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Abstract: Breast cancer is the most frequent cancer among women. In 2018, it is estimated that 627,000
women died from breast cancer. This is approximately 15% of all cancer deaths among women
(WHO 2018). Breast cancer is a multifactorial chronic disease. While important progress has been
made to treat patients, many questions regarding aspects of this disease relating to carcinogenesis are
still open. During carcinogenesis, cells exhibit cholesterol homeostasis deregulation. This results
in an accumulation of intracellular cholesterol, which is required to sustain their high growth rate.
Cholesterol efflux and influx are two metabolic pathways that are necessary to prevent cholesterol
accumulation in the cells. Liver X receptors (LXRs) are nuclear receptors that, upon activation, induce
the expression of ABC transporters, responsible for promoting cholesterol efflux, and the expression
of IDOL (inducible degrader of low-density lipoprotein receptor), in charge of reducing cholesterol
influx. Oxysterols, oxygenated derivatives of cholesterol formed through different pathways, have
been discovered as LXR-specific ligands. Some oxysterols are involved in tumor formation while
others are considered anti-tumor agents. In the present review, we discuss the involvement of
cholesterol, oxysterols and LXRs in breast cancer pathophysiology, with an emphasis on the biological
effects of LXR ligands.
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1. Introduction

Breast cancer is a multifactorial chronic disease. It is now recognized that there are correlations
between obesity and metabolic syndrome and the risk of developing breast cancer. It was also shown
that circulating levels of Estrogen Receptor ER and estrogens were associated with adiposity and breast
cancer. High blood cholesterol is common in obesity and metabolic syndrome [1], and its impact as a
risk factor for breast cancer is controversial. Discrepancies between results may be explained by the
distribution of blood cholesterol among the different major classes of lipoproteins (VLDL, LDL and
HDL) and its modulation by lifestyle and menopausal status [2].

Both animal and human studies have shown that circulating levels of cholesterol closely mirror
those of the primary metabolite of cholesterol, the oxysterol 27OHC, and that hypercholesterolemia
results in high levels of 27OHC [3–6]. Several studies have demonstrated that this oxysterol functions
as a mitogen in ER-positive tumors and as a ligand of the nuclear receptors liver X receptors (LXRs) [7].
LXRs (LXRα (also called NR1H3) and LXRβ (NR1H2)) are transcription factors that regulate the
expression of key genes that are involved in lipid and cholesterol metabolism.

This evidence led researchers to study LXRs and their ligands (oxysterols and synthetic ligands)
in relation to their involvement in breast tumorigenesis. The results of various studies showed that
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not all oxysterols derived from cholesterol act in the same manner as 27OHC. Indeed, synthetic and
natural ligands of LXRs, e.g., T0901317 and 22(R)-hydroxycholesterol (22(R)-OHC), both suppressed
proliferation and induced apoptosis in a breast cancer model cell line (ER+) [8]. Moreover, the
activation of LXRs by T0901317 decreased the expression of Flotillin-2, a biomarker of lipid rafts,
which play important roles in cancer progression and the Akt signaling pathway in the MCF-7 cell
line [9]. 22(R)-OHC and 24(S)-hydroxycholesterol suppressed the proliferation of prostate and breast
cancer cells [10]. Cancer cell lines with higher LXRα mRNA expression were more sensitive to
22(R)-OHC-induced inhibition [11].

In this review, we have focused on the relationships between cholesterol, oxysterols, LXRs and
breast cancer (Figure 1).Int. J. Mol. Sci. 2020, 20, x FOR PEER REVIEW 3 of 11 

 

 
Figure 1. Influence of cholesterol, oxysterols and liver X receptors (LXRs) on breast cancer 
pathophysiology. 

  

Figure 1. Influence of cholesterol, oxysterols and liver X receptors (LXRs) on breast
cancer pathophysiology.
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2. Cholesterol, Oxysterols, LXRs and Breast Cancer

All cells, including mammary cells, are able to synthesize cholesterol through the mevalonate
pathway by an enzyme cascade in which HMG-CoA-reductase (HMGCR) plays a central role. Cells can
also acquire cholesterol through lipoproteins. Indeed, lipoproteins mediate the delivery of cholesterol
(from diet and biosynthesis) to cells from the blood stream.

Cholesterol is not only important as a component of cell membranes. It also serves as a precursor
for steroid hormones, bile acids, vitamin D and oxysterols, and is a critical molecule for cell growth
and function. [7,12–15].

Intracellular cholesterol is finely regulated by different complex mechanisms. A large number of
experimental studies have shown that cancer cells exhibit deregulated transcriptional levels of several
genes involved in cholesterol regulation and metabolism such as low-density lipoprotein receptor
(LDLR), HMG-CoA reductase (HMGCR) and sterol regulatory element-binding protein (SREBPS) [16,17].
Indeed, many cancer cells show elevated LDL receptor levels and increased LDL uptake [18,19]. In a
breast cancer cell model known for aggressive cell behavior (MDA-MB-231), LDL receptor has been
shown to be upregulated and LDL stimulates cell migration [20]. Scavenger receptor-BI (SR-BI) is
also often overexpressed in tumors, and is considered to contribute to increasing HDL-cholesterol
uptake in cancer cells [18,21]. In MDA-MB-231 cells, knockdown of SR-BI inhibits migration in vitro
and tumor growth in vivo [22]. Moreover, studies of cancer cells revealed that cholesterol biosynthesis,
mediated by HMG-CoA reductase, is enhanced due to increased transcriptional regulation (mediated
by SREBP-2) [23,24]. The effect of statins, hypocholesterolemic drugs that selectively inhibit HMG-CoA
reductase, was also of interest to investigators. They have been shown to exhibit anti-proliferative
and pro-apoptotic effects in numerous experimental studies [25,26]. Several mechanisms have been
described for the effect of statins, among them inhibition of the generation of isoprenoids, which are
necessary for the prenylation, addressing and localization of Ras proteins. The Ras superfamily of
GTPases has well-established roles in cell proliferation, survival, migration, and invasion. In addition
to this effect on cholesterol biosynthesis, another mechanism of action has been recently elucidated.
The results of Bai et al. showed that simvastatin increased miR-140-5p in a dose-dependent manner via
activating transcription factor NRF1, which reduced breast cancer (ER+ and ER−) cell proliferation
and induced apoptosis [27]. The various observations and experiments using statins or genetic
manipulation are evidence that the deregulation of cholesterol homeostasis leads to an accumulation
of intracellular cholesterol, which is required to sustain the high growth rate and function of cancer
cells observed in earlier studies [28,29].

In addition to the genes mentioned below, the transcription factors liver X receptors (LXRs) are
also involved in maintaining intracellular cholesterol homeostasis by controlling its efflux and/or influx.

Some studies reported that increased cholesterol efflux and/or decreased influx are associated
with decreased cancer cell proliferation and tumorigenesis. Indeed, El Roz et al. have demonstrated
that LXR activation by TO901317 or 22ROHC in MCF-7 cells deprives cells of cholesterol by stimulating
its efflux through the expression of ABCG1. This results in the inhibition of cell proliferation and in the
stimulation of apoptosis [8]. In regard to the mechanism of action of cholesterol influx reduction, LXR
inhibits LDL receptor expression through the induction of an E3 ligase that ubiquinates LDLRs called
IDOL (inducible degrader of LDLR) [30].

2.1. Cholesterol and Breast Cancer in Animal Studies

A study by Llaverias et al. examined the role of plasma cholesterol in the development of
mammary tumors and metastasis in an MMTV-PYMT mouse model of mammary cancer. Their data
show that increased dietary intake of cholesterol alone (through a high cholesterol diet) results in
significantly decreased tumor latency and increased tumor growth, supporting the idea that cholesterol
itself can impact tumor pathophysiology. In the same study, it was demonstrated that in mammary
tumors, increased expression of cyclin D1, a marker of tumor formation, is associated with cholesterol
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plasma levels. Moreover, increased expressions of SR-BI (scavenger receptor-BI) and LDL receptors in
tumors were shown [16].

To explore the mechanism involved in LDL favoring breast cancer growth and invasiveness,
dos Santos et al. analyzed the effects of LDL in different models of breast cancer. It was found that
LDL (but not HDL) promotes cell proliferation, migration and loss of adhesion. Using in vivo models
(on a high cholesterol diet), they also showed that breast tumors are consistently larger and more
proliferative in hypercholesterolemic mice, and these mice also have increased lung metastasis. They
revealed an overexpression of the survival pathways Akt and ERK and decreased adhesion molecules
in breast cancer cells exposed to LDL [31].

The inhibition of PCSK9 (protein convertase subtilisin/kexin 9) is an efficient strategy for lowering
cholesterol and low-density lipoprotein cholesterol (LDL-C) [32]. In a study by Momtazi-Borojeni
et al., the anti-PCSK9 antibody was induced via a vaccine in mice inoculated with breast carcinoma
cells. It was demonstrated that the rate of tumor growth was decreased by 21% in the vaccine group
compared with the control group. In the same study, lifespan was increased by 4.2% in the vaccine
group compared with the control group [33].

2.2. Cholesterol and Breast Cancer in Human Studies

Studies in humans on the associations between serum cholesterol and its carriers, lipoproteins,
and breast cancer led to conflicting results. Some authors found a protective effect, others concluded
that cholesterol is a risk factor, and some found no effect. Indeed, Chang et al. demonstrated that
higher levels of VLDL-C and lower levels of ApoAI, a component of HDL, were significantly associated
with breast cancer [34].

Another study suggests that higher levels of HDL-C may reduce breast cancer risk among
premenopausal women [35].

The results of the ARIC cohort study suggest that low HDL-cholesterol among pre-menopausal
women may be a marker of increased breast cancer risk [36].

Recent analyses revealed that breast cancer risk increased 1.6-fold in patients with
hyperlipidemia [37]. In another study, it was demonstrated that patients with established breast cancer
had higher LDL-C and lower VLDL-C, although no association between HDL or total cholesterol and
breast cancer was obvious [38].

The meta-analysis realized by Touvier et al. confirmed the evidence of a modest but statistically
significant inverse association between total cholesterol and more specifically HDL-C and the risk of
breast cancer [39].

The British study ACALM (Algorithm for Comorbidities, Associations, Length of Stay and
Mortality) showed that women aged 40 and over with high cholesterol were less likely to develop
breast cancer by 45%. The risk of death in patients who developed cancer was reduced by 40% in
patients with high cholesterol levels [40].

Since serum cholesterol is influenced by diet, especially by lipid consumption, and by
hypocholesterolemic drugs, the effect of dietary cholesterol and statins on the incidence of breast cancer
has also interested researchers.

In a population-based study, Hu et al. found that dietary cholesterol was positively associated
with breast cancer risk, mainly in postmenopausal women [41].

In a meta-analysis conducted by Li et al., which examined the association between dietary
cholesterol and breast cancer, the authors found that the association became significant when the
consumption was greater than 0.37 g/day [42].

The findings of some meta-analyses do not support the hypothesis that statins have a protective
effect against breast cancer [5,43,44]. However, in another meta-analysis, statin use was associated
with reduced breast cancer recurrence [45].

From these studies, it is not clear whether total cholesterol makes the best risk biomarker. It was
subsequently suggested that 27 OH could be a more suitable candidate.
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3. 27OHC, Oxysterols, LXRs and Breast Cancer

Oxysterols are metabolites of cholesterol. Some of them are oxygenated enzymatically (e.g.,
25-hydroxycholesterol (25OHC), 27-hydroxycholesterol (27OHC) and 24S-hydroxychlesterol (24OHC)),
while some are not produced enzymatically (e.g., 7alpha/beta-hydroperoxycholesterol (7OOHC),
7 ketocholesterol (7KC)) [12,46].

Most oxysterols are described as LXR ligands. Ligand activation of LXRs leads to the recruitment
of specific coactivators (e.g., steroid receptor coactivator-1 (SRC-1), PPARg coactivator-1alpha
(PGC-1alpha), and activating signal cointegrator-2 (ASC-2)), which results in the transcription of target
genes [47].

The oxysterol 27OHC is a primary metabolite of cholesterol synthesized by CYP27A1 and
circulates at slightly higher concentrations compared to other oxysterols [48]. Based on many studies,
27OHC is considered as an LXR ligand and as an SERM produced endogenously [49] Therefore,
it may be that 27OHC has different effects on cell growth, depending on the ER status. Indeed,
it has been demonstrated that 27OHC stimulates proliferation in ER-positive breast cancer cell
models [50]. Moreover, it has been shown that the exogenous co-administration of ER antagonists
and 27OHC reverses the growth of breast tumors in a xenografted animal model in comparison with
the administration of 27OHC alone [51]. In another study using LXR-/- breast cancer cells, 27OHC
enhanced the induction of ER target genes. In contrast, 27OHC resulted in the upregulation of LXR
target genes in ER-knocked down cells [52].

Moreover, the observation that elevated levels of CYP7B1, a cytochrome p450 enzyme responsible
for the catabolism of 27OHC, are associated with better survival outcomes in mice suggests the
involvement of this oxysterol in breast cancer pathophysiology [51]. Nevertheless, this effect may vary
with the ER status of the tumor.

Considering the role of 27OHC in the growth of breast tumors, several investigators have
conducted studies on tumors and in humans. The study of Wu et al. showed that intra-tumor levels of
27OHC are six-fold higher in ER-positive breast tumors in comparison with adjacent normal tissue [53].
Solheim et al. analyzed side chain oxysterols in breast cancer tumors (ER+ and ER−). They observed a
correlation between esterified and free 27-hydroxycholesterol in both tumors. However, no significant
differences in levels of other endogenous oxysterols were observed between ER+ and ER− tumors [54].

Exosomes from cancer cells are rich sources of biomarkers and may serve as useful for diagnosis.
A study by Roberg-Larsen et al. found an increased level of 27OHC in exosomes from the MCF-7 (ER+)
breast cancer cell line compared to exosomes derived from an estrogen receptor (ER−) breast cancer
cell line (MDA-MB-231) and other control exosomes (from a non-cancerous cell line (HEK293) and
human plasma) [55].

Using the European Prospective Investigation into Cancer and Nutrition (EPIC) Heidelberg cohort,
Lu et al. analyzed the association between 27OHC and breast cancer risk. Their study showed that the
association between serum 27OHC and breast cancer risk differs by menopausal status but not by age
at diagnosis. A lack of association among premenopausal women at blood collection was observed.
However, among postmenopausal women, higher serum 27OHC levels were associated with lower
breast cancer risk [56].

Another oxysterol, 25OHC, has been found to be elevated in the circulation of breast cancer
patients who have relapsed compared to those with primary disease [57].

Since the LXR agonist 27OHC is considered to influence breast cancer cell proliferation, studies
have been conducted on the expression of LXR itself and oxysterol determination in human tumors and
in cell lines. Hutchinson et al. evaluated the differences in oxysterols and LXR signaling between ER−
and ER+ breast cancers and cell lines. They observed that ER− breast cancer cells are more responsive
than ER+ breast cancer cells to LXR agonists. In the same study, they questioned whether the increased
transcriptional activity of LXR found in cellular models (ER−) could be encountered in primary breast
tumors. To verify this, they examined whether the expression of LXRalpha or LXRbeta was correlated
with the expression of the LXR canonical target genes (ABCA1 and ApoE) in primary tumors with
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different ER statuses (ER− and ER+). They showed that ABCA1 correlated with LXRalpha in ER− but
not in ER+ tumors. ApoE correlated with LXRalpha in both subtypes, but the correlation was much
weaker in ER+ than in ER− tumors. Both ABCA1 and ApoE were assessed for their correlation with
LXRbeta. ApoE weakly correlated with LXRbeta in ER+ tumors but was not correlated with LXR
in ER-negative tumors; ABCA1 was not correlated with LXRbeta in either tumor type. From their
observations, they concluded that ER status was inversely associated with the ability of LXR to induce
canonical target gene expression [58].

The transcriptional activity of LXR (alpha and beta) is regulated by the corepressors NCOR1,
NCOR2 and LCOR [59,60]. It is known that LXRalpha has a 100-fold higher binding affinity than
LXRbeta for the corepressors NCOR1 and NCOR2 [61]. Based on these observations, it appears that the
single measurement of LXR agonists is not sufficient; it seems necessary, for example, to determine both
ligand concentrations and transcriptional activity. In the study of Hutchinson et al., it was demonstrated
that MDA-MB-468 breast cancer cells (ER−) expressed significantly fewer NCOR1, NCOR2 and LCOR
transcripts than the breast cancer cell line MCF7 (ER+). They also showed that the knock-down of
these co-repressors equalized sensitivity to ligands between ER subtypes [58]. In another study, Pan
et al. assessed the expression levels of ABCA1, ABCG1 and LXRbeta in triple negative breast cancer
(TNBC) tissues and in non-cancerous mammary tissues. They identified that only ABCA1 in TNBC
tissues was higher than that in non-cancerous mammary tissues. A high expression of ABCA1 in
TNBC tissues was significantly associated with histological grade. However, no significant differences
were identified between the expression levels of LXR-β and ABCG1 in both mammary tissues [62]. A
mass spectrometry-based label-free quantification followed by functional annotation was performed to
investigate the most significant deregulated proteins among various tissues from patients diagnosed
with invasive ductal carcinoma: the primary breast tumor, axillary metastatic lymph nodes, and the
corresponding contralateral and adjacent non-tumor tissues.. In this study, the differentially expressed
proteins between the malignant and non-tumor breast tissues were mostly related to the LXR/RXR
pathway [63].

In a recent study conducted to explain why triple negative breast cancer (TNBC) is more aggressive,
specifically in African and African-American women, the authors compared the proteomic profile of
this cancer (TNBC) with luminal A (LA) cancer in African-American (AA) and European-American
(EA) patients. They demonstrated that representations of LXR/RXR signaling pathways were increased
in LA samples from AA women and that this pathway was altered in TNBC samples from AA women.
Furthermore, they showed that Cyp7B1, the enzyme responsible for the degradation of 27OHC,
had strong immunoreactivity in the tumor cells of LA patients and less in TNBC tissues [64].

4. Conclusions

In summary, the influence of cholesterol on the incidence of breast cancer is still an exciting and
controversial debate. On one hand, 27OHC, its primary oxysterol metabolite, known as an LXR ligand
and an SERM, has been demonstrated to function as a mitogen and is now increasingly considered a
potential risk biomarker. However, other oxysterols are considered anti-tumor agents. In addition,
the LXR/RXR signaling pathway and Cyp7B1, the enzyme responsible for the degradation of 27OHC,
are significantly increased in women with luminal A cancer compared to those with TNBC cancer.
Furthermore, LXRalpha and LXRbeta and their co-repressors are differentially expressed in tumors
with different ER statuses. These observations reinforce the importance of studying oxysterols and
nuclear LXR receptors in breast cancer. The results of these studies would be helpful in conceiving
new strategies for therapeutic intervention.
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