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Abstract: Synaptic disruption and altered neurotransmitter release occurs in the brains of patients
and in murine models of neurodegenerative diseases (NDDs). During the last few years, evidence
has accumulated suggesting that the sympathoadrenal axis is also affected as disease progresses.
Here, we review a few studies done in adrenal medullary chromaffin cells (CCs), that are considered
as the amplifying arm of the sympathetic nervous system; the sudden fast exocytotic release of
their catecholamines—stored in noradrenergic and adrenergic cells—plays a fundamental role in
the stress fight-or-flight response. Bulk exocytosis and the fine kinetics of single-vesicle exocytotic
events have been studied in mouse models carrying a mutation linked to NDDs. For instance, in
R6/1 mouse models of Huntington’s disease (HD), mutated huntingtin is overexpressed in CCs;
this causes decreased quantal secretion, smaller quantal size and faster kinetics of the exocytotic
fusion pore, pore expansion, and closure. This was accompanied by decreased sodium current,
decreased acetylcholine-evoked action potentials, and attenuated [Ca2+]c transients with faster Ca2+

clearance. In the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS), CCs exhibited
secretory single-vesicle spikes with a slower release rate but higher exocytosis. Finally, in the APP/PS1
mouse model of Alzheimer’s disease (AD), the stabilization, expansion, and closure of the fusion
pore was faster, but the secretion was attenuated. Additionally, α-synuclein that is associated with
Parkinson’s disease (PD) decreases exocytosis and promotes fusion pore dilation in adrenal CCs.
Furthermore, Huntington-associated protein 1 (HAP1) interacts with the huntingtin that, when
mutated, causes Huntington’s disease (HD); HAP1 reduces full fusion exocytosis by affecting vesicle
docking and controlling fusion pore stabilization. The alterations described here are consistent
with the hypothesis that central alterations undergone in various NDDs are also manifested at the
peripheral sympathoadrenal axis to impair the stress fight-or-flight response in patients suffering from
those diseases. Such alterations may occur: (i) primarily by the expression of mutated disease proteins
in CCs; (ii) secondarily to stress adaptation imposed by disease progression and the limitations of
patient autonomy.
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1. Introduction

Synaptic disruption and altered neurotransmitter release are common pathogenic features in
neurodegenerative diseases (NDDs) such as Huntington’s disease (HD) [1], amyotrophic lateral sclerosis
(ALS) [2], and in Alzheimer’s disease (AD) [3]. For instance, in Alzheimer’s disease (AD), both pre-
and postsynaptic alterations and synaptic loss are major correlates of disease severity [4]. Additionally,
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presenilins play a critical role in the regulation of neurotransmitter release [5]. Furthermore, it seems
that amyloid beta (Aβ) also plays a role in the regulation of synaptic function [6,7]. In the light of
these studies, it seems plausible that alterations of these proteins may produce synaptic alterations that
underlie AD pathogenesis; in fact, AD has been pathogenically considered as a synaptic failure [8].

In amyotrophic lateral sclerosis (ALS), augmented glutamate release and glutamate receptors
have been implicated in motoneuron death [9]. In this sense, it is worth noting that in the R6/2 mouse
model of HD, brain dopamine release is severely compromised [10]. Also, altered striatal amino acid
neurotransmitter release has been reported in R6/1 mice [11].

As the activity of the peripheral sympathoadrenal axis is exquisitely controlled at specific sites in
the brain cortex and hypothalamus, alterations of the exocytotic release of neurotransmitters may also
occur at peripheral sympathetic neurons and adrenal medullary chromaffin cells. As the hypothesis
raised here implies the alteration of the sympathoadrenal axis, in this review we will briefly comment on
its connections with the central nervous system (CNS). Then, we will review the alterations undergone
at the bulk secretion of catecholamines and the fine kinetics of single-vesicle exocytotic events in three
transgenic mouse models of NDDs, and end with a comment on the altered exocytotic events in mouse
CCs overexpressing some pathological proteins linked to NDDs. We will finally formulate a hypothesis
on the potential impact of these alterations on the control of the stress fight-or-flight response by the
sympathoadrenal axis in patients suffering HD, ALS, or AD.

2. Central and Peripheral Control of the Stress Fight-or-Flight Response

The body homeostasis, the flight-or-fight response, and the functional unitary nature of the
sympathoadrenal system are three concepts introduced by Cannon [12]. The physiological control of
these functions is exerted by the autonomic nervous system through its two divisions: parasympathetic
and sympathetic. The axons of the sympathetic neurons that form the prevertebral and paravertebral
ganglia [13] innervate and regulate most organs and blood vessels through the release of noradrenaline.
The adrenal medulla is the amplifying arm of the sympathetic nervous system; it is formed by a collection
of chromaffin cells (CCs) that, in their chromaffin vesicles, store the catecholamines noradrenaline and
adrenaline, that are released into the blood stream upon stimulation by acetylcholine (ACh), being
released by splanchnic nerve terminals that innervate the noradrenergic and adrenergic CCs.

Of interest is the well-established concept of the presence in the adrenal medulla of separate
populations of noradrenergic and adrenergic cells [14–16]. Elegant experiments using double-virus
transneuronal labelling showed that the secretory activity of CCs is regulated by neuron collections
located at the brainstem and the hypothalamus [17]. Furthermore, the burst pattern stimulation of
the trigeminal nucleus caudalis preferentially released adrenaline [18]. Additionally, the selective
adrenaline release was shown to be also regulated by the autonomic areas located in the medulla
oblongata [19,20], the hypothalamus [21,22], and the cerebral cortex [23]. On the other hand, the
stimulation of other regions of the medulla oblongata [20] or the hypothalamus [21,22] selectively
regulates the release of noradrenaline. Furthermore, the more cephalic preganglionic outputs from the
spinal cord innervate adrenergic CCs and the more caudal do innervate noradrenergic CCs [24,25].
These studies support the view that the differential secretion of noradrenaline or adrenaline is regulated
by the different input patterns that each CC subtype receives from specific brain regions during stress.

The fight-or-flight response is quickly activated at cortical and hypothalamic brain sites during an
alarming acute stressful conflict, namely intense fear, exercise, or struggle. Through the activation
of practically all organs of the body, via their adrenergic alpha and beta receptors, the noradrenaline
released from sympathetic nerve terminals and adrenal chromaffin cells, and the adrenaline released
from chromaffin cells into the circulation, trigger the fight-or-flight response to fight or run away
from danger; pupils dilate to increase visual acuity, and heart rate, myocardial contraction, and
blood pressure increase to switch blood to skeletal muscles to insure maximal performance and motor
responsiveness. This is achieved by producing vasodilation in the skeletal muscles and vasoconstriction
in the skin and visceral vasculature. At the same time, bronchodilation is produced to augment



Int. J. Mol. Sci. 2020, 21, 1946 3 of 9

the oxygen supply and glucose is mobilised from the muscle and liver to increase glycemia; thus,
metabolic activity is increased in practically all cells of the organism, to ensure a coordinated response
for survival.

3. Bulk Release of Catecholamines from Chromaffin Cells of Mouse Models of NDDs

The fine analysis of single-cell exocytosis was achieved first at the laboratory of R. M. Whightman.
This was achieved by placing a carbon-fiber microelectrode placed adjacent to a CC (Figure 1A), and
the amperometric detection of catecholamines through their electro-oxidation. The authors concluded
that the individual spikes represented the quantal secretion of catecholamines from single storage
vesicles (Figure 1B) [26].
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mild baseline elevation, the so-called spike-foot; 3, pore expansion and full secretion of vesicle 
contents (fast rise of the spike); 4, pore closure and spike relaxation to baseline. The different kinetic 
parameters of the spike are shown in panel (B). In several neurodegenerative diseases (NDDs), 
mouse models spike kinetic changes in a characteristic manner. (Adapted from de Diego and García, 
2018, [27]). 

Pulses of 1 min with supramaximal 100 µM ACh (the physiological neurotransmitter at the 
splanchnic nerve-CC synapse) evoked exocytotic responses consisting of an initial fast burst of 
amperometric spikes, followed by sparser spikes distributed along the 1-min stimulation recording 
period. The overall responses can be expressed as a cumulative quantal release of catecholamines in 
two analytical approaches: first, secretory spike number (SN) counted at 5-s intervals along the 1-min 
traces, an indication of the number of vesicles available for secretion at the ready-release vesicle pool 
(RRP, [28]); and second, the summatory areas of spikes, also calculated at 5-s intervals, an indication of 
the total cumulative catecholamine release amperometrically monitored (Qamp in pC). 

In CCs from 7 month-old (7 m) R6/1 mice, a model of HD with phenotypic signs of disease 
stages (i.e., decreased time to fall in the rotarod test), SN, as well as Qamp were notably decreased, 
reaching a plateau sooner than in the age-matched wildtype mice (WT) CCs. Fewer secretory spikes 
indicated either a lesser vesicle number and/or a deficient transport of secretory vesicles from the 
reserve pool (RP) to the RRP, in order to replenish it. It is also compatible with a smaller quantal size 
of individual vesicles. A reduced number of vesicles is compatible with decreased levels of 
dopamine-beta-hydroxylase (DBH, a marker of secretory vesicles) of 6 m R6/1 mice. A lesser Qamp 

Figure 1. Detection of single-vesicle catecholamine release with a carbon-fiber microelectrode (panel
A). In this technique, the process of exocytosis is recorded by placing a polarized microelectrode close
to the cell membrane, which oxidizes the released catecholamines. At the right of the cell scheme, the
sequential time course of the generation of the exocytotic event is shown: 1, vesicle docking to the
plasma membrane; 2, pore formation, with a small release of catecholamine causing a mild baseline
elevation, the so-called spike-foot; 3, pore expansion and full secretion of vesicle contents (fast rise of
the spike); 4, pore closure and spike relaxation to baseline. The different kinetic parameters of the spike
are shown in panel (B). In several neurodegenerative diseases (NDDs), mouse models spike kinetic
changes in a characteristic manner. (Adapted from de Diego and García, 2018, [27]).

Pulses of 1 min with supramaximal 100 µM ACh (the physiological neurotransmitter at the
splanchnic nerve-CC synapse) evoked exocytotic responses consisting of an initial fast burst of
amperometric spikes, followed by sparser spikes distributed along the 1-min stimulation recording
period. The overall responses can be expressed as a cumulative quantal release of catecholamines in
two analytical approaches: first, secretory spike number (SN) counted at 5-s intervals along the 1-min
traces, an indication of the number of vesicles available for secretion at the ready-release vesicle pool
(RRP, [28]); and second, the summatory areas of spikes, also calculated at 5-s intervals, an indication of
the total cumulative catecholamine release amperometrically monitored (Qamp in pC).

In CCs from 7 month-old (7 m) R6/1 mice, a model of HD with phenotypic signs of disease
stages (i.e., decreased time to fall in the rotarod test), SN, as well as Qamp were notably decreased,
reaching a plateau sooner than in the age-matched wildtype mice (WT) CCs. Fewer secretory spikes
indicated either a lesser vesicle number and/or a deficient transport of secretory vesicles from the
reserve pool (RP) to the RRP, in order to replenish it. It is also compatible with a smaller quantal
size of individual vesicles. A reduced number of vesicles is compatible with decreased levels of
dopamine-beta-hydroxylase (DBH, a marker of secretory vesicles) of 6 m R6/1 mice. A lesser Qamp
is in line with a drastic decrease of adrenaline and noradrenaline in the adrenal glands, and with a
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halved Q in R6/1, with respect to WT mice. It seemed, therefore, that a slower time course of secretion
with a drastically decreased cumulative secretion was due to both lesser vesicle number as well as
smaller quantal size in the CCs of 7 m R6/1 mice, with respect to age-matched WT mice [29].

A somewhat distinct picture emerged from a study carried out in CCs from the SOD1G93A mouse
model of ALS, at phenotypic advanced disease stages (postnatal day 100, P100) [30]. A lesser number
of spikes were counted in this study (1357 spikes from 69 SOD1G93A CCs, versus 2034 spikes from WT
CCs). Although a time-course analysis of SN was not done, the lesser total spike number suggested that
the lesser vesicle number underwent exocytosis in the SOD1G93A CCs, with respect to WT. Opposite
the R6/1 CCs, the SOD1G93A CCs exhibited a faster and higher time-course of cumulative secretion,
that could be explained by the 52% increase of quantal size of individual vesicles. It seems therefore
that the SOD1G93A CCs at disease stages have exocytotic responses to ACh with a lesser number of
vesicles but a higher cumulative secretion of catecholamines, due to a higher quantal size, with respect
to WT CCs of matched age.

4. Kinetics of Exocytotic Fusion Pore, Pore Expansion, and Closure in CCs from Mouse Models of
NDDs

An amperometrically monitored spike is frequently preceded by a small foot. These two phases
result from the same fusion event: the foot arises from the slow release of catecholamines through a
so-called fusion pore that occurs at an early step of exocytosis [31]. The fusion pore was postulated to
be a gap-junction-like structure that first forms a nucleus for fusion and, after some delay, dilates to
generate the fast full secretory spike (Figure 1B) [32,33].

In the HD R6/1 mice, the number of spikes preceded by a foot was similar to WT, 58%; however,
Ifoot, Tfoot, and Qfoot were 25%, 26%, and 36% smaller respectively, meaning that the fusion pore
stabilized quicker to undergo full expansion more rapidly in R6/1 cells, with respect to WT cells [29].

Multiple-spike events and the rate of flickering were similar in WT and the SOD1G93A ALS CCs,
around 4% and 7%, respectively. Spikes with foot were slightly higher in the latter, 66% versus 59.6%;
Ifoot was 23% lower, tfoot was 31% higher, and Qfoot was similar. This means that in the SOD1G93A

mouse, the fusion pore stabilized faster, with respect to the R6/1 HD mice [30].
In the APP/PS1 mouse model of AD, the frequency of spikes with foot was similar to the WT mice

(around 63%). Ifoot and Tfoot were somehow smaller, but the real difference was found in Qfoot, which
was halved in APP/PS1 CCs (28 fC) with respect to WT cells (59 fC). This means a faster stabilization of
the fusion pore with a quicker transition to pore expansion in APP/PS1 cells [34].

Stabilization and expansion of the exocytotic fusion pore gives rise to a full spike, an indication
of the quantal release of the catecholamines per single secretory storage chromaffin vesicle [31]. The
kinetic parameters monitored in each individual spike indicate deep changes between the WT and
transgenic CCs. With respect to the WT cells, the mean rise rate of the R6/1 spike was 34% faster, with
35% faster decay, 28% smaller t1/2, 50% smaller Q, and 37% lower Imax. This means that the R6/1
spike was substantially smaller and faster than its WT counterpart, suggesting a much lower release of
catecholamines per vesicle undergoing exocytosis [29].

The SOD1G93A spike exhibited a 40% smaller rise rate and 17% lower Imax; however, the rest
of the parameters were substantially higher: 61%, 55% and 52%, respectively, for decay time, t1/2,
and Q, with respect to the WT. This suggests a smaller and wider spike, with a higher secretion of
catecholamines per vesicle, but at a slower rate [30]. The opposite was true for APP/PS1 CCs that
showed 40%, 40% and 55% decreases of decay, t1/2, and Q, respectively, meaning a faster but smaller
amount of catecholamine release per single spike [34].

5. Changes in Ion Currents and [Ca2+]c Signaling

The fine-tuning of calcium (Ca2+) homeostasis in CCs is tightly controlled by a functional triad
comprising the voltage-activated calcium channels (VACCs; Ca2+ entry into CCs), the endoplasmic
reticulum (ER), and the mitochondria (Ca2+ redistribution into organelles) [35]. In some of the studies
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referred to above, whole-cell calcium currents (ICa), sodium currents (INa), and changes of cytosolic
calcium concentrations ([Ca2+]c), have also been explored [35].

In SOD1G93A CCs, augmented whole-cell calcium current (ICa) and decreased sodium current
(INa), were observed. This correlated with higher [Ca2+]c transients and decreased CC excitability [30].
We also found notable changes in the R6/1 CCs, namely a decreased INa, unaltered ICa, and faster
[Ca2+]c clearance [29].

These changes in ion current and [Ca2+]c clearance are difficult to correlate with the changes
observed either in bulk exocytosis or the kinetics of single exocytotic events. However, we can be
certain that in mouse models of NDDs, alterations are not restricted to the secretory machinery and the
last steps of exocytosis at the subplasmalemmal exocytotic sites. Rather, these alterations also occur in
cell excitability and ion currents; these are particularly notable in INa, which is severely depressed in
both SOD1G93A and R6/1 CCs.

6. Some Pathological Proteins Associated with NDDs Are Also Expressed in CCs to Modify
Exocytosis

Some pathological proteins associated with NDDs are clearly expressed in CCs. This is the case
for huntingtin in R6/1 CCs, which is abundantly expressed in the cytoplasm and nucleus. Of interest is
the observation that huntingtin is expressed even at presymptomatic disease stages. This may explain
that at these stages there was already a pronounced decrease of bulk secretion [1,29]. The mutated
enzyme SOD1G93A is also expressed in CCs of the ALS mice (unpublished, doctoral thesis I. Méndez).
Contrarily, in CCs from the AD model APP/PS1 mice, Aβ pathology was not present in APP/PS1 mice,
although Aβ aggregates were certainly found in the cerebral cortex [34].

Some other pathological proteins are naturally expressed in CCs or have been transfected and
overexpressed to inquire about their role in regulating exocytosis. Thus, pathology associated with
α-synuclein has been found in the adrenal medulla of Parkinson‘s disease (PD) patients, as in CCs
endogenously expressing the protein [36]. Also, α-synuclein overexpression in the mouse CCs
promoted fusion pore dilation [37] at the time it decreased exocytosis [38].

On the other hand, huntingtin-associated protein 1 (HAP1), localizes in adrenal CC vesicles [39].
The fact that HAP1 deletion decreases exocytosis in mouse CCs prompted experiments showing a
smaller pool of ready-release vesicles and a smaller fraction of docked vesicles [40].

From the experiments in transgenic mouse models of NDDs and the endogenously expressed or
transfected proteins, it seems clear that some pathological proteins that are being associated with the
pathogenesis of NDDs are also expressed in adrenal CCs to disrupt exocytosis and the physiological
release of catecholamines.

7. A Hypothesis on The Implication of The Sympathoadrenal Axis in The Pathogenesis of NDDs

Communication between neurons, and among neurons and the cells they innervate to control their
functioning, secures body homeostasis and the responses to external and internal stimuli in health and
disease [41]. The structural and functional basis for such communication is an electrochemical language
formed by action potentials, cell depolarization, Ca2+ entry, and the release of chemicals either locally
at the synaptic gap (the neurotransmitters) or at a distance through the circulation (the catecholamines
in the adrenal medulla and other hormones). Considering that the stimulus-secretion coupling process
in adrenal CCs is controlled by the brain cortex and hypothalamus via sympathetic spinal cord outputs
and the splanchnic nerves, it seems plausible that synaptic disruption and altered neurotransmitter
release at central areas occurring in NDDs may also impinge peripheral neurosecretory exocytotic
events in different parts of the sympathoadrenal axis.

Due to the ease of isolation and culture of adrenal CCs, and taking into account that they are
endowed with the reach collection of ion channels and action potentials inherent to neurons [42], it is
of no surprise that CCs have extensively been used to explore the tiny alterations of the pre-exocytotic
and exocytotic mechanisms underlying the release of catecholamines. So, the alterations of bulk
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exocytosis, and the kinetics of single exocytotic events in CCs from mouse models carrying a mutation
of patients suffering from the NDDs described here, as well as those alterations elicited by pathological
proteins associated with those diseases, support the hypothesis that “adrenal CCs and therefore,
the sympathoadrenal axis controlling their functions, sense and mimic the alterations undergone by
different synapses in the CNS of patients with NDDs”. Such alterations may occur in the pathogenic
context of the following pathways: (i) disruption of the collections of neurons that control centrally
the activity of the sympatho-adrenal axis at the brain cortex and/or the hypothalamus; (ii) a kind of
“propagation” of disease proteinopathies from central to peripheral cells; (iii) impaired stress responses
imposed by the limitations of body functions inherent to the progression of NDD pathology; (iv) mutant
proteins that are expressed by the CCs themselves; and (v) hypoxic conditions linked to microvascular
pathology that may exert drastic changes in CC functions.

8. Conclusions and Perspectives

Peripheral sympathetic activity has been shown to have been altered in some NDDs, through the
monitoring of the circulating levels of noradrenaline and adrenaline; however, scarce and controversial
data have not drawn a clear picture. Clearer are the data obtained in adrenal medullary chromaffin
cells that in various studies exhibited alterations of bulk exocytosis of catecholamines and distorted
kinetics of exocytotic single-events amperometrically monitored, as summarized in Figure 2. So far,
these studies have been performed in CCs from three animal models of NDDs, namely APP/PS1
(AD), SOD1G93A (ALS), and R6/1 (HD). Furthermore, proteins associated with PD (α-synuclein) or HD
(HAP1) expressed in CCs have also been shown to perturb the kinetics of exocytosis. This cumulating
evidence supports the hypothesis that NDDs are not only affecting specific collections of neurons at the
CNS: peripheral neuron-like CCs of the adrenal gland are also deeply affected. As CCs are extremely
sensitive to changes in blood pH, pO2, Ca2+, K+, hormones, metabolic factors, neurotransmitters–and
because these parameters may be modified in NDDs–altered excitability, ion currents, [Ca2+]c signaling,
and exocytosis are expected to occur both in resting conditions and during stress. These potential
changes are food for thought for future experiments in the many mouse models of NDDs available.



Int. J. Mol. Sci. 2020, 21, 1946 7 of 9
Int. J. Mol. Sci. 2020, 21, 1946 7 of 9 

 

 
Figure 2. Schematic representation of altered exocytosis in chromaffin cells (CCs) from wildtype mice 
(WT) and mice carrying a mutation of Huntington’s disease (HD, R6/1), amyotrophic lateral sclerosis 
(ALS, SOD1G93A), and Alzheimer’s disease. CCs were stimulated with 1-min pulses of acetylcholine 
(ACh); bulk secretion (summatory areas of all spikes recorded in 1-min ACh stimulation) is represented 
in the middle traces (Qamp versus time) and the averaged modelled single-spike kinetics are 
represented in the right traces. (A), typical time-course secretory curve and a representation of a spike 
with foot and the parameters measured in each individual spike. (B), bulk secretion and spike kinetics 
in WT and R6/1 CCs [28]; (C), bulk secretion and spike kinetics in SOD1G93A CCs [29]; (D), cumulative 
bulk secretion was not monitored in this study; overlapping WT and APP/PS1 spikes are represented 
on the right part of this panel [33]. See text for further explanation. 
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Figure 2. Schematic representation of altered exocytosis in chromaffin cells (CCs) from wildtype
mice (WT) and mice carrying a mutation of Huntington’s disease (HD, R6/1), amyotrophic lateral
sclerosis (ALS, SOD1G93A), and Alzheimer’s disease. CCs were stimulated with 1-min pulses of
acetylcholine (ACh); bulk secretion (summatory areas of all spikes recorded in 1-min ACh stimulation)
is represented in the middle traces (Qamp versus time) and the averaged modelled single-spike kinetics
are represented in the right traces. (A), typical time-course secretory curve and a representation of a
spike with foot and the parameters measured in each individual spike. (B), bulk secretion and spike
kinetics in WT and R6/1 CCs [28]; (C), bulk secretion and spike kinetics in SOD1G93A CCs [29]; (D),
cumulative bulk secretion was not monitored in this study; overlapping WT and APP/PS1 spikes are
represented on the right part of this panel [33]. See text for further explanation.
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