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Abstract: Sterile and decellularized allograft tendons are viable biomaterials used in reconstructive
surgeries for dense connective tissue injuries. Established allograft processing techniques including
gamma irradiation and sodium dodecyl sulfate (SDS) can affect tissue integrity. Supercritical carbon
dioxide (SCCO2) represents a novel alternative that has the potential to decellularize and sterilize
tendons with minimized exposure to denaturants, shortened treatment time, lack of toxic residues,
and superior tissue penetration, and thus efficacy. This study attempted to develop a single-step
hybrid decellularization and sterilization protocol for tendons that involved SCCO2 treatment
with various chemical additives. The processed tendons were evaluated with mechanical testing,
histology, scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy.
Uniaxial mechanical testing showed that tendons treated with SCCO2 and additive NovaKillTM Gen2
and 0.1% SDS had significantly higher (p < 0.05) ultimate tensile stress (UTS) and Young’s modulus
compared to gamma-irradiated and standard-SDS-treated tendons. This was corroborated by the
ultrastructural intactness of SCCO2-treated tendons as examined by SEM and FTIR spectroscopy,
which was not preserved in gamma-irradiated and standard SDS-treated tendons. However, complete
decellularization was not achieved by the experimented SCCO2-SDS protocols used in this study.
The present study therefore serves as a concrete starting point for development of an SCCO2-based
combined sterilization and decellularization protocol for allograft tendons, where additive choice is
to be optimized.

Keywords: Allograft; decellularization; sterilization; supercritical carbon dioxide; supercritical
fluid; tendon

1. Introduction

Tendinous and ligamentous injuries are extremely common, especially among at-risk population
subgroups such as military recruits, recreational and elite runners, and professional athletes, and
contribute to much morbidity and functional loss [1–4]. The reported incidence rates of anterior
cruciate ligament (ACL) injuries that require surgical reconstruction, for instance, are up to 0.52 cases
per 1000 person-years in Australia and climb to as high as 1.52–37.62 cases per 1000 person-years for
professional athletes [5]. Autogenous tendons are currently considered the gold standard for grafting
of large defects [6]. However, they are associated with limited availability, prolonged surgical and
rehabilitation time, donor site morbidity, and potential functional deficits [7–12]. Use of allografts, on
the other hand, circumvents the above-mentioned drawbacks associated with autograft harvesting
and implantation, but is discouraged by higher costs, the immunogenicity of the donor cellular

Int. J. Mol. Sci. 2020, 21, 1565; doi:10.3390/ijms21051565 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://dx.doi.org/10.3390/ijms21051565
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/21/5/1565?type=check_update&version=2


Int. J. Mol. Sci. 2020, 21, 1565 2 of 20

materials [13], and most notably, the much-dreaded risk of disease transmission [14–18]. Consequently,
in addition to routine donor screening and adherence to aseptic harvesting and handling techniques [19],
allograft tendons are recommended to be terminally sterilized to achieve a sterility assurance level
(SAL) of 10−6 [20], which denotes a 1 in 100,000 probability of any micro-organisms surviving the
treatment [21–23].

Currently, gamma irradiation stands as the mainstay for musculoskeletal allograft sterilization [24–26],
which inactivates pathogens by damaging the nucleic acids through direct energy deposition and
generation of free radicals [27,28]. Nevertheless, it undermines the biomechanical and biological
properties of allograft tendons in a dose-dependent manner [29–32], which is thought to be mediated
by the irradiation-induced free radicals cross-linking collagen [33]. Consequently, controversy
persists regarding whether the routinely used moderate-dose 25 kGy gamma irradiation to achieve
acceptably low risk of transmission markedly compromises the initial mechanical properties of allograft
tendons [31,34–47].

Contrarily, supercritical carbon dioxide (SCCO2), which has many applications in the food and
pharmaceutical industries [48–50], emerges as a promising alternative that possesses many properties
of an ideal sterilant for biomaterials. As CO2 enters its supercritical state at 31.1 ◦C and 1099 psi
(Figure 1), its gas-like viscosity and diffusability allow it to readily permeate the tissue matrices,
while its liquid-like density and solvation power [51–53] enable synergy with modifier solutions to
improve sterilization efficacy [54–57]. The low critical temperature of CO2 makes it suitable for treating
heat-sensitive biomaterials by not denaturing the protein content of the tissue [57–60]. SCCO2 can be
easily withdrawn without toxic residues from treated biomaterials simply through depressurization
and out-gassing [55,61]. Besides, CO2 is non-toxic, non-inflammable, and chemically inert, and thus
does not constitute an environmental or occupational hazard [62,63]. Meanwhile, its natural abundance
and recyclability guarantee the economic feasibility of industrial-scale CO2-based sterilization [49,64].

Int. J. Mol. Sci. 2020, 21, x 2 of 21 

 

cellular materials [13], and most notably, the much-dreaded risk of disease transmission [14–18]. 
Consequently, in addition to routine donor screening and adherence to aseptic harvesting and 
handling techniques [19], allograft tendons are recommended to be terminally sterilized to achieve a 
sterility assurance level (SAL) of 10−6 [20], which denotes a 1 in 100,000 probability of any micro-
organisms surviving the treatment [21–23]. 

Currently, gamma irradiation stands as the mainstay for musculoskeletal allograft sterilization 
[24–26], which inactivates pathogens by damaging the nucleic acids through direct energy deposition 
and generation of free radicals [27,28]. Nevertheless, it undermines the biomechanical and biological 
properties of allograft tendons in a dose-dependent manner [29–32], which is thought to be mediated 
by the irradiation-induced free radicals cross-linking collagen [33]. Consequently, controversy 
persists regarding whether the routinely used moderate-dose 25 kGy gamma irradiation to achieve 
acceptably low risk of transmission markedly compromises the initial mechanical properties of 
allograft tendons [31,34–47]. 

Contrarily, supercritical carbon dioxide (SCCO2), which has many applications in the food and 
pharmaceutical industries [48–50], emerges as a promising alternative that possesses many properties 
of an ideal sterilant for biomaterials. As CO2 enters its supercritical state at 31.1 °C and 1099 psi 
(Figure 1), its gas-like viscosity and diffusability allow it to readily permeate the tissue matrices, while 
its liquid-like density and solvation power [51–53] enable synergy with modifier solutions to improve 
sterilization efficacy [54–57]. The low critical temperature of CO2 makes it suitable for treating heat-
sensitive biomaterials by not denaturing the protein content of the tissue [57–60]. SCCO2 can be easily 
withdrawn without toxic residues from treated biomaterials simply through depressurization and 
out-gassing [55,61]. Besides, CO2 is non-toxic, non-inflammable, and chemically inert, and thus does 
not constitute an environmental or occupational hazard [62,63]. Meanwhile, its natural abundance 
and recyclability guarantee the economic feasibility of industrial-scale CO2-based sterilization [49,64]. 

 
Figure 1. Phase diagram of CO2 showing the critical point at 31.1 °C and 1099 psi [54]. 

SCCO2 has been demonstrated to inactivate viruses [65–67], vegetative bacteria [57,62,68], and, 
working synergistically with additives such as peracetic acid (PAA) and hydrogen peroxide (H2O2), 
bacterial spores [69,70] to achieve SAL 10−6 [54,61], though the exact mechanism remains obscure [71]. 
Pioneering studies have found it to be a gentle agent that appears to preserve the mechanical 
properties of a variety of tissues such as heart valves [59], lungs matrices [72], amniotic membrane 
[73], bones [66,74–77], acellular dermal matrices [69], and menisci [78], while there is still a paucity of 
literature on tendons [40,46,79]. 

Donor cells and residual DNA have been shown to induce prolonged adverse host inflammatory 
reactions against allograft tendons in vivo that can lead to clinical inferiority to autografts [13]. 
Therefore, decellularization, the process of removing resident cells and nuclear material, has been 
increasingly recognized as a crucial step in the tissue engineering process to mitigate their 

Figure 1. Phase diagram of CO2 showing the critical point at 31.1 ◦C and 1099 psi [54].

SCCO2 has been demonstrated to inactivate viruses [65–67], vegetative bacteria [57,62,68], and,
working synergistically with additives such as peracetic acid (PAA) and hydrogen peroxide (H2O2),
bacterial spores [69,70] to achieve SAL 10−6 [54,61], though the exact mechanism remains obscure [71].
Pioneering studies have found it to be a gentle agent that appears to preserve the mechanical
properties of a variety of tissues such as heart valves [59], lungs matrices [72], amniotic membrane [73],
bones [66,74–77], acellular dermal matrices [69], and menisci [78], while there is still a paucity of
literature on tendons [40,46,79].

Donor cells and residual DNA have been shown to induce prolonged adverse host inflammatory
reactions against allograft tendons in vivo that can lead to clinical inferiority to autografts [13].
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Therefore, decellularization, the process of removing resident cells and nuclear material, has
been increasingly recognized as a crucial step in the tissue engineering process to mitigate their
antigenicity. Decellularization usually entails agitated wash in protein-denaturing detergents followed
by prolonged washing with phosphate-buffered saline (PBS) or deionized water to unload toxic residues
introduced [80]. It is proposed that SCCO2 may be equally, if not more, effective at removing chemical
residues while drastically expediating the washing process owing to its solvent properties, diffusibility,
and ease of withdrawal from tissue, as described above. Indeed, Casali et al. [81] have recently
successfully purged cytotoxic detergent from porcine aortas using SCCO2 following solution-based
decellularization treatment, shortening the final cleansing step to merely one hour, which typically lasts
more than 24 h with saline wash. Additionally, similar to how it drastically improves the sterilization
efficacy of PAA while minimizing the chemical concentration required [54], SCCO2 has the potential to
directly synergize with additive decellularizing detergents such as sodium dodecyl sulfate (SDS) to
remove the immunogenic cellular materials, but to our knowledge, such a possibility has not yet been
extensively explored by published studies.

SCCO2 can potentially engender a single-step protocol with shortened treatment time that
produces sterile and decellularized tendon allografts without compromising their biomechanical
properties. The aims of the present study was therefore to (a) test if the established SCCO2 sterilization
protocol preserves the initial biomechanical properties of tendons; (b) histologically assess if SCCO2 is
able to preserve the morphology of, and decellularize tendons with appropriate additive chemicals; and,
in addition, (c) microscopically and molecularly characterize tendons undergoing different treatments
through field-emission scanning electron microscopy (FE-SEM) and Fourier-transform infrared (FTIR)
spectroscopy, respectively. It was hypothesized that SCCO2 treatment would not affect the initial
biomechanical properties, ultrastructure, and chemical signatures of tendon grafts and would be able
to decellularize tendons with appropriate additives.

A total of 6 groups were proposed for the study: (I) Untreated control; (II) Moderate-dose gamma
irradiation (~25 kGy); (III) Standard SDS [82]; (IV) SCCO2 treatment with the sterilising NovaKillTM

Gen2 additive (SCCO2-NK); (V) SCCO2 with NovaKillTM Gen2 and 0.1% SDS (SCCO2-0.1%-SDS); and
(VI) SCCO2 with NovaKillTM Gen2 and 1% SDS (SCCO2-1%-SDS).

2. Results

2.1. Gross Appearance and Dimensions

Compared to native tendons, gamma-irradiated tendons became shriveled and their surface
granular; the SCCO2-NK-treated tendons became noticeably cleaner with effacement of the
surface marks made on them prior to treatment; and SCCO2-SDS-treated tendons, especially the
SCCO2-0.1%-SDS treated ones, turned out to be visibly dehydrated, to the extent that they were
appreciably transparent, and only regained the typical white and glossy texture of tendons after
immersing in PBS for at least 15 min. No perceptible change in the outward appearance was observed
for the standard-SDS-treated tendons.

The mean pre- and post-treatment cross-sectional area (CSA) and thickness of the standard
SDS group were significantly greater than those of the control group (p < 0.05), while the mean
post-treatment CSA and thickness of SCCO2-0.1%-SDS group were significantly smaller than those
of the Standard SDS group (p < 0.05). No significant differences were found between the pre- and
post-treatment dimensions of tendons in all groups except the SCCO2-0.1%-SDS group, where there
was a statistically significant decrease in CSA (p = 0.020) and thickness (p = 0.008), which was in
concordance with their dehydrated appearance post-treatment (Table 1).
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Table 1. Pre- and post-treatment dimensions.

Group
Cross-Sectional Area (CSA)

(mm2) Thickness (mm) Width (mm)

Pre-Treatment Post-Treatment Pre-Treatment Post-Treatment Pre-Treatment Post-Treatment

Control 3.75 ± 0.96 1.64 ± 0.21 2.90 ± 0.56
25 kGy Gamma 4.61 ± 1.32 a 4.34 ± 1.00 1.84 ± 0.29 1.69 ± 0.21 3.15 ± 0.53 3.26 ± 0.62

Std SDS 4.89 ± 0.82 a 4.78 ± 0.89 a 1.85 ± 0.14 a 1.85 ± 0.17 ab 3.39 ± 0.63 a 3.32 ± 0.67 a

SCCO2-NK 4.33 ± 0.84 4.14 ± 0.73 c 1.70 ± 0.19 1.70 ± 0.18 c 3.25 ± 0.59 3.06 ± 0.60
SCCO2-0.1%-SDS 4.31 ± 0.95 3.53 ± 0.84 bcd* 1.73 ± 0.12 1.62 ± 0.11 c* 3.16 ± 0.66 2.78 ± 0.65 bc

SCCO2-1%-SDS 4.05 ± 0.81 c 4.17 ± 0.79 ce 1.73 ± 0.16 1.76 ± 0.22 e 2.97 ± 0.51 c 3.02 ± 0.42

Although the measurements were conducted on the same tendons for each group, the pre- and post-treatment
measurements could not be matched. Thus, independent samples t-tests were run to compare the pre- and
post-treatment dimensions for each group. a Significant difference from control in the respective column; b Significant
difference from 25 kGy Gamma in the respective column; c Significant difference from Std SDS in the respective column;
d Significant difference from SCCO2-NK in the respective column; e Significant difference from SCCO2-0.1%-SDS in
the respective column; * Significant difference from pre-treatment measurements.

2.2. Mechanical Testing

In general, the mechanical properties of all treatment groups apart from SCCO2-1%-SDS were
greater than the control group. This may reflect a potential drying artefact that may have accounted
for this increase. All tendons failed at the mid-substance and were included in the statistical analysis.
SCCO2-0.1%-SDS-treated tendons were found to be significantly stiffer than the native tendons
(p = 0.014) and the standard-SDS-treated tendons (p = 0.003) (Table 2a). The mean ultimate tensile stress
(UTS) of the standard SDS group was significantly lower than that of the gamma group (p = 0.006), and
reduced compared to that of the control, although statistical significance was not reached (p = 0.062);
whereas the mean UTS of the SCCO2-0.1%-SDS group was significantly greater than those of the control
(p = 0.011), gamma (p = 0.011), and standard SDS (p < 0.001) groups. The mean failure strain of the
SCCO2-0.1%-SDS was significantly lower than that of the standard SDS group (p = 0.035). The mean
Young’s modulus of the SCCO2-0.1%-SDS group was significantly higher than those of the control
(p < 0.001), gamma (p < 0.001), standard SDS (p < 0.001), and SCCO2-NK (p = 0.019) groups, while
the mean Young’s modulus of the SCCO2-NK group was also significantly greater than that of the
standard SDS group (p = 0.003).

However, with a 10-fold increase in concentration of additive SDS from 0.1% to 1%, the
SCCO2-1%-SDS-treated group had significantly decreased stiffness than the SCCO2-0.1%-SDS group
(p = 0.004), significantly decreased UTS than the control (p < 0.001), SCCO2-NK (p = 0.001), gamma
(p < 0.001), and SCCO2-0.1%-SDS (p < 0.001) groups, and significantly reduced Young’s modulus than
the SCCO2-NK (p = 0.033) and SCCO2-0.1%-SDS (p < 0.001) groups (Table 2b).

Table 2. The mean values of mechanical properties (failure load and stiffness) (a) and material properties
(UTS, failure strain, and Young’s modulus) (b) of all groups.

(a) Failure Load (N) Stiffness (N/mm)

Control 330.34 ± 79.09 77.03 ± 31.83
25 kGy Gamma 408.27 ± 121.86 92.58 ± 23.95

Std SDS 350.55 ± 128.77 72.95 ± 29.80
SCCO2-NK 376.79 ± 93.19 98.54 ± 26.22

SCCO2-0.1%-SDS 400.31 ± 123.79 108.65 ± 21.86 ac

SCCO2-1%-SDS 203.07 ± 103.14 abcde 73.09 ± 24.16 e

(b) Ultimate Tensile Stress (MPa) Failure Strain (%) Young’s Modulus (MPa)

Control 89.76 ± 15.40 40.01 ± 10.12 574.20 ± 253.81
25 kGy Gamma 93.88 ± 14.02 40.73 ± 6.90 557.87 ± 135.27

Std SDS 72.68 ± 17.35 b 42.70 ± 9.68 405.43 ± 101.82
SCCO2-NK 92.57 ± 23.43 36.68 ± 7.20 648.40 ± 181.71 c

SCCO2-0.1%-SDS 112.84 ± 19.84 abc 34.44 ± 5.32 c 852.63 ± 193.67 abcd

SCCO2-1%-SDS 50.75 ± 26.27 abde 28.93 ± 5.35 abc 456.55 ± 157.34 de

a Significant difference from control in the respective column; b Significant difference from 25 kGy Gamma in the
respective column; c Significant difference from Std SDS in the respective column; d Significant difference from
SCCO2-NK in the respective column; e Significant difference from SCCO2-0.1%-SDS in the respective column.
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Notably, there were no significant differences detected between the control and gamma irradiation
groups in regards to the mechanical endpoints analyzed.

2.3. Histomorphology

The morphology of the extracellular matrix (ECM) was examined and cellularity assessed
(Figure 2).

Gamma irradiation and standard SDS treatment both inflicted substantial damage to the ECM of
tendons (images c, d, e, and f, Figure 2), as evidenced by perceptible differences in histomorphological
appearances in comparison to control (images a and b, Figure 2). Specifically, irregularly-shaped dead
space devoid of pink-staining ECM and separation of the collagen fibers were notable in the transverse
and longitudinal sections of the gamma-irradiated tendons (images c and d, Figure 2). The increased
gaps between collagen fibers in the longitudinal sections were also observed in the standard SDS group
(image f, Figure 2), albeit to a lesser extent. These findings on microscopic observation were in keeping
with the quantitative results, where there was a significantly increased percentage of void (area not
occupied by ECM) in gamma-irradiated (41.81 ± 4.50%) and standard-SDS-treated (35.21 ± 4.48%)
tendons than in native tendons (29.08 ± 4.96%) (p < 0.001 and p = 0.015, respectively) (Table 3).

Table 3. Void percentage and cellularity across groups.

Group Void (%) Cellularity (Cells/mm2)

Control 29.08 ± 4.96 818.91 ± 116.62
25 kGy Gamma 41.81 ± 4.50 a 750.61 ± 176.45

Std SDS 35.21 ± 4.48 ab 3.17 ± 9.49 ab

SCCO2-NK 27.61 ± 6.49 bc 764.65 ± 127.28 c

SCCO2-0.1%-SDS 27.35 ± 7.09 bc 682.32 ± 126.42 ac

SCCO2-1%-SDS 7.48 ± 5.18 abcde 824.65 ± 252.15 c

a Significant difference from control in the respective column; b Significant difference from 25 kGy Gamma in the
respective column; c Significant difference from Std SDS in the respective column; d Significant difference from
SCCO2-NK in the respective column; e Significant difference from SCCO2-0.1%-SDS in the respective column.

Conversely, no remarkable morphological changes of collagen fibers were noted for the SCCO2-NK
or SCCO2-0.1%-SDS-treated specimens (images g, h, I, and j, Figure 2), as evidenced by the quantitative
results that SCCO2-NK-treated tendons have significantly less percentage of void (27.61 ± 6.49%)
compared to gamma-irradiated (41.81 ± 4.50%) and standard-SDS-treated (35.21 ± 4.48%) ones
(p < 0.001 and p = 0.001, respectively), and so do SCCO2-0.1%-SDS-treated tendons (27.35 ± 7.09%)
(p < 0.001 and p = 0.001 when comparisons made to gamma-irradiated and standard-SDS-treated
tendons, respectively). Interestingly however, the spaces between the collagen fibers as observed in
the transverse and longitudinal sections of the native tendons appeared to be nearly obliterated by the
SCCO2-1%-SDS treatment (images k and l, Figure 2), which was corroborated by drastically decreased
empty space on quantitative analysis (7.48 ± 5.18%) (Table 3).

Only the standard SDS treatment achieved thorough decellularization with near absence of
distinguishable cell nuclei histologically (3.17 cells/mm2). The cellularity of SCCO2-0.1%-SDS-treated
tendons (682.32 ± 126.42 cells/mm2) was significantly lower than that of the control tendons
(818.91 ± 116.62 cells/mm2) (p = 0.021), but this reduction is trivial when compared to the absolute
number of cells left within the tendons (Table 3).
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 Figure 2. Representative high-resolution histological images of transverse and longitudinal sections.

In haematoxylin and eosin (H&E) sections, collagen was stained pale pink with interspersed dark
blue nuclei conspicuous in all groups except the standard SDS group. The histological dead space in
the transverse sections are indicated with *. Separation of collagen bundles are indicated with black
arrowheads. Scale bar at the bottom right represents 20 µm.

2.4. Scanning Electron Microscopy

Tendon surfaces and the collagen triple helices running in the longitudinal direction were observed
under high magnification (Figure 3).
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 Figure 3. The typical appearances of the collagen banding patterns as observed under ~100,000×

magnification (left column, a,c,e,g,i,k) and the tendon surfaces as observed under ~10,000×
magnification (right column, b,d,f,h,j,l). Black arrowheads in the left column indicate breaks in
collagen fibers and those in the right column indicate sites of surface breakage and exposure of
underlying collagen fibrils.
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Under approximately 10,000×magnification, the surfaces of SCCO2-NK-, SCCO2-0.1%-SDS-, and
SCCO2-1%-SDS-treated tendons (images h, j and l, respectively, Figure 3) resembled that of the native
tendons (image b, Figure 3), whereas gamma-irradiated and standard-SDS-treated tendons (images
d and f, respectively, Figure 3) exhibited numerous fissures on their surface, exposing the collagen
fibers underneath.

Under ultrahigh (~100,000×) magnification, disruption to the collagen banding pattern was
appreciable in all treated tendons, especially the standard-SDS- and SCCO2-1%-SDS-treated ones
(images c and k, respectively, Figure 3). Specifically, for SCCO2-1%-SDS treated tendons, the surface
of the collagen fibers appeared granular and occasional breaks in fibers were readily identifiable.
Meanwhile, standard SDS treatment caused destructive changes to the characteristic collagen triple
helices, where innumerable bulges annihilated the smooth cylindrical contour seen in the pristine
fibers of control tendons (image a, Figure 3).

2.5. Fourier-Transform Infra-Red Spectroscopy

The FTIR spectra of short tendon segments yielded valuable insights into their spatial molecular
composition (Figure 4). No significant shifts or absolute reductions in absorption peaks, including
primarily the amide I (1634 cm−1), II (1548 cm−1), and III (1250 cm−1) peaks associated with
collagen [83,84], were detected in the SCCO2-NK- and SCCO2-0.1%-SDS-treated samples, indicating
no or minimal damage to the collagen contents. Also, the shapes of the spectra of native, SCCO2-NK-
and SCCO2-0.1%-SDS-treated tendons between 1125 and 970 cm−1 are strikingly similar, implying
preservation of various other ECM components such as proteoglycans [85].
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Figure 4. Representative FTIR spectra of the control, gamma-irradiated, standard-SDS-treated,
SCCO2-NK-treated, SCCO2-0.1%-SDS-treated, and SCCO2-1%-SDS-treated tendons. The red and
black boxes highlight the reductions of absorption peaks associated with CH2 and carbonyl
groups, respectively.

Conversely, standard SDS and gamma irradiation appeared to have obliterated the peaks at
around (a) 2920 cm−1 and 2850 cm−1, which correspond to, respectively, the asymmetric and symmetric
stretching of the collagen-associated CH2 group; and (b) 1742 cm−1, which is associated with the
carbonyl group [86]. SCCO2-1%-SDS treatment provoked a similar pattern of absorption peak changes.

3. Discussion

Decellularization and terminal sterilization are crucial steps in soft tissue allograft manufacturing.
In principle, any viable constituents should be removed, or at least deactivated, in the end-product,
and the ECM ideally conserved in its intact three-dimensional microarchitecture, which contains
naturally occurring collagen, and is responsible for most of its mechanical robustness [87,88]. Tissues
are processed in this manner so that the risk of disease transmission is minimized with the removal of
pathogens, adverse host response avoided in the absence of cellular materials, and graft incorporation
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promoted owing to the capability of intact ECM to induce healing and remodeling [80]. However,
concerns have been raised regarding the harmful effect of the currently used physical and chemical
processing techniques on the biomechanical properties on allograft tendons, which might have been
implicated in their suboptimal clinical performance and propensity to fail.

Our results suggest that the SCCO2-based NovaKill sterilization protocol, even with the addition
of 0.1% SDS to the antimicrobial cocktail, was able to preserve the mechanical integrity of the tendons,
as they showed similar if not greater level of UTS and Young’s modulus compared to the untreated
tendons. This finding largely coincides with the results of the few previously published studies on
SCCO2-treated tendons and collagenous soft tissues, where they were consistently found to have
comparable or increased UTS to the untreated tendons [40,46,59,79]. It should also be noted that
SCCO2-0.1%-SDS-treated tendons were biomechanically superior to the standard-SDS-treated tendons
with respect to UTS and Young’s modulus, even though the standard SDS protocol re-performed in
the present study also employed the same concentration of SDS (0.1%) and was the least destructive
one to accomplish decellularization among the trialed protocols in the original study conducted by
Pridgen et al. [82]. Admittedly, although it is capable of lysing cell and nuclear membranes, SDS
along with some other commonly used decellularizing chemicals, such as tri(n-butyl)phosphate (TnBP)
and Triton X-100, is notoriously harmful to the components of ECM [89]. This is where SCCO2 may
be able to facilitate infiltration of and potentially synergize with modifier solutions with minimized
concentration required to precipitate the same level of decellularization and sterilization efficacy with
much less exposure time to such denaturants [54], thereby preserving the ultrastructure and thus the
biomechanical properties to the greatest extent.

While SCCO2 without excessive additives generally retains the biomechanical integrity of soft
tissues as assessed from most endpoints, the effect of SCCO2 on the stiffness and Young’s modulus of
tissues remains indeterminate. Whilst the present study showed a statistically significant increase in the
SCCO2-0.1%-SDS group compared to control, Baldini et al. [46], Mazyar et al. [79], and Antons et al. [90]
all found reduced stiffness or elastic modulus in tendons treated with SCCO2, although the statistically
significant finding in the first study might have been partly due to the smaller mean CSA of the
tendons allocated to the SCCO2 group. On the other hand, Balestrini et al. [72] observed significantly
increased elastic modulus in SCCO2-treated lung matrices, similar to what we discovered in tendons
in this study. Cross-linking of ECM induced by high pressure was proposed as the underlying
mechanism, but is confronted by the negative differential scanning calorimetry (DSC) results reported
by Hennessey et al. [59] in SCCO2-treated porcine aortic valves, even though it was admitted that
transient cross-linking could have possibly happened and went undetected by the analyses. The effect
of SCCO2 on the stiffness of soft tissues is therefore controversial and warrants further investigation.

Moreover, the present study found that gamma-irradiated tendons at 25 kGy showed similar
mechanical properties to those of the control tendons. This agrees well with the report of Balsly et al. [39],
where patella tendon grafts were tested at 18.3–21.8 kGy as well as 24–28.5 kGy, while others report
damage to the collagen and deleterious effects on the mechanical properties [31,35,37,41–44,47],
especially if gamma irradiation treatment is conducted under room temperature instead of with dry
ice [36,91]. This highlights the ongoing debate regarding whether the conventional 25 kGy gamma
irradiation used for terminal sterilization significantly undermines the in vitro mechanical properties
of musculoskeletal allografts [31,35–47].

The preservation of biomechanical properties by SCCO2 was corroborated by the non-mechanical
characterization of SCCO2-treated samples other than the SCCO2-1%-SDS group in the present study,
reiterating the gentle character of SCCO2 found by many pilot studies [40,46,59,69,72–79]. Previously,
Antons et al. [90] also resorted to SEM for ultrastructural examination and found that the orientation,
size, and density of collagen fibers in SCCO2-treated tendons and skins were generally comparable
to those of the native tendons. Dillow et al. [57] have found that SCCO2 treatment did not alter
the characteristic IR peaks of poly(lactic-co-glycolic) acid, a type of thermally and hydrolytically
labile biomaterial analogous to collagenous tissues. On the contrary, both gamma-irradiated and



Int. J. Mol. Sci. 2020, 21, 1565 10 of 20

standard-SDS treated tendons sustained disruptions to their ultrastructure and molecular composition
to certain extents, as evidenced by alterations in multiple FTIR absorption peaks associated with
collagen. Interestingly, Tilley et al. [86] detected a very similar pattern of changes in collagenous
scaffolds dissolved in pH 3.3 aqueous solution regarding the reduction in peaks associated with
CH2 and carbonyl groups, which were attributed to hydroxylation of these groups. Moreover, the
present study’s findings of statistically significant increased area of void and separation of collagen
fibers histologically in gamma-irradiated specimens echo with the findings of Irani et al. [79] and
Bui et al. [78], reaffirming the destructive nature of ionizing irradiation to ECM [32].

The SCCO2-SDS hybrid decellularization protocols experimented in this study were formulated
with the assumption that SCCO2 would demonstrate a comparable degree of synergy with SDS as with
PAA [54]. Additionally, PAA has been reported to enhance detergent penetration into tissue [92,93],
and while being a potent sterilant, is included in a number of decellularization protocols [80], which
made the outlook of combining SDS and PAA-containing NovaKillTM Gen2 for SCCO2-facilitated
decellularization even more appealing. Nevertheless, even if the biomechanical properties remained
intact, the SCCO2-0.1%-SDS protocol was not able to thoroughly decellularize tendons under the
conditions utilized in this study (i.e., 2 h, 39 ◦C and 102 bar without agitation by stirrer). Although the
reduction in cellularity in SCCO2-0.1%-SDS-treated tendons was found to be statistically significant, it
is dwarfed by the sheer number of cells that remained in the treated tendons. We initially believed that
this ineffective decellularization could be due to the very low concentration and volume of the SDS
modifier solution used. It was previously found that 2 mL of NovaKillTM Gen2 (14.1% PAA) added
to the SCCO2 treatment system only translated into 0.018% effluent PAA concentration, which was
10 times lower than the typical level of PAA tissues are exposed to in conventional treatment [72]. Thus,
although a quantitative measure was not used in the present study, the concentration of SDS specimens
that were exposed to the SCCO2-0.1%-SDS protocol of this study was likely to be low, for the SEM and
FTIR changes in the standard-SDS-treated tendons were not manifested in the SCCO2-0.1%-SDS-treated
ones. Consequently, we hypothesized that a higher concentration of additives or changes to the
treatment conditions such as longer treatment time and higher pressure could potentially result in
better decellularization outcomes. However, a 10-fold increase in SDS concentration implemented in
the SCCO2-1%-SDS protocol did not achieve any decrease in cell count while the mechanical integrity
and microscopic features of the tendons were demolished, presumably suggesting overexposure to
SDS. Therefore, we propose that the use of CO2-philic decellularizing agents are likely to be imperative
for effective decellularization [94]. Indeed, CO2 is non-polar and requires a compatible cosolvent
to remove polar molecules such as phospholipids (abundant in cell membranes) and DNA, and
Antons et al. [90] did successfully reduce DNA content of the tendons by combining SCCO2 with
Dehypon® LS-54, a common household and industrial surfactant, without affecting the mechanical
integrity or biocompatibility.

Furthermore, dehydration of SCCO2-treated tissues observed in this study, as evidenced by the
statistically significant decrease in CSA of SCCO2-0.1%-SDS-treated tendons, was also reported by
Sawada et al. [95], where they successfully extracted cell nuclei from tissue with SCCO2-entrained ethanol.
Casali et al. [81] were subsequently able to overcome this problem by pre-saturating SCCO2 with water.

The present study does suffer from many limitations. The choice of ovine hindlimb digital tendons
ensured the availability as each sheep was able to yield a total of 4 viable tendons for mechanical
testing. However, the discrepancy in dimensions (Table 1) rendered failure load and stiffness data less
interpretable, making a direct comparison of these results with other studies’ inappropriate. Meanwhile,
the apparent decrease in CSA due to dehydration might have caused an overestimation of the Young’s
modulus and the UTS of the SCCO2-0.1%-SDS-treated tendons [81]. Also, the present study primarily
focused on failure testing, whereas cyclic testing and suture pull-out strength testing might have better
depicted the mode of loading tendons that are subject to in vivo and therefore would have been more
clinically relevant [45,96]. Furthermore, sterility verification of the treated samples was not performed
in the present study, although the samples were treated using the identical methods (i.e., SCCO2
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conditions and additives) that have been proven to achieve SAL 10−6 in a previous study [54]. It is
unlikely, but still possible, that SDS added to the treatment concoction might interact with NovaKillTM

Gen2 and downgrade its sterilization efficacy, making it necessary to have two separate treatment
steps. As for the assessment of decellularization thoroughness, Crapo et al. [89] proposed an acclaimed
three-item standard that entails quantitative measurements of DNA content and fragment length,
which however, were not incorporated into the present study.

4. Materials and Methods

4.1. Sample Procurement and Preparation

120 extensor digital tendons were harvested from the hindlimbs of 20 skeletally mature sheep aged
more than 2 years immediately following euthanasia for other ethically approved studies conducted at
our institution. Harvested tendons were soaked in PBS and frozen at −60 ◦C until further treatment
and/or testing. All tendons were stored for a maximum of 6 months and underwent no more than
3 freeze–thaw cycles to minimize the effect of repetitive freeze–thaw cycles on their mechanical
strength [97,98].

4.2. Study Design

6 groups were proposed as previously discussed in the introduction section. Each group was
randomly allocated with 16 full-length tendons (approximately 10 mm in length) for mechanical testing
and 4-cm tendon segments produced from 4 full-length tendons for non-mechanical assessments
(Figure 5). Samples underwent different treatments accordingly, and if not otherwise specified, were
soaked in PBS, and either frozen until mechanical testing or fixed in 10% neutral buffered formalin to
be prepared for histology, FE-SEM, and FTIR spectroscopy.
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4.3. Gamma Irradiation Treatment

Samples were packaged in Tyvek sterilization pouches (Livingstone International, Mascot,
Australia), sealed in a Styrofoam box filled with dry ice to maintain a temperature below −20 ◦C
throughout treatment, and then transferred to an external treatment facility, where they were irradiated
with a cobalt60 source at the dose of 25 kGy under standardized operating procedures (Steritech,
Wetherill Park, Australia). Treated tendons were then returned to the −60 ◦C freezer, or thawed and
fixed in formalin.

4.4. Standard SDS Decellularisation

The standard SDS treatment of the present study was strictly reproduced from the protocol of
Pridgen et al. [82]. Briefly, samples were thawed and washed at room temperature on an orbital shaker
at 20 rpm with 0.1% (w/v) ethylenediaminetetracetic acid (EDTA) (Sigma-Aldrich, St. Louis, MO, USA)
in de-ionized water (Merck Millipore, Burlington, MA, USA) for 4 h with a single change of solution at
the 2-h mark. The pre-treated samples were then washed in 0.1% (w/v) SDS (Sigma-Aldrich, St. Louis,
MO, USA) prepared in 0.1% (w/v) EDTA for 24 h with a single change at 12 h, followed by PBS wash
for 1 h with a single change at 30 min.

4.5. SCCO2-Based Treatment Protocols

An in-house custom-built supercritical fluid system was used to carry out SCCO2 treatment
protocols (Figure 6) [76]. A cellulose pad secured with a stainless-steel basket at one end of the 660-mL
pressure vessel was soaked in and hence served as the vehicle for additive chemicals. Group IV
(SCCO2-NK) tendons were thawed, packaged into Tyvek pouches, loaded into the pressure vessel, and
treated with SCCO2 and 3.2 mL per 30 tendons of NovaKillTM Gen2 (~14.1% PAA and ~4.9% H2O2)
(NovaSterilis, Lansing, NY, USA) under 39 ◦C and 102 bar to mirror the established SCCO2 sterilization
protocol that has been proven to achieve SAL 10−6 [54]. The treatment vessel was slowly depressurized
over 30 min, and the tendons retrieved and either frozen or formalin-fixed until further analysis
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Group V (SCCO2-0.1%-SDS) and group VI (SCCO2-1%-SDS) tendons first received the
above-described [82] 4-h pre-treatment with EDTA, followed by 2 h of SCCO2 treatment under
the identical conditions as group IV tendons. Also, in addition to NovaKillTM Gen2, the additive
chemical cocktail was reinforced with 0.8 mL per gram of tissue wet mass of the 0.1% SDS and 0.1%
ETDA solution for group V, and 1% SDS and 0.1% ETDA for group VI, with an attempt to decellularize.

4.6. Mechanical Testing

The pre- and post-treatment width (w) and thickness (t) of the tendons were measured with a
digital caliper at the center of the mid-substance section intended to be tested and the two points 10 mm
away towards each end (Figure 7). The cross-sectional area (CSA) was assumed elliptical and calculated
with the formula CSA = π × t × w/4 [42]. The mean CSA of the tested section is then estimated by
averaging the calculated CSA at the three equidistant points. Uniaxial tensile testing was conducted by
the MTS 858 Mini Bionix® axial servohydraulic tabletop test system (MTS, Eden Prairie, MN, USA) with
a 1 kN load cell. Thawed tendons were rigidly griped at both ends by cryo-clamps with interlocking
rectangular teeth. The gauge length was set at 25 mm. Testing commenced after a freeze-line was
observed at the gripping edge of each clamp, and tendons taut with a 2 N pre-load. The testing
protocol was programmed in and executed by the MTS TestSuiteTM Multipurpose Elite Software
(MTS, Eden Prairie, MN, USA), with force and displacement data collected at 10 Hz. Each tendon
was subjected to 10 pretensioned cycles between 10 and 20 N at 1 Hz, stretched to and held at 8%
strain for 10 s, ramped back to 0% strain to fully relax, and then ramped at a rate of 100% strain/min
to failure, which was defined as a plummet in force profile succeeding the maximum force reached.
Testing data were processed by an in-house MATLAB (Mathworks, Natick, MA, USA) script, where
the force-displacement and stress-strain graphs were plotted to derive both the mechanical properties,
namely failure load and stiffness, and the CSA-normalized material properties, namely ultimate tensile
stress (UTS), maximum strain, and Young’s modulus, of the tested tendons for data analysis.
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Figure 7. The locations of width and thickness measurements. The bold black frame represents a
full-length tendon. The central mid-substance encircled in the red frame was designated as the gauge
length for mechanical testing. The dashed lines pointed by black arrows delineate where the width and
thickness measurements were taken.

4.7. Histology

Three transverse and two longitudinal sections were obtained along the length of each treated and
formalin-fixed 4 cm tendon segment (Figure 8), which were automatically processed with Shandon™
Excelsior™ ES tissue processor (Thermo Fisher Scientific, Kalamazoo, MI, USA) and embedded in
paraffin wax with standard procedures. Five-micron slices were then obtained with a hand-operated
Leica RM 2165 Microtome (Leica Instrument GmbH, Nussloch, Germany) from each section and stained
with haematoxylin and eosin (H&E). An Olympus BX43 microscope was employed in conjunction with
a DP72 digital camera (Olympus, Shinjuku, Japan) to thoroughly examine the histological appearance
of tendons at both low and high magnifications. The cellularity and percentage of empty space
(void) within each snapshot were quantitatively determined with an in-house MATLAB (Mathworks,
Natick, MA, USA) script. For each group, the average results of a total of 18 images taken under
400×magnification at random locations of transverse H&E-stained cross-sections (2 per cross-section,
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3 cross-sections per tendon segment, and 3 tendon segments per group) were deemed representative
of the overall picture.Int. J. Mol. Sci. 2020, 21, x 15 of 21 
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Figure 8. Sample preparation for histology. The bold frame represents a 4-cm tendon segment and
dash lines indicate where cuts were made with a scalpel to 3 transverse and 2 longitudinal sections.
From each of these sections, 5-micron slices were acquired for staining with haematoxylin and eosin
(H&E). Two 40×magnification images were taken for each cross-section, culminating in 18 images per
group as there were 3 transverse cross-sections per tendon segment, and 3 tendon segment per group.

4.8. Scanning Electron Microscopy

Formalin-fixed samples were decanted in deionized water for 15 min, dehydrated with increasing
grades of ethanol, critical-point-dried with an Autosamdri-815 Critical Point Dryer (Tousimis, Rockville,
MD, USA), mounted onto 12.5-mm sample stubs, sputter-coated with platinum (40 mA, 2 × 2.5 min)
using an Emitech K575X Sputter Coater (Quorum Technologies, Lewes, UK), and then examined under
the FEI Nova NanoSEM 230 field-emission scanning electron microscope (Thermo Fisher Scientific,
Waltham, MA, USA). Snapshots of the longitudinal collagen fibres and tendon surfaces were obtained
from 100× to 120,000×magnifications.

4.9. Fourier-Transform Infrared Spectroscopy

Following critical point drying, samples from each group were analyzed with a Spectrum Two
FT-IR Spectrometer (PerkinElmer, Waltham, MA, USA). The attenuated total reflectance (ATR) mode
was used to compensate for the discrepancy in the thickness of the samples. For each specimen,
a constant pressure was applied to obtain a consistent absolute absorbance and the spectra were
generated from 4000 to 400 cm−1 based on 64 background-subtracted scans, and then ATR corrected
and smoothed with the PerkinElmer Spectrum software for analysis.

4.10. Statistical Analysis

Statistical analysis was performed using IBM SPSS statistics 25 (SPSS Inc., Chicago, IL, USA) for
all quantitative endpoints using a one-way analysis of variance (ANOVA) if not otherwise specified.
A statistically significant effect in ANOVA was followed by a Tukey’s post hoc test if the homogeneity
of variances assumption was met, or if not, Games–Howell post hoc test. A p value of less than 0.05 is
considered statistically significant. All figures are reported as mean ± standard deviation.

5. Conclusions

Development and modification of new allograft tendon and tissue processing protocols, in general,
follow a multi-step progression. SCCO2 represents an exceptionally promising but under-investigated
agent, and the present study has demonstrated preservation of mechanical properties of SCCO2-treated
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tendons. The next advancement would be to identify the optimal CO2-philic detergents that complement
SCCO2, and the treatment parameters to actualize sterilization and decellularization with minimal
concentration and protocol run-time. The in vivo biocompatibility of SCCO2-treated tendons should
then be studied as biomechanical integrity is only one of the many determinants for clinical success.
Host cell infiltration and repopulation of implanted tendon allografts, for example, are indispensable
for graft incorporation and maintenance against progressive attenuation of mechanical strength with
everyday use [99,100]. The capacity of tendon allografts to promote and accommodate cellular
ingrowth is affected by treatment and usually limited due to the compact nature of the collagen
structure [101,102]. SCCO2 has the potential of creating porous scaffolds that are advantageous to
cellular attachment [78,103,104], and validating such a possibility is certainly a worthwhile undertaking
for future in vivo studies.
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