 (66.8%), 1129

(92.7%), 2186 (18%), 2318 (82%)

152Tb 17.5 β+ 20.3%
EC 79.7% 1140 511 (40.6%), 271 (9.5%), 344 (63.5%),

586 (9.2%), 779 (5.5%)

76Br 16.2 β+ 55%
EC 45% 1188 511 (110%), 657 (16%), 1853 (14.7%),

2792 (5.6%), 2950 (7.4%)

A panel of four affibody molecules conjugated to different macrocyclic chelators via a C-terminal
cysteine ((HE)3-ZHER3-X, X = NOTA, NODAGA, DOTA, DOTAGA) was labeled with cobalt-57 (t1/2 =

272 d, convenient photons with energies of 122 keV (85%), 136 keV (11%)) as surrogate for cobalt-55.
Labeling did not affect the ability of the radioconjugates to bind HER3 specifically with subnanomolar
affinity. The different levels of uptake observed in the in vitro specificity test correlated to the
different levels of HER3 expression, but no differences were observed in the cellular processing of the
different conjugates. While low internalization rate seems to be characteristic for anti-HER3 affibody
molecules, the observed rate is considerably lower than for the gallium-68 and indium-111-labeled
analogs [26,31,43]. It could be speculated that cobalt-efflux mechanisms are triggered, which in addition
to the already slow internalization of (HE)3-ZHER3, partly affect the level of the internalized fraction [27].
Presence of cobalt ions can be toxic because cobalt competes with biologically essential metal ions, for
example iron [44]. Thus, exposure to cobalt could promote the activity of cobalt efflux mechanisms,
which seem to be regulated directly by the concentration of cobalt ions [44,45]. Regardless, we also
observed continuing increase in the total uptake with time, which might be a product of the strong
binding affinity and de novo formation of receptors, which has been reported before [46].

The general biodistribution of [57Co]Co-(HE)3-ZHER3-X was in agreement with the known
pattern for affibody molecules and previously reported results for [57Co]Co-(HE)3-ZHER3-NOTA [27].
The affibody conjugates were eliminated quickly via the kidneys and uptake was observed in
mErbB3-expressing organs. Even though the biodistribution followed the general known pattern, there
were clear differences in tumor targeting and uptake of the affibody–chelator conjugates in normal
organs and tissues.

Somewhat surprisingly, the DOTAGA-containing conjugate with the most negative chelator
complex (−2) was excreted faster than the other conjugates and had the lowest uptake in
mErbB3-positive tissue (except liver) and in the tumor (<1% ID/g). Furthermore, the uptake of
this conjugate was blockable in the mErbB3-expressing organs (liver and intestines), but not in
tumors. [57Co]Co-(HE)3-ZHER3-DOTAGA was, therefore, considered inferior to the other conjugates.
The DOTAGA-conjugated variant also showed unfavorable biodistribution when labeled with
gallium-68 [43]. Both of these findings, however, contradict reported results from 111In-labeled
analogs, where the DOTAGA-conjugated variant had high and stable uptake in tumors and the lowest
hepatic uptake providing the best imaging contrast [26].

https://www.nndc.bnl.gov/nudat2/indx_dec.jsp
https://www.nndc.bnl.gov/nudat2/indx_dec.jsp
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The distinct biodistribution patterns for the radiometals might be explained by differences in
charge and size of the metal–chelator complexes. The ionic radii of cobalt and gallium are similar,
and they should thus form comparable geometric complexes. Indium has a larger ionic radius and
indium–chelator complexes are, therefore, of different geometry and indium may prefer tetraaza
ligands, such as DOTAGA [47,48]. Furthermore, cobalt engages in the radiolabeling in a divalent state,
compared to trivalent gallium and indium. As a result, the cobalt–chelator complexes have a more
negative charge than their gallium and indium counterparts (e.g., the cobalt–DOTAGA complex has a
charge of −2, whereas Ga- and In-DOTAGA complexes have a charge of −1). These differences might
explain the different biodistribution patterns of conjugates labeled with different isotopes.

NODAGA- and DOTA-containing conjugates with a single negative charge had similar
biodistribution. They had the highest uptake in all organs, except blood. In blood, their activity
concentration was significantly lower than for [57Co]Co-(HE)3-ZHER3-NOTA both 3 and 24 h pi.
However, the quick tumor washout makes [57Co]Co-(HE)3-ZHER3-NODAGA unfavorable, particularly
since the aim was to select a variant for later imaging.

Both [57Co]Co-(HE)3-ZHER3-NOTA and [57Co]Co-(HE)3-ZHER3-DOTA are arguably the most
suitable variants at 3 h pi. Regardless, neither variant was able to outperform the gallium-68-labeled
affibody molecule [68Ga]Ga-(HE)3-ZHER3-NODAGA at this time point. For the later time point,
[57Co]Co-(HE)3-ZHER3-DOTA provided the highest tumor-to-background ratios overall. Remarkably,
tumor-to-liver ratio reached 1.6, which, to our knowledge, is the highest ratio published for any
single HER3-targeting agent to date. [57Co]Co-(HE)3-ZHER3-NOTA reached a ratio of 1.0 ± 0.2 in
this study which is similar to a previously reported value of 1.26 ± 0.05 for the same conjugate [27].
[89Zr]Zr-DFO-ZHER3:8698 3 h pi reached a tumor-to-liver ratio of 1.18 ± 0.13. However, some release
of the 89Zr label was observed in vivo, resulting in a two-fold decrease in tumor uptake after 24 and,
therefore, a decrease in tumor-to-liver contrast [22]. Compared with [111In]In-ZHER3-DOTAGA [26],
tumor uptake of [57Co]Co-(HE)3-ZHER3-DOTA was slightly lower (3.4 ± 0.5 vs. 2.4 ± 0.4% ID/g at 24 h),
but tumor-to-liver contrast of [57Co]Co-(HE)3-ZHER3-DOTA was higher at both time points, providing
another argument for using cobalt-55 as a long-lived radiolabel for PET imaging. Further improvement
of imaging contrast might be achieved thorough optimization of the injected protein dose in a phase
I/II clinical study similar to studies performed for anti-HER2 affibody molecules [24].

Based on the findings described above, we then investigated the potential benefit of delayed
imaging by directly comparing [57Co]Co-(HE)3-ZHER3-DOTA with [68Ga]Ga-(HE)3-ZHER3-NODAGA.
[68Ga]Ga-(HE)3-ZHER3-NODAGA was previously determined to be the most favorable variant for
imaging of HER3 expression using gallium-68 [31]. [57Co]Co-(HE)3-ZHER3-DOTA (24 h pi) showed a
significantly lower concentration of activity in blood and in the liver than gallium-labeled conjugate (3
h pi), while tumor uptake was in the same range. Thus, 24 h pi, this resulted in significantly higher
tumor-to-liver and tumor-to-lung ratios for [57Co]Co-(HE)3-ZHER3-DOTA. Particularly in liver, the ratio
was 1.6-fold higher than with 68Ga label, which is important, since the liver is a common metastatic
site in many cancers.

While gallium-68 is produced by widely available 68Ga/68Ge generators and used in clinics,
cobalt-55 is not yet in clinical routine. However, production of cobalt-55 is possible using medical
cyclotron [34,35,49] and the longer half-life of cobalt-55 compared to gallium-68 would potentially
allow transport to neighboring hospitals without cyclotron access. Therefore, we consider cobalt-55 a
promising radioisotope for next-day PET imaging.

In summary, [57Co]Co-(HE)3-ZHER3-DOTA was selected as the best radiocobalt-labeled variant,
providing the highest reported tumor-to-liver contrast for HER3-targeting imaging agents thus far.
[57Co]Co-(HE)3-ZHER3-DOTA also showed superior tumor-to-liver contrast at a later time point in
comparison with the short-lived PET tracer, [68Ga]Ga-(HE)3-ZHER3-NODAGA. We, therefore, conclude
that [57Co]Co-(HE)3-ZHER3-DOTA might be a promising alternative for later-time-point PET imaging
of HER3 expression.
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4. Materials and Methods

Cobalt-57 (in form of [57Co]CoCl2, (t1/2 = 272 d, convenient photons with energies 122 keV (85%),
136 keV (11%) was purchased from JSC-Isotope (JSC-Isotope, Moscow, Russia). Gallium-68 was
eluted from a 68Ga/68Ge generator (Cyclotron Co. Obninsk, Russia) with 0.1 M HCl. Human cancer
cell lines BxPC-3 (pancreatic cancer) and DU145 (prostate cancer) were purchased from ATCC (via
LGC Promochem, Borås, Sweden) and maintained in RPMI-1640 culture media (Biochrom, Berlin,
Germany) supplemented with 10% fetal bovine serum (Merck, Germany), 1% L-Glutamine and 1%
Penicillin-Streptomycin (Biochrom, Berlin, Germany). Activity was measured using a 3 inch NaI(Tl)
detector (1480 Wizard; Wallac Oy, Turku, Finland).

Affibody molecules (HE)3-ZHER3:08698-NOTA, (HE)3-ZHER3:08698-NODAGA, (HE)3-ZHER3:08698-
DOTA, (HE)3-ZHER3:08698-DOTAGA (further denoted as (HE)3-ZHER3-X, X = NOTA, NODAGA, DOTA,
DOTAGA) were produced in BL21*(DE3) E. coli (Escherichia coli) (Thermo Fisher Scientific, Waltham,
MA, USA) in an overnight culture at 25 ◦C and according to methods previously described [31].

Data is presented as the average ± standard deviation if not stated otherwise. Statistical
significance (p < 0.05) was analyzed with unpaired, two-tailed t-test for the in vitro experiments
and in vivo specificity test. One-way ANOVA with post-hoc t-test including correction for multiple
comparisons with Bonferroni (GraphPad Prism version 7.03, GraphPad Software, San Diego, CA,
USA) was used to test statistical significance between the different (HE)3-ZHER3-X conjugates in the
biodistribution. Two-tailed t-test was used for comparison between [57Co]Co-(HE)3-ZHER3-DOTA and
[68Ga]Ga-(HE)3-ZHER3-NODAGA.

4.1. Radiolabeling of (HE)3-ZHER3-X and Stability of Labeled Conjugates

For labeling, 10 µg (HE)3-ZHER3-X was dissolved in 55 µL sodium acetate (0.2 M, pH 5.5) and
incubated with 7.5–14 MBq [57Co]CoCl2 for 45 min at 60 ◦C. Instant thin-layered liquid chromatography
(ITLC) was used to determine the labeling yields. For analysis, a sample of the radiolabeling mixture
was applied to silica gel-impregnated glass micro-fiber chromatography paper (Agilent Technologies,
Santa Clara, CA, USA). Samples were eluted with citric acid (0.2 M, pH 2) and scanned with the
Cyclone Storage Phosphor System, and OptiQuant image analysis software (PerkinElmer, Waltham,
MA, USA) was used to determine the labeling yield.

To test the in vitro stability of [57Co]Co-(HE)3-ZHER3-X, 1 µg of radiolabeled compound was
incubated in PBS or 500-fold molar excess of EDTA for 24 h at room temperature. Release of the
radiolabel was analyzed with ITLC.

(HE)3-ZHER3-NODAGA was labeled with gallium-68 according to the method previously
described [31]. In brief, 25 µg of (HE)3-ZHER3-NODAGA was incubated with 300 µL ascorbic
acid (1 M, pH 3.6) and 200 µL of gallium-68 eluate (150 MBq) for 15 min at 85 ◦C and thereafter purified
with NAP-5 size-exclusion columns (GE Healthcare, Uppsala, Sweden).

4.2. In Vitro Characterization of [57Co]Co-(HE)3-ZHER3-X

HER3-expressing cell lines BxPC-3 (pancreatic cancer) and DU145 (prostate cancer) were used
to study the in vitro properties of [57Co]Co-(HE)3-ZHER3-X. Experimental protocols were validated
previously for HEr2-binding affibody molecules [50]. Cells were seeded one day before the experiments.

For the in vitro specificity assay, HER3 receptors were pre-saturated by addition of 50 nM
unlabeled anti-HER3 affibody. Then, 0.1 nM of [57Co]Co-(HE)3-ZHER3-X was added and the cells were
incubated for 1 h at 37 ◦C. After incubation, the cells were collected, and samples were measured for
activity content.

To study the cellular processing of [57Co]Co-(HE)3-ZHER3-X in BxPC-3 and DU145 cell lines,
cells were continuously incubated for up to 24 h with 0.1 nM of the labeled constructs at 37 ◦C. At
pre-determined timepoints (1 h, 2 h, 4 h, 8 h, 24 h) the membrane-bound activity was collected after
5 min incubation with 0.2 M glycine buffer with 0.15 M NaCl, 4 M Urea, pH 2, on ice. Thereafter,
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samples were incubated with 1 M NaOH for 30 min at 37 ◦C to collect the internalized activity. Sum of
the membrane-bound and internalized fraction was considered total cell-associated activity.

Specific binding and cellular processing of [68Ga]Ga-(HE)3-ZHER3-NODAGA has previously been
investigated [31].

4.3. Measurement of HER3 Receptor Expression in BxPC-3 and DU145 Cells

Quantification of receptor expression was performed similar to [51]. Briefly, cells were incubated
with 5 nM [57Co]Co-(HE)3-ZHER3-NOTA for 4 h at 4 ◦C. To account for unspecific binding, receptors
in one cell sample were pre-saturated with 500 nM unlabeled anti-HER3 affibody. After incubation,
cells were collected, counted and measured for activity content. Under the assumption of receptor
saturation, the number of receptors per cell was calculated based on the amount of cell-bound
[57Co]Co-(HE)3-ZHER3-NOTA molecules.

4.4. Real Time Measurement of Binding Kinetics

A Ligand Tracer yellow instrument (Ridgeview Instruments AB) was used to measure the binding
kinetics (ka, kd, KD) of [57Co]Co-(HE)3-ZHER3-X on BxPC-3 cells in real time [52]. Three million cells
were seeded in a designated area of a 10 cm petri dish one day prior to the experiment. For the
measurement, the dishes were placed in the inclined rotating holder and [57Co]Co-(HE)3-ZHER3-X
was added in several concentrations ranging from 0.2 to 3 nM to measure the association rate. The
concentration was increased stepwise when the previous concentration had reached equilibrium. To
measure the dissociation rate, the radioactive solution was replaced with cell culture media after the
highest concentration reached equilibrium. Data was analyzed with TraceDrawer software (Ridgeview
Instruments AB) and association constant (ka), dissociation constant (kd) and equilibrium dissociation
constant (KD) were computed using a 1:1 kinetic binding model.

4.5. In Vivo Specificity Test and Biodistribution of [57Co]Co-(HE)3-ZHER3-X

Animal experiments were performed in compliance with the national legislation for animal
welfare and approved by the Ethics Committee for Animal Research in Uppsala, Sweden (ethical
permit number C 5/16 approved 26-02-2016).

Female Balb/c nu/nu mice with BxPC-3 xenografts were intravenously injected with 2 µg (30 kBq)
[57Co]Co-(HE)3-ZHER3-X or 2 µg (300 kBq) [68Ga]Ga-(HE)3-ZHER3-NODAGA. Xenograft model was
chosen based on the HER3 expression and injected protein dose based on our previous results [16].
Animals were euthanized 3 and 24 h pi by injection of Ketalar–Rompun solution (10 mg/mL Ketalar
and 1 mg/mL Rompun; 20 µL solution/gram of body weight). Samples of blood, salivary glands, lung,
liver, stomach, small intestine, tumor, spleen, kidney, muscle and bone were collected, weighed and
measured for activity content. To test in vivo specificity of [57Co]Co-(HE)3-ZHER3-X the injected protein
dose was increased to 70 µg using unlabeled ZHER3. Animals were sacrificed 3 h pi, and samples were
collected and analyzed according to the protocol described above.

At the time of the experiments, the average mouse weight was 18 ± 1 g and average tumor weight
was 0.09 ± 0.08 g.

4.6. Imaging of HER3-Expressing Bxpc-3 Xenografted Mice

Balb/c nu/nu mice with BxPC-3 xenograft were injected with 2 µg (1–1.9 MBq)
[57Co]Co-(HE)3-ZHER3-X and whole-body SPECT/CT scans were acquired 3 and 24 h pi using nanoScan
SPECT/CT (Mediso Medical Imaging Systems Ltd., Budapest, Hungary). Mice were euthanized before
imaging. CT was acquired at the following parameters: 50 keV energy peak, 670 µA, 480 projections,
5.26 min acquisition time; SPECT was carried out using a 57Co energy peak of 122.1 keV, window
width of 20%, and a matrix of 256 × 256, and was acquired for 1 h. Nucline 2.03 software was used to
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reconstruct CT data and Tera-TomoTM 3D SPECT reconstruction technology was used for SPECT data
(Mediso Medical Imaging Systems Ltd., Budapest, Hungary).

Whole-body gallium-68 PET/CT imaging was performed 3 h pi according to previously
published methods [31]. A BxPC-3 xenografted mouse was injected with 2 µg (7.8 MBq)
[68Ga]Ga-(HE)3-ZHER3-NODAGA and imaged 3 h pi after euthanasia.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/6/1972/
s1.
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Abbreviations

CT Computed tomography
DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
DOTAGA 1,4,7,10-tetraazacyclododecane,1-(glutaric acid)-4,7,10-triacetic acid
EDTA Ethylenediaminetetraacetic acid
EPR effect Enhanced permeability and retention effect
ESP Engineered scaffold protein
HER Human epidermal growth factor receptor
ITLC Instant thin-layered liquid chromatography
MIP Maximum intensity projection
MRI Magnetic resonance imaging
NOTA 1-(1,3-carboxypropyl)-4,7-carboxymethyl-1,4,7-triazacyclononane
NODAGA 1,4,7-triazacyclononane-N,N′,N”-triacetic acid
PBS Phosphate buffer saline
PET Positron emission tomography
RP-HPLC Reverse-phase high-performance liquid chromatography
SPECT Single-photon emission tomography
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