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Abstract: Proteomics and genomics discovery experiments generate increasingly large result tables,
necessitating more researcher time to convert the biological data into new knowledge. Literature
review is an important step in this process and can be tedious for large scale experiments. An informed
and strategic decision about which biomolecule targets should be pursued for follow-up experiments
thus remains a considerable challenge. To streamline and formalise this process of literature retrieval
and analysis of discovery based ‘omics data and as a decision-facilitating support tool for follow-up
experiments we present OmixLitMiner, a package written in the computational language R. The tool
automates the retrieval of literature from PubMed based on UniProt protein identifiers, gene names
and their synonyms, combined with user defined contextual keyword search (i.e., gene ontology
based). The search strategy is programmed to allow either strict or more lenient literature retrieval
and the outputs are assigned to three categories describing how well characterized a regulated
gene or protein is. The category helps to meet a decision, regarding which gene/protein follow-up
experiments may be performed for gaining new knowledge and to exclude following already known
biomarkers. We demonstrate the tool’s usefulness in this retrospective study assessing three cancer
proteomics and one cancer genomics publication. Using the tool, we were able to corroborate most of
the decisions in these papers as well as detect additional biomolecule leads that may be valuable for
future research.

Keywords: proteomics; genomics; data mining; literature retrieval; bioinformatics; mass spectrometry

1. Introduction

Omics analyses, regardless of the underlying acquisition platform, are united by the common
feature of describing large numbers of biomolecules relevant to the experimental system under
investigation. Various reporting strategies applying statistical frameworks are used in an attempt
to draw out those biomolecules which are expected to be the most relevant, and hence the focus of
more intense follow-up investigations. This is an important step for the researcher as assimilated
understanding of experimental data through subsequent literature review is arguably the most
important part of a research project, and therefore is also one of the most time-consuming tasks.
Moreover, identifying relevant biomolecules from discovery studies for follow-up validation is
especially important given the time to be devoted to such a task (for example, generation of a genetically
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engineered animal or clinical intervention). This process of literature research involves developing
extensive background knowledge on the subject by searching literature databases (e.g., PubMed
(https://www.ncbi.nlm.nih.gov/pubmed), Google Scholar (https://scholar.google.com) or Scopus (http:
/[www.scopus.com).

The use of automated literature search tools is often referred to as text or data mining [1], and has
been recently reviewed in a biomedical context [2]. Such tools provide a structured manner to formalise
data analysis and can minimise human input errors, which might occur during manual searches. There
are several different tools which have been reported for literature mining. Most of these tools use
text mining for improved annotation of a target protein or gene list [3], to extract protein—protein
interactions [4] or predict gene-gene relationships [5]. Other tools such as MedMiner [6], which
represents one of the first instances where data mining was used in an ‘omics approach, is outdated
and unsupported. More recently, Yu et al. [7] and Lau et al. [8] reported literature retrieval tools
based on distinct keyword searches (i.e., gene ontology terms) to support development of targeted
workflows such as multiple-reaction-monitoring (MRM). These tools generate target lists without
a priori consideration of the project background/objective and without reference to acquired ‘omics
discovery data. These tools are distinctly different from our report where we have developed a ‘reverse’
solution to strategy described above [7,8].

The use of automated literature search tools is often referred to as text or data mining [1], and has
been recently reviewed in a biomedical context [2]. Such tools provide a structured manner to formalise
data analysis and can minimise human input errors, which might occur during manual searches. There
are several different tools which have been reported for literature mining. Most of these tools use
text mining for improved annotation of a target protein or gene list [3], to extract protein—protein
interactions [4] or predict gene-gene relationships [5]. Other tools such as MedMiner [6], which
represents one of the first instances where data mining was used in an ‘omics approach, is outdated
and unsupported. More recently, Yu et al. [7] and Lau et al. [8] reported literature retrieval tools
based on distinct keyword searches (i.e., gene ontology terms) to support development of targeted
workflows such as multiple-reaction-monitoring (MRM). These tools generate target lists without
a priori consideration of the project background/objective and without reference to acquired ‘omics
discovery data. These tools are distinctly different from our report where we have developed a ‘reverse’
solution to strategy described above [7,8].

We set out to devise a literature retrieval and ranking strategy of acquired ‘omics data in order
to streamline data review and prioritize follow-up studies. This remains a bottleneck in ‘omics
studies as often hundreds of proteins/genes are returned as significant and identifying how to proceed
with such data can be daunting. The automated literature search uses a strict publication search
which involves considering the biomolecule of interest (gene/protein) as well as a contextual keyword
expected in the article title and/or abstract. This ensures that prior research was specifically aimed
at the molecule of interest. We used this concept to build OmixLitMiner which is a bioinformatics R
package that automates literature review for prioritization of biological leads from ‘omics discovery
data. As input, the tool uses either the UniProt Accession number or gene names, their corresponding
taxonomy identifier and keyword/s. It then automatically collects the gene name with any synonyms
present in the UniProt repository to use these in the search, a clear advantage over manual searching.
Furthermore, it strictly uses only reviewed UniProt entries to obtain the highest degree of confidence
for search results. Using these variables, the tool constructs a query term for a PubMed search where
one can specify to only look for these variable terms in the title (strictest search) or allow for one, or all
query terms to be found in the abstract (more lenient search). The tool then categorises papers based
on publication frequency and type as a proxy for perceived community relevance. The output can
then be readily assessed to inform subsequent validation/future studies. We examined the utility of
OmixLitMiner by selecting two of our previous cancer proteomics publications, which had detailed
documentation of their datasets, and an independently produced cancer proteomics publication. We
assessed whether the tool retrieved the same or provided additional biological lead molecules as
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discussed in the respective papers. We also show the tool’s utility to work with genomics data using
gene names as data input.

2. Results

The objective of OmixLitMiner is to assist the researcher reduce the time spent on literature research
of ‘omics-generated data by automating relevant literature retrieval and categorizing the results for
follow-up analysis. The results from OmixLitMiner should provide the researcher with a thorough
overview of the relevant literature for the biomolecules of interest (proteins in this case) in a specific
context (keyword). To demonstrate and evaluate OmixLitMiner we applied it to data from three
publications which used proteomic mass spectrometry analysis in a context of cancer biomarker
analysis. The automated outputs from OmixLitMiner are shown as Supplementary Files 51-512 and
manually extracted summaries from these as Tables 1-3. A graphical overview of the categorisation of
retrieved literature from OmixLitMiner analysis of the three publications is shown in Figure 1. For
a description of the categorization terminology, see Section 4.2 in the Materials and Method section.

Total results for each Category for all Total results in each Category for both
differentially expressed proteins up- and downregulated proteins Total results in each Category
(Martinez-Aguliar et al.) (Hanel et al.) (Mori et al.)
0 0
3
43
88
24
15 10
2
114
11
m Category 0 = Category 1 Category 2 Category 3 m Category 0 = Category 1 = Category 2 » Category 3 = Category 0 = Category 1 w Category 2 = Category 3

(@) (b) (©)

Figure 1. Distribution of the different categories for all proteins analysed by the OmixLitMiner tool.
(a) The results of Martinez-Aguilar et al. [9]; (b) the results of Hanel et al. [10]; (c) the results of
Mori et al. [11]. Category 1: review articles found; Category 2: original papers found, but no reviews;
Category 3: no articles found; Category 0: protein absent in reviewed UniProt database (see Section 4.2
for details).

To evaluate OmixLitMiner we first examined the data set from Martinez-Aguilar et al. [9] who
examined three subtypes of thyroid tumours using SWATH-MS. iTRAQ and MRM experiments were
also conducted for validation. As this was an extensive, multi-group study we focused the assessment
of OmixLitMiner on the differentially expressed proteins observed between normal thyroid tissue
and the three tumour subtypes determined from the SWATH analysis (Supplementary Files S1-S3).
For this publication, we first chose the keyword ‘thyroid’, but it reported only minimal results (see
Supplementary File S4). Therefore, we broadened the search by using the keyword ‘Cancer’.

The proteins shown in Table 1 were some of the prominent ones selected by
Martinez-Aguilar et al. [9] for further discussion. They placed particular emphasis on decorin as this
showed over 10-fold reduced levels in follicular-patterned tumour subtype compared to normal thyroid
tissue. OmixLitMiner analysis for decorin yielded two papers and placed it in Category 2. Interestingly,
both papers were published after the publication by Martinez-Aguilar et al. [9], retrospectively justifying
their interest in decorin. A similar finding was reported for superoxide dismutase 3 (SOD3), as two of
the three reported papers were published subsequent to the Martinez-Aguilar et al. [9] paper. Another
protein of particular interest to Martinez-Aguilar et al. [9] was TGFBI. The OmixLitMiner search
yielded 18 papers, including one review article, thus placing it in Category 1. Five of these papers were
published subsequent to Martinez-Aguilar et al. [9], and one papers was placed in the ‘False’ column



Int. ]. Mol. Sci. 2020, 21, 1374 40f11

as assigned by the script. Here, the ‘False’ flag represents a check where there is missing information
in the automated PubMed returned metadata, requiring these results to be manually curated. It is
likely that the relatively large change in abundance of this protein and the extensive literature on this
protein prompted Martinez-Aguilar et al.’s [9] interest in this protein. An interesting finding was for
the search for Actin B (ACTB), as it was placed in Category 1, yet only yielded four papers. This is due
to actin B being used as reference (‘housekeeping’) gene in some cancers because of its often stable and
high expression [12] and thus often appears in conjunction with cancer in publication titles (this is
the case for 3 of the 4 hits OmixLitMiner reported, see Supplementary File S4). Another interesting
result was that our search for actin-related protein 2/3 complex subunit 5 (ARPC5), did not return any
results. When looking into ARPC5 we found that it only represents a single subunit of the ARP2/3
complex, and thus may be unlikely to be included in the title of publications, and hence may have
evaded our search.

Table 1. Extract of the OmixLitMiner output of the three comparisons found in the supplement of
Martinez-Aguilar et al. [9] using the keyword ‘cancer’.

Keyword: Cancer

Protein . OmixLitMiner results
Summary from Martinez-

UniProt Gene Aguilaret al. [9]
ID Name

Total Category False Comments

Was elevated in 6/8 FTC samples
compared to FA samples.
Interested in it as a potential

Q15582 TGFBI marker for the progression of 18 1 1
adenoma to malignancy in
follicular thyroid tumours

P12830  CDHI PTC tumours express lower levels 204 1 4

of E-cadherin

6 papers were
22 1 1 published after
Martinez-Aguilar

Dysregulated in both PTC and

Q07654 TFFS FTC (compared to normal)

Overexpressed in PTC, associated One paper was
P60709  ACTB with actin cytoskeleton 4 1 0 published after
remodeling Martinez-Aguilar

Decorin was lost in both FA and
FTC, but not PTC. Decorin
expression supposedly decreases
metastasis

Both papers were
2 2 0 published after
Martinez-Aguilar

P07585 DCN

One paper was
3 2 0 published after
Martinez-Aguilar

Dysregulated in both PTC and

P08294 50D3 FTC (compared to normal)

Overexpressed in PTC, associated
015511 ARPC5 with actin cytoskeleton 0 3 0
remodeling

As shown in Figure 1, 114 of the 245 (46.5%) differentially expressed proteins had Category 2 hits,
whilst 43 (17.6%) had Category 1. This indicates that many of the proteins with the most significant
differential expression have already been the focus of previous reports in various cancers.

We also looked at proteins showing Category 1 and 2 hits which were not specifically discussed
in the publication of Martinez-Aguilar et al. [9]. For this analysis we limited the data to the normal
vs. papillary thyroid subtype SWATH dataset (184 significantly regulated proteins). One hundred
and thirteen (113) proteins were Category 1 or 2 hits in our search. For these 113 proteins we
looked at the publication dates OmixLitMiner found and removed those that were published after
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the submission date of Martinez-Aguilar et al. [9] (07.09.2015) which left a list of 21 in Category 1
and 71 in Category 2 (see Supplementary File S5 for the filtered list). Clearly, with so many articles
retrieved by OmixLitMiner we could readily find interesting proteins which escaped attention of
Martinez-Aguilar et al. [9]. For example, GPX3 is a Category 2 protein where suppression directly
correlates with promotion of metastasis in human thyroid cancer [13], and the Category 1 protein,
BAX has been reported to be upregulated in relation to papillary thyroid cancer [14]. We point out
these examples simply to demonstrate the utility of OmixLitMiner to find interesting lead proteins for
future study.

We next examined a dataset by Hanel et al. [10], who used a mouse xenograft model to investigate
proteins that facilitate metastasis. Using a mouse model with human neuroblastoma xenograft,
they analysed samples from both liver and ovarian metastases using LC-MS/MS and compared it to
the primary xenograft tumour. For our analysis using OmixLitMiner, we selected the proteins that
were differentially expressed at both distant sites compared to the primary tumour. Table 2 contains
some of these proteins, which were selected for further discussion by Hanel et al. [10]. We initially
used the search keyword ‘Metastasis’, but this yielded only Category 3 hits (LGALS7 was an exception,
Category 2), so we reverted to the broader term “Cancer”. See Supplementary Files S6 and S7 for
the complete results.

Table 2. Extract of the OmixLitMiner output of the differentially expressed proteins at both distant
sites compared to the primary tumour as reported in the supplement of Hanel et al. [10] using the
keyword ‘Cancer’.

Keyword: Cancer

Protein Summary from Our Results
UniProtID  Gene Name Hanel et al. [10] Total Category False Comments
Was strongly upregulated
at both sites, and is
P23588 EIF4B upregulated by 2 2 0
a downstream signaling
cascade initiated by
LYPLA2
Was strongly upregulated One publication after
QIC005 DPY30 at both sites 2 2 0 Hanel et al. [10]
Was strongly
P47929 LGALS7 downregulated at 0 3 0
both sites
This version of
Was upregulated at both thfeoii?;ﬁfn}i)s:t?; 8
sites. The paper has also humans. As a rélouse
QIWTL? LYPLA? recognised that itis 0 3 0 model was used in
. urrenty . their investigation, its
investigation as a potential inclusion mav or ma
anti-cancer target not have }‘t,)een y
intentional
P41219 PRPH Was downregulated at 0 3 0
both sites
Was strongly This version of
downregulated at both the NEEM protein is
P08553 NEFM sites, though its 0 3 0 found in rﬁice not
involvement in metastasis humans !
is unclear ’

As shown in Table 2, acyl-protein thioesterase 2 (LYPLA?2), peripherin (PRPH) and neurofilament
medium polypeptide (NEFM) did not yield any results. This is likely because Hanel et al. [10] searched
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their mass spectra against a database containing human as well as mouse protein sequences. As
a result, when OmixLitMiner searched for these proteins using mouse taxonomy identifier, no results
were returned, due to a lack of literature concerning these mouse proteins. Since a mouse model was
used, it is unclear if the inclusion of these proteins was accidental or intentional. We investigated this
by a manual search of PubMed and found the same results confirming the problem was not a result of
an error in the OmixLitMiner script. In our experience, such a result seems to occur very rarely, despite
a seemingly correct PubMed query. As OmixLitMiner cannot overcome this PubMed error, our tool
flags such an occurrence by using the “False” column.

Table 2 contains two proteins with true Category 2 hits. Eukaryotic translation initiation factor 4B
(EIF4B) had two papers, both of which were published before the Hanel et al. [10] paper. Similarly,
protein DPY-30 (DPY30) also had two papers, only one of which was published prior to Hanel et al. [10].
Hence, we would agree that these proteins would be interesting candidates for further investigations.
Peripherin-2 (PRPH) did not return any results and was hence placed in Category 3. As our search
did not return any publications for this protein, the protein may indeed be a novel and promising
candidate for future study, but the lack of current corroborating literature suggests caution in executing
follow-up studies.

Finally, we reviewed the article by Mori and colleagues [11] who investigated putative protein
markers associated with lymph node metastasis in colorectal cancer. They used iTRAQ labelling
and mass spectrometry for discovery of candidate proteins, then through data filtering arrived at
the protein Ezrin, which they focused on for validation using IHC and qRT-PCR. Mori et al.’s [11]
strategy was to filter the iTRAQ results based on statistical analysis of differential ratios of abundance,
identifying 55 proteins. They then used functional annotations to select four proteins which were part
of metastatic processes and finally selected Ezrin for validation because of on its high corresponding
differential mMRNA level determined by qRT-PCR.

For our analysis using OmixLitMiner we selected the list of 55 proteins that passed Mori et al.’s [11]
initial filtering threshold and used the search keyword “metastasis”. The output from OmixLitMiner
are reported in Supplementary File S8. To simplify our evaluation, we extracted the results from
OmixLitMiner for the four proteins (ezrin, interleukin enhancer-binding factor 3, tropomyosin alpha-3
chain and keratin, Type I cytoskeletal 18) which were the focus of Mori et al.’s [11] discussion and
presented them here in Table 3.

As can be seen in Table 3 half the proteins mentioned by Mori et al. [11] were assigned by
OmixLitMiner into Category 2, which means that at least one publication but no review article was
found in combination with the selected keyword in a publication title. We consider that Category 2
hits are generally preferred for further analysis as they can be verified by existing literature but have
typically not been extensively investigated in the selected context to warrant biomolecule-specific
review articles. Such proteins provide good opportunity to discover new knowledge from subsequent
follow-up experiments. For the two Category 2 hits only one publication for EZR and two publications
for ILF3 were found in context with metastasis. Interestingly, the article retrieved for the ezrin search
was published subsequently to Mori et al. [11], corroborating that finding. Of the remaining three
proteins, ILF3 was a Category 2 hit with two publications, while KRT18 was a Category 3 hit, meaning
no publication in context with the keyword was found. The reported UniProt accession number for
TMP3 corresponded to its isoform 2 and was therefore excluded by OmixLitMiner. This can be easily
seen as it was assigned to Category 0. Mori et al. [11] similarly only made fleeting reference to these
proteins. Overall, we feel that the results from OmixLitMiner are in agreement with the proteins
selected for discussion by Mori et al. [11] regarding the most promising targets for further analysis as
they were Category 2 hits.
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Table 3. Extract from OmixLitMiner from the list of 55 proteins reported in the supplement of
Mori et al. [11] using the keyword “Metastasis”.

Keyword: Metastasis

Protein Summary from OmixLitMiner Results
UniProt ID  Gene Name Mori et al. [11] Total Category False Comments
Was prominently
associated with metastasis
and is functionally
involved in Published subsequent
P15311 EZR the ‘development process’. ! 2 0 to Mori et al. [11]

mRNA expression was
also elevated in CRC with
LN Metastasis

Was prominently
associated with metastasis
Q12906 ILF3 and is functionally 2 2 0
involved in
the ‘development process’

Was prominently This is one of
associated with metastasis the isoforms of TPM3
P06753-2 TPM3 and is functionally 11 0 11 and is thus not
involved in considered by
the ‘development process’ the script.

Was prominently
associated with metastasis
P05783 KRT18 and is functionally 0 3 0
involved in
the ‘development process’

OmixLitMiner is also compatible with genomics data. We demonstrated this with an analysis
of a publication from Tian et al. [15], who detected a 13 panel gene signature for colorectal cancer
recurrence. The input as well as output files from OmixLitMiner are shown in Supplementary
Files S9-512.

3. Discussion

We report the development of a bioinformatics tool, OmixLitMiner, which harvests relevant
literature from PubMed to assist ‘omics researchers in prioritising leads for follow-up from large-scale
‘omics discovery experiments. The tool is provided as a ready to install R package and categorises
previous literature into three groups based on publication frequency, or in other words, the perceived
community-determined importance of specific biomolecules in a particular biological context. We
use “review articles” as a proxy for likely importance of a biomolecule target. This can be helpful in
excluding target biomolecules which have yet to receive sufficient contextual importance to warrant
areview. Follow-up of targets from this category might be considered higher-risk. Conversely, Category
1 hits are likely to be judged to be important, but could be deemed to be too widely studied, making it
difficult to generate new insightful impact from follow-up and validation studies. Of course, such
categorisation is also a potential weakness, as interesting, unstudied biomolecules may be excluded on
such basis if one solely relies on this categorization and completely discards Category 3 hits. Clearly, it
remains the domain of the researcher to decide on a case to case basis which proteins are deemed to be
worthy of further study.

We demonstrated the utility of OmixLitMiner by evaluating its output from three published
articles from the cancer proteomics literature. Overall, we showed that OmixLitMiner was generally
concordant with reporting proteins which were a focus of discussion within the corresponding
papers. Additionally, we were able to determine that interesting unreported aspects of studies, such
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as Mori et al. [11] using a T'TEMBL FASTA database which included isoforms and Hanel et al. [10]
reporting mouse proteins in their final results from analysis of human cancers grown in mouse models.
While looking through parts of Martinez-Aguilar et al. [9] data set we found many additional proteins
which might be of interest for follow-up in the context with thyroid cancer. These examples demonstrate
the power of such a tool even when used retrospectively.

We demonstrated the utility of OmixLitMiner by performing comparisons with several published
articles. While we did not conduct formal user-experience testing, the analysis reported here was
conducted by a bachelor level student with no prior participation with any of the papers, suggesting
the tool could be readily used by following our SOP located on the GitHub repository. This suggests
that even with minimal prior background knowledge (which might often be the case when running
discovery-based experiments for a collaborator) the results of the OmixLitMiner tool can rapidly
prioritise ‘omics discovery leads.

The authors are also aware that the parameters used in this paper (synonym and keyword must
be in the title) are very strict and therefore potentially exclude important literature which may be found
using more sophisticated informatics approaches [2]. It is important that the user explore keyword
terms, which would be required in a manual search anyway. The tool also does not include any
sophisticated machine learning or false-discovery algorithms, but rather retrieves a raw output of
the search results in the space of the selected input and keywords (superordinate search) and scores
each gene/protein accordingly. The main reason for this is that the authors believe that it is of utmost
importance that as a last step the researchers needs to assess the presented data by themselves for
the most optimal results. We feel that the time saved by giving the researcher access to a complete
summary table with a simple categorizing system is beneficial to assist researchers extract useful
biological knowledge from their ‘omics experiments.

4. Materials and Methods

4.1. Literature Retrieval and Ranking

OmixLitMiner is composed of three major components: query building, query retrieval text
analysis and ranking. It utilises two major publicly available biomedical repositories: UniProt [16]
and NCBI PubMed databases [17]. OmixLitMiner is freely available on the GitHub repository
(https://github.com/Sydney-Informatics-Hub/OmixLitMiner).

The input to OmixLitMiner can be a single query or list of queries in an Excel file or dataframe.
Each row represents a query and each query consists of a protein identifier (UniProt accession) or
gene name, the NCBI species taxonomy identifier (e.g., 9606 for Homo sapiens), a list of keywords of
interest (e.g., prostate cancer) and an indicator specifying if the search keywords appear in article titles
only, or abstract or title. Each query will be processed independently by OmixLitMiner. To improve
the coverage of the query, OmixLitMiner utilises all available gene synonyms recorded in UniProt and
builds expanded queries. OmixLitMiner exploits the UniProt REST web service to fetch the synonyms
for a given UniProt and taxonomy identifier. After fetching the synonyms, an expanded PubMed
query is built, which includes the protein/gene names and synonyms, taxonomy identifier, keywords
as well as its search filter. The query can also optionally include the publication date range to further
focus the interested literature.

After building the expanded PubMed query, OmixLitMiner executes automated document
retrieval from the PubMed database using these queries. OmixLitMiner uses function EUtilsSummary
and EUtilsGet in the RISmed R package [18] to automatically download the abstracts and metadata
from the PubMed database. The metadata includes title, authors, country, publication year, MeSH
(Medical Subject Headings) terms and article type (review or not).

The automated retrieved PubMed records undergo statistics and text analysis to yield
summarisation, clustering and categories of the retrieved results. Visual plots including barplots
of the publications and MeSH terms are produced which can reveal the distribution and trends of
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the research. The word cloud of abstracts provides a visualisation of the text data and gives a highlight
of the most frequently appeared words in all the abstracts. MeSH terms are a controlled vocabulary for
medical research and most of PubMed records are tagged with a set of these terms. OmixLitMiner
generates a MeSH-based clustering for all the retrieved records. The clustering adopts a hierarchical
clustering method with cosine distance, which is defined as cos(A,B) = ”[{ﬁﬁ where A and B are
two MeSH matrices; the default number of clusters is 4. This clustering method provides a way of
organising all the retrieved records by putting together the documents with similar research topics.
Besides unsupervised clustering, the results are classified into three pre-defined categories.

The retrieved PubMed abstracts and metadata are output into a separate tab for each query in
an Excel file, along with the accompanied analysis results. A summary table for all query results
is generated and output in the first tab of the file. Figure 2 shows the schematic workflow of
the OmixLitMiner tool.

Uniprot
REST API

<

Protein or Taxonomy | Keywords InTitleOnly

Get Gene ID ID (Yes/No)

protein/gene

G ynonym
PubMed
queries Build

4

PubMed queries

PubMed
R O E/Ic::t:n;ztn: Abstract MeSH terms
g’ Retrieve
. ocument
RISmed EUtils word  statistical MeSH-based

cloud plots clusters
Analysis and
text mining

1: well studied 2: known but  2: not known
not well studied

24 gg@@ﬁ

Assign
categories

Summary Results for each query in
separated tabs

<

Output all
results

<

Figure 2. Schematic workflow showing the different steps the OmixLitMiner tool goes through before
generating an output file.

4.2. Categorization of the Results

The tool assigns the proteins into three main categories (1-3) and an additional Category 0.
Category 1 hits are proteins/genes which show at least one review paper where the synonyms and
the selected keywords are found together in the article title, or in the abstract if that option is selected.
Category 2 hits are proteins/genes where at least one publication was found, but no review article, in
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which the synonyms and the selected keywords are both present. Category 3 represents proteins/genes
where no publication was found which mentions both the synonyms and the keywords together in
the title. Category 0 is used for proteins/genes where the tool could not find any synonyms. This may
happen if the UniProt accession belongs to an isoform or to an entry that is unreviewed (i.e., TTEMBL),
see Supplementary File S8. The tool also conducts a check to see if the keyword along with one of
the synonyms is in the title (or abstract). If this check is negative, then the hit is categorized as “False”.
In our experience this happens only rarely and is caused by missing information in the automated
PubMed returned metadata.

4.3. Evaluation Strategy

To demonstrate the tool’s performance, we selected ‘omics publications with detailed
Supplemental data relevant to cancer biomarker discovery. This included two proteomics publications
(Martinez-Aguliar et al. [9] and Hanel et al. [10]), and an independent proteomics publication (Mori
et al. [11]). For each publication the most significant hits as discussed in the results of each paper
where chosen for analysis. The UniProt accession numbers, specific keyword (cancer or metastasis)
and the corresponding taxonomy ID where copied into an Excel input file for analysis (Supplementary
Files 51-512). The tool was run using R 3.5.1. The OmixLitMiner analysis was performed by a bachelor
student (S.H.) who had no involvement in the original publications. The presented results were obtained
on 13.03.2019 and are expected to change as the PubMed library grows. We also included OmixLitMiner
search results from a cancer genomics publication [15] to demonstrate the tool’s compatibility with this
data type.
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MRM Multiple-Reaction-Monitoring
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