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Abstract: Background: Attaining an effective mucosal attachment to the transmucosal part of the
implant could protect the peri-implant bone. Aim: To evaluate if chair side surface treatments
(plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces
designed for soft tissue healing. Methods: Grade 5 titanium discs with four different surface
topographies were subdivided into 3 groups: argon-plasma; ultraviolet light, and no treatment.
Cell morphology and adhesion tests were performed at 20 min, 24 h, and 72 h. Results: Qualitative
observation of the surfaces performed at the SEM was in accordance with the anticipated features.
Roughness values ranged from smooth (MAC Sa = 0.2) to very rough (XA Sa = 21). At 20 min,
all the untreated surfaces presented hemispherical cells with reduced filopodia, while the cells on
treated samples were more spread with broad lamellipodia. However, these differences in spreading
behavior disappeared at 24 h and 72 h. Argon-plasma, but not UV, significantly increased the number
of fibroblasts independently of the surface type but only at 20 min. Statistically, there was no surface
in combination with a treatment that favored a greater cellular adhesion. Conclusions: Data showed
potential biological benefits of treating implant abutment surfaces with the plasma of argon in relation
to early-stage cell adhesion.

Keywords: abutment integration; abutment characteristics; dental implant abutment; in vitro study;
fibroblast; bioactivation; plasma of argon; UV light

1. Introduction

The long-term success of dental implants depends, among other factors, on the establishment and
maintenance of crestal bone levels in relation to the formation of a soft tissue barrier [1]. The peri-implant
soft tissues have become a major concern in recent years as the presence of an effective mucosal
attachment at the transmucosal part of the implant can provide the implant with protection of
the peri-implant bone from bacteria contamination and oral environment, preventing peri-implant
pathologies [1-3]. This aspect is of particular relevance in the aesthetic area, where the stability of
gingival margin and papilla is related to the maintenance of crestal bone [3].
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Osseointegration and cell adhesion are both influenced by the surface properties of dental
implants and implants abutments. These properties include topography, roughness, chemistry, charge,
and hydrophilicity [4-6]. Therefore, there has been a tendency to investigate methods to change surface
chemistry to promote faster osseointegration and stability of the implants as well as to achieve a rapid
fibroblast and epithelial cell adhesion and proliferation to the abutments [7-10].

Due to the lack of attachment of connective tissue fibers to the implant surface, implant collars
have been modified including a microtextured portion to enhance soft tissue attachment to the implant
cervical area [11,12]. On the other hand, some experimental and clinical studies have shown physical
attachment of the connective tissue to the laser micro-texturized collar of dental implants with less
bone loss than smooth collars [9,13-15]. By increasing the surface energy, and consequently the surface
hydrophilicity, one can enhance the interaction between the implant and the biological environment,
improving cell adhesion [4]. To promote the hydrophilicity of the titanium surfaces the following
methods have been described: exposure to ultraviolet light (UV) [16], alkali therapy [17], or plasma
processing [18].

Plasma treatment can decontaminate surfaces without modifying their topography [19]. It is also
able to increase surface energy, obtaining more hydrophilic surfaces, which may increase the capacity
of the titanium oxide layer to interact with proteins and cells of surrounding tissue improving cell
adhesion [18,20]. Experimental studies have indicated that non-thermal plasma of argon treatment
has a positive effect on osteoblast adhesion and spreading [18,21] and protein adsorption on different
common titanium surfaces [21].

To provide a stable relation between soft tissue and crestal bone around dental implants is critical
for achieving and maintaining clinical success. As a consequence, there is a need for investigative
methods to enhance biologic surface properties [19]. Although several studies have indicated, so
far, that UV light and non-thermal plasma may improve surface reactivity [16,18,20], it is not known
whether UV light and plasma treatment are comparable in terms of adhesion when different titanium
surfaces designed for soft tissue healing are evaluated.

The aim of this in vitro study was, therefore, to evaluate if plasma treatment or ultraviolet light
could affect the adhesion of fibroblasts over different titanium surfaces designed to interface with
connective tissue cells.

2. Results

2.1. Microscopic and Topographic Analysis

At SEM observation, all surfaces were clean without visible contaminations (Figure 1).
Topographic analysis of machined disc MAC highlighted a smooth surface with circular micro-threads
with depth lower than 2 um (Figure 1A), with a Sa mean value of 0.2. The other tested surfaces
appeared all grooved because of the peculiar presence of variably deep parallel micrometric sulci
(hence the “micro-grooved” pattern). UTM surface presented a particular threading with a triangular
profile and pitch of 50 um (Figure 1B). XA surface (Figure 1C) was more deeply threaded with a pitch
of 80 um and a depth of 50 pm. The Sa mean value of this surface was 21, and its Sdr 119%, consistently
with its micro-topography. Although anodized, UTM-Y surface (Figure 1D) resembled that of UTM,
whose Sa and Sdr were respectively 0.6% and 2.8%, the same values as UTM.
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Figure 1. Topographic analysis of the selected surfaces. (A): MAC; (B): (UTM); (C): (XA); (D): (UTMY).
2.2. Wettability

The surfaces were tested for the wetting properties by optical contact angle (OCA) measurements
of water drops. As reported in Table 1, MAC showed an average contact angle value of 77°, while
UTM and UTM-Y resulted in progressively more hydrophobic (H20 CA® being respectively 82° and
96°). On the contrary, XA was the most hydrophilic of all the surfaces.
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Table 1. Different roughness (Sa, Ra, Sdr, and Sds) and wettability (H20 CA°) parameters for the
different surfaces.

Surface Sa Ra (um) Sdr% Sds (1/um?) H20 CA°
MAC 0.2 0.11 0.748 0.0856 77 £ 14
UTM 0.6 0.62 2.80 0.0772 817+ 1.6

UTM-Y 0.6 0.62 2.80 0.0772 959 +64

XA 21 5.56 119 0.0239 45 + 20

Surfaces (made of grade 5 Ti): MAC: machined titanium; UTM: ultrathin threaded microsurface titanium
(micro-grooved); UTM-Y: nodized ultrathin threaded microsurface titanium (micro-grooved); XA: deep threaded
surface (micro-grooved).

2.3. Cell Morphology and Scanning Electron Microscope Analysis

The behavior of cells on different surfaces at different timepoints are depicted in Figures 2-5.
The analysis of MAC samples suggests that plasma treatment affected the growth/morphology of the
cells only during the first phases of their adhesion, while UV treatment did not exert any effect.
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Figure 2. Cell morphology 20 min after seeding at 200X. Cell cytoskeleton was stained by using

phalloidin (green) and the cell nuclei were stained by using DAPI (blue).



Int. ]. Mol. Sci. 2020, 21,1919 50f18

PLASMA

CTRL

\

UTM MAC

UTM Y

Figure 3. Cell morphology 24 h after seeding at 200X. Cell cytoskeleton was stained by using phalloidin
(green) and the cell nuclei were stained by using DAPI (blue).

At TO (20 min), the cells seeded on MAC (Figures 2 and 5) were hemispherical with reduced and
delicate filopodia, while, the cells grown on the same plasma-treated surfaces became spindle-shaped
with broad lamellipodia and rare filopodia. The effect of plasma of Argon was confirmed also in
UTM, UTM-Y, and XA samples: treated discs showed cells with more spread and extended shape
compared to the untreated samples (Figures 2 and 5). Notably, in both control and treated UTM discs,
the cells were more numerous on the flanks of the grooved surface. In XA control samples the cells
were attached almost exclusively to the bottom of the grooved surface and some of them showed a
spreading morphology (Figures 2 and 5). In the treated sample, cells were more elongated compared
to the control and they appeared more evenly distributed throughout the sample, adhering not only on
the bottom but also on the top and the flanks of the grooves.

AtT1 (24 h), all samples, both treated and untreated ones, presented abundant and well-developed
cells that exhibited a spread morphology and several cellular extensions (Figures 3 and 5). Fibroblasts
in treated and untreated samples were comparable, except for a slight increase in cell area in the
plasma-treated samples (Figures 3 and 5).
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Figure 4. Cell morphology 72 h after seeding at 200X. Cell cytoskeleton was stained by using phalloidin
(green) and the cell nuclei were stained by using DAPI (blue).

In both control and plasma-treated samples of UTM and UTM-Y, several cells showed a flat,
spindle form, and appeared preferentially distributed between the ridges, connecting the flanks of
the grooved surface (Figures 3 and 5). Fibroblasts grown on XA control disc appeared as flattened
cells, located at the bottom of the ridges, or as elongated cells, between the flanks of the ridges. In the
treated samples, instead, many cells grew on the crest of the ridges, showing an unusual morphology
(fusiform but markedly swollen in the center), as portrayed in Figures 3 and 5.

At T2 (72 h), all the specimens allowed the same spread morphology with a similar covered
area, but exhibited an increased growth compared to T1 samples. At this time point, the quantitative
differences previously described between treated and control discs were strongly reduced (Figures 4
and 5). It is worth noting that only on treated XA surfaces, the cells continued to show peculiar spindle
morphology and grew on the top of the ridges. On the contrary, in the untreated discs, the cells were
flattened and located between the ridges or at the bottom of the groove (Figures 4 and 5).
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Figure 5. SEM images of cell adhesion at different timing (20 min, 24 h, 72 h) comparing different surfaces.

2.4. Cell Adhesion

As for the surface treatment, at T0, in all different titanium samples, plasma of Argon significantly
increased the number of adherent fibroblasts compared to the controls (Tables 2 and 3; Figure 6).
This difference, however, was no longer statistically significant at T1 and T2 (Tables 2 and 3).
Ultraviolet light resulted in less effective than Plasma of Argon. Indeed, at T1, the number of adherent
cells was similar to the control and, at T1 and T2, the number of adherent fibroblasts, although higher
on UV treated than untreated surfaces, was not different in a statistically significant way (Tables 2—4;
Figure 6). As regards the surface type, no difference could be detected at any time point (Table 4).
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Table 2. Multiples comparisons: Type of surface and treatment, the number of adherent cells, and the
mean (Standard error). Statistical analysis was performed by using three-way ANOVA with Tukey’s
corrections for multiple comparisons. * represents a significant difference versus the relative time point
control condition.

Surface Treatment Time Fibroblasts
20 min 37.13 (3.24)
Control 24h 198.75 (8.85)
72h 372.75 (25.81)
MAC 20 min 75.38 (4.04) *
Plasma 24h 211.25 (8.90)
72h 359 (21.82)
20 min 27 (3.30)
uv 24h 207.62 (7.76)
72h 353.87 (30.09)
20 min 29.25 (2.95)
Control 24h 213.5 (9.18)
72h 379.12 (19.34)
UTM 20 min 65.88 (4.24) *
Plasma 24 h 203.37 (10.43)
72h 359.87 (20.66)
20 min 27.25 (3.44)
uv 24h 206.37 (11.85)
72h 369.75 (19.67)
20 min 30.13 (3.60)
Control 24h 205 (12.29)
72h 413.5 (29.95)
UTM-Y 20 min 69.38 (5.02) *
Plasma 24 h 205.75 (18.13)
72h 431.37 (23.15)
20 min 28.75 (4.63)
uv 24h 200.12 (10.45)
72h 364.25 (31.16)
20 min 32,50 (3.11)
Control 24h 207 (10.97)
72h 479.25 (34.42)
XA 20 min 68.75 (4.96) *
Plasma 24h 204.25 (8.61)
72h 490 (35.45)
20 min 31.25 (3.09)
uv 24h 208.25 (10.82)
72h 462.87 (30.94)

Surfaces (made of grade 5 Ti): MAC: machined titanium; UTM: ultrathin threaded microsurface titanium; UTM-Y:
anodized ultrathin threaded microsurface titanium; XA: deep threaded surface. Treatments: control; no treatment;
UV: ultraviolet light; plasma; non-thermal plasma treatment.
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Figure 6. Representation of adherent fibroblast at 20 min (A), 24 h (B), 72 h (C). Statistical analysis was
performed using three-way ANOVA with Tukey’s corrections for multiple comparisons. * represents a
significant difference versus the relative time point control condition. Surfaces (made of grade 5 Ti):
MAC: machined titanium; UTM: ultrathin threaded microsurface titanium; UTM-Y: anodized ultrathin
threaded microsurface titanium; XA: deep threaded surface. Treatments: control; no treatment; UV:
ultraviolet light; plasma; non-thermal plasma treatment.
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Table 3. Type of treatment, the number of adherent cells, and the mean (Standard error). Statistical
analysis was performed by using three-way ANOVA with Tukey’s corrections for multiple comparisons.
* represents a significant difference between the plasma treatment and the other groups of the relative

time point.
Treatment TO0 20 min T124h T272h
Control 30.56 (1.16) 207.22 (3.91) 388.81 (12.78)
Plasma 72.06 (2.86) * 208.14 (4.43) 394.16 (12.34)
uv 29.93 (1.53) 209.92 (4.25) 379.41 (12.85)

Table 4. Type of surface, the number of adherent cells, and the mean (Standard error).Statistical analysis
was performed by using three-way ANOVA with Tukey’s corrections for multiple comparisons.*
represents a significant difference versus the relative time point MAC condition.

Surface TO0 20 min T124h T272h
MAC 37.13 (3.24) 198.75 (8.85) 372.75 (25.81)
UTM 29.25 (2.95) 213.5 (9.18) 379.12 (19.34)

UTM-Y 30.13 (3.60) 205 (12.29) 413.5 (29.95)

XA 32.50 (3.11) 207 (10.97) 479.25 (34.42)

Surfaces (made of grade 5 Ti): MAC: machined titanium; UTM: ultrathin threaded microsurface titanium; UTM-Y:
anodized ultrathin threaded microsurface titanium; XA: deep threaded surface.

2.5. Focused Ion Beam Evaluation of Fibroblasts Layers

After 72 h, complete coverage of the discs” surface was observed for the UTM and UTM-Y
samples. Hence the FIB column was used to perform a selective ablation of these samples to evaluate
the difference in cell layer thickness. The growth pattern of the cells appeared the same in both
treated and untreated samples with fibroblasts completely adhering to the top of the titanium crests.
However, UTM and UTM-Y discs treated with either plasma or UV displayed a slight increase in cell
layer thickness compared to the untreated discs, with an increase ranging from 30% to 50% (Figure 7).

CONTROL uv PLASMA

UTM disc- Cell layer - Cell cross section -

Figure 7. Image of FIB/SEM cross-sections showing the interface between the cells and the surface of
untreated, UV treated and plasma-treated UTM discs.
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3. Discussion

The establishment and maintenance of an efficient soft tissue seal around dental implants and
abutments are hallmarks for implant success [22]. The surface properties of implant elements have
proven to influence the quality of this mucosal attachment. To improve the interaction between recipient
tissues and implant components different surface modifications have been proposed, among which
topography, roughness, and chemical qualities have been the research focus [23,24].

While the effects of surface roughness on the bone response have been widely discussed [25-27],
the scientific data are lesser, with regards to the impact of surface roughness on soft tissue attachment.
Some histological investigations in humans and animals support the fact that moderately rough
surfaces may favor soft tissue integration [28-30]. This observation is in accordance with the present
study, where micro-grooved surfaces promoted higher levels of cell adhesion than MAC, although
only XA was statistically significant.

Besides roughness, chemical surface modifications such as those obtained by anodization of grade
5 titanium have been suggested to enhance the early biological response of gingival cells when dealing
with machined smooth surfaces [31]. The anodization process was used here to modify UTM attaining
UTM-Y, endowed with a yellowish color (hence the suffix Y). These micro-grooved and anodized
micro-grooved surfaces had identical roughness features, but they differed in terms of wettability
(Table 1). The anodization process promoted indeed a slight transition of UTM-Y (H20 CA = 96°)
toward the hydrophobic regime compared to UTM (H20 CA = 82°).

Surface energy plays a relevant role among the surface properties of implants components [32].
More specifically, hydrophilicity may promote cell adhesion, being beneficial during the early stage
of wound healing [33]. Both UV light and plasma cleaning can increase surface wettability [19].
In this in vitro model, significantly higher values of cell adhesion could be detected due to the plasma
treatment at 20 min irrespective of the type of surface. Differences, however, lost their statistical
significance with time. Interestingly the wettability of pristine surfaces, albeit quite different, could not
affect fibroblast adhesion in a statistically significant way (Table 1). Data here presented are in line with
previously reported outcomes evidencing that plasma treatment is capable of enhancing cell adhesion
on titanium surfaces, mostly at the early stage [18,34]. On the other hand, no differences were found
between the ultraviolet light group and untreated discs in terms of cell adhesion, unlike other studies
where UV treatment seemed to increase this parameter [21].

Whether wettability, which is indeed influenced both by surface topography and chemical
composition [35], is sufficient to predict the biological outcome is still a matter of debate. For instance,
Gittens et al. [36], in a magistral paper of theirs, stated that “available techniques to measure surface
wettability are not reliable on clinically relevant, rough surfaces,” and they noticed that the behavior
of the cell model used was dependent on its differentiation state. Although these authors were
working with lineage osteoblasts, the consideration sheds light on the delicacy of any cell model,
fibroblasts included.

In this study, fibroblasts preferentially adhered to the peaks of roughened surfaces. According to
Chang et al. [37], one may speculate that fibroblasts reacted to a fibronectin density possibly higher on
activated surfaces than the untreated controls, by forming more adhesion complexes. Whatever the
mechanism involved at T0, at T2, no differences could be found between treatment groups. A reasonable
explanation thereof could be the duration of plasma of argon effects, as this treatment is very powerful,
but it tends to be most active in a limited period of time, which may not be detrimental for chair
side usage. As pointed out elsewhere [21], another aspect worthy of consideration is the saturation
effect owing to rapid cell growth on a small surface like a disc. The present work tried to overcome,
at least in part, this usual drawback of in vitro studies recurring to a strong statistical setting.
Furthermore, the thickness of cells overgrowing at T2 was considered carefully.

The FIB column ablation allowed to show a slight difference in terms of cell stratification,
which may suggest promising results in case of longer observation time-point. A bi-dimensional
observation, indeed, may fail to detect “vertical growth” following cell stratification. In the present
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study, FIB, by ablating part of the cell carpet, allowed a tridimensional observation of cell layers, thus
highlighting any possible difference among samples. In particular, UTM and UTM-Y discs were the
only samples completely covered with cells at T2 and they displayed a slight increase in cell layer
thickness compared to untreated discs, independently of the type of treatment received (UV or Plasma
of Argon). This qualitative observation suggested that FIB/SEM might be useful for analyzing cell
layering in future studies.

However, the main limitation of this research is, obviously, the very in vitro model. In spite of the
positive and encouraging outcomes, this study must be confirmed in vivo and, even more compellingly,
recurring to clinical trials. Finally, the selected micro-topographies exemplified three of the most
common families adopted on the abutments (smooth, micro-grooved, anodized), but they did not
represent all the possibilities available on the market.

4. Materials and Methods

4.1. Sample Size

A power analysis was performed by referring to a similar preclinical study, which investigated
the same topic [38]. Based on these data, mean fibroblast adhesion values of 181 + 37 and 135 + 26
at 20 min (p = 0.0039) was projected by setting effect size dz = 1.438, error probability alpha = 0.05,
and power = 0.95 (1-beta error probability), resulting in 12 samples from each sub-group (G* Power
3.1.7 for Mac OS X Yosemite, version 10.10.3).

4.2. Sample Preparation

As portrayed in Figure 8, 884 serially numbered, sterile discs (Sweden & Martina), made of grade
5 titanium, with four different surface topographies were used for this study:

884 sterile titanium disks

MAC utm utmy XA
n=219 n=219 n=219 n=219

S OB & &

Wettability, topography
and surface analysis

20 sterile titanium disks
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Test group 1 n= 288
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Ultraviolet
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Control group 2 n= 288

No treatment

Figure 8. Flow chart of the randomization sequence explaining the study design and the allocation of

the samples.

machined (MAC);

“micro-grooved” surfaces Ultrathin Threaded Microsurface (UTM);
“micro-grooved” Anodized Ultrathin Threaded Microsurface (UTM-Y);
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“micro-grooved” Thin Machined (XA).

All disks had a diameter of 10 mm and a height of 3 mm. After manufacturing, all the titanium
discs underwent the same standard cleaning and sterilization procedure that is used for commercial
dental implants. Three discs per surface type underwent surface and micro-topography analyses.
Two discs per surface type underwent an analysis of wettability. The remaining 864 titanium discs,
i.e., 216 per each of the 4 surfaces, were randomly allocated into three sub-groups of 288 samples
as follows:

i.  Argon plasma treatment at 8 W and atmospheric pressure for 6 min, using a plasma reactor,
Plasma R, Diener Electronic GmbH, Ebhausen, Germany, (test group 1, TG1)

ii. UV treatment [Ultra Violet light treatment (Toshiba, Tokio, Japan) for 3 h (15 W) at ambient
conditions [intensity: 0.1 mW/cm2 (A = 360 + 20 nm) and 2 mW/cm?2 (A = 250 + 20 nm)] (test
group 2, TG2)

iii. No treatment (control group, CG).

Every treatment subgroup counted a total of 72 samples per surface and was further
subdivided into either a cell adhesion group (n = 36) or a cell morphology group (n = 36).
Finally, three computer-generated randomization lists (Random Number Generator Pro 2.08 for
Windows, Segobit Software, http://www.segobit.com/) were used to randomly allocate the titanium
discs into three sub-groups (10, T1, T2), consisting in an equal number of 12 titanium discs each. All the
computer-generated randomization lists were prepared in advance by an external investigator not
involved in the study and an independent consultant prepared all of the envelopes/containing numbers
for randomization, which were opened immediately before the testing procedures.

4.3. Topographic Analysis

Area surface roughness parameters at different sites of the implant were obtained by scanning
electron microscope (SEM), using an EVO MA 10 SEM (Zeiss, Oberkochen, Germany). In particular,
the Stereo Scanning Electron Microscope (SSEM) technique was used. This approach exploits the basic
principle of stereo vision to turn conventional SEM images into three-dimensional surface topography
reconstructions. Two images of the same field of view are acquired after eucentric rotation at a given
angle. This is obtained by changing the angle between the sample and the electrons source, by tilting
the table bearing the sample. The tilting angle is set and controlled by the instrument control software.
The recorded incoming data were the couple of images obtained (stereopair), the size of the field of
view, and the tilting angle and they were processed using a specific software (Mex 6.0, Alicona Imaging,
Chicago, IL, USA).

Three-dimensional images obtained by this process allowed us to measure height profiles or
areas, and to calculate the different roughness parameters defined by relevant literature and standards
(Table 1). In the present analysis, SEM images used to build-up stereo-pairs were obtained at 2000x.
Roughness parameters according to ISO25178 were obtained from reconstructed images of 80 x 110
micrometers area.

4.4. Wettability

To assess the wetting properties of the samples, the optical contact angle (OCA) of a sessile
water drop (1 pL in volume) was measured through the OCAH 200 (DataPhysic Instruments GmbH,
Filderstadt, Germany). The integrated high-resolution camera allowed us to acquire the image of the
drop on each specimen, while the drop profiles were extracted and fitted with a dedicated software
(SCA20) through the Young-Laplace method. Contact angles between the fitted function and baseline
were calculated at the liquid—solid interface [39,40].
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4.5. Cell Culture

To characterize the biological response in vitro, Normal Human Dermal Fibroblasts were used
(NHDF). Fibroblasts were maintained in Dulbecco Minimum Essential Medium (DMEM).

These cells represent an excellent model for studying the dynamics of fibroblast adhesion [31,41-44]
and have similar behavior in culture to the gingival fibroblast despite some differences; indeed,
their fundamental characteristics are almost identical [41].

The culture media were supplemented with 10% fetal bovine serum (Life Technologies, Milan,
Italy), 100 U/mL penicillin, 100 mg/mL streptomycin, were passaged at subconfluency to prevent
contact inhibition and were kept under a humidified atmosphere of 5% COj in the air, at 37 °C.

4.6. Cell Morphology

Cells were seeded on titanium discs (1 = 648) at a concentration of 10* cells/well in a 48-well plate
(BD, Milan Italy) and then kept in growth condition. After 20 min, 24 h and 72 h (T0, T1, T2), the
titanium specimens were washed in Phosphate Buffer Saline (PBS) and then the cells were fixed with
4% paraformaldehyde (PFA) in PBS for 15 min. After two washes with PBS, cells were permeabilized
with 0.1% Triton X-100 (Sigma-Aldrich) in PBS. Following the manufacturer’s protocol, cells were
stained with Rodhamine-Phalloidin (Life Technologies) and 1 uM 4’,6-diamidino-2-phenylindole (Dapi,
Life Technologies) to respectively detect the cytoskeleton and the nuclei [45,46]. Image acquisition was
made recurring to a Nikon Eclipse Ti-E microscope with 40X objective (Plan Fluor Nikon) [47]. Image
analysis [48-50] was performed using Image] software (ImageJ, U.S. National Institutes of Health,
Bethesda, MA, USA, http://imagej.nih.gov/ij/).

4.7. Cell Adhesion

Cell adhesion was evaluated on 648 titanium samples using a 48-well plate (BD, Milan, Italy).
Cells were detached using trypsin for 3 min, carefully counted, and seeded at 3 x 10° cells/well in
1 mL of growth medium on the different samples. The 48-well plates were kept at 37 °C, 0.5% CO; for
20 min, 24 h and 72 h. Before and after fixation in 4% paraformaldehyde in PBS for 15 min at room
temperature, cells were washed two times with PBS and then stained with 1 uM DAPI (Molecular
Probes, Eugene, CA, USA) for 15" at 37 °C to detect cell nuclei. Samples were analyzed using a Nikon
Eclipse T-E microscope with a 4X objective. Cell nuclei were then counted by using Image] (NIH)
software with the tool “Analyze particles” [51,52].

4.8. Scanning Electron Microscope/Focused lon Beam Analysis

To test if in vitro conditions at the longer time points could generate a different cell layering,
samples at T2 were dehydrated with a graded ethanol series, air-dried, and secured to an aluminum
stub with a conductive adhesive carbon disc. Subsequently, the specimens were sputter-coated with
a thin layer (30 nm) of gold using a K550 sputter coater (Emithech, Kent, UK) and examined by the
Dual Beam Helios Nanolab 600 (FEI, Hillsboro, state, USA). Micrographs of the samples were acquired
detecting secondary electrons, using an operating voltage of 5 kV and an applied current of 0.17 nA

Additionally, the Focused Ion Beam (FIB) column was used to selectively ablate a small region of
the cell layer, making it possible to evaluate its thickness and the interaction between the fibroblasts
and the titanium surface.

4.9. Statistical Analysis

Data were recorded on Excel 2011 data sheet (Microsoft Corporation, Redmond, WA, USA) and
analyzed by using Statistical Analysis Software (SAS; Cary, NC, USA) and GraphPad Prism 6 [53-55].
The following independent variables were considered: (1) the type of surface, (2) the type of treatment,
(3) the time of assessment. The number of fibroblasts on in vitro titanium discs was the primary
dependent outcome variable. Data were expressed as means and 95% confidence intervals. To compare
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the effect of type of surface, type of treatment, time of assessment, and their interaction on the main
outcome variable, a general linear model was performed, using three-way ANOVA with Tukey’s
corrections for multiple comparisons [56,57].

5. Conclusion

Within its limitations, this in vitro study highlighted the capability of micro-grooved surfaces to
attract and distribute cells, suggesting the potential biological benefits of treating implant surfaces with
the plasma of argon in relation to early-stage cell adhesion. The positive reported outcomes encourage
the use of micro-grooved surfaces and bio-activation in in vivo studies.
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