Exploring the photodynamic properties of two antiproliferative benzodiazopyrrole derivatives

Concetta Imperatore¹, Mohammadhassan Valadan², Luciana Tartaglione^{1,3}, Marco Persico¹, Anna Ramunno⁴, Marialuisa Menna¹, Marcello Casertano¹, Carmela Dell'Aversano^{1,3}, Manjot Singh², Maria Luisa d'Aulisio Garigliota⁴, Francesco Bajardi², Elena Morelli¹, Caterina Fattorusso¹, Carlo Altucci² and Michela Varra¹

- ¹ Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy.; <u>cimperat@unina.it</u> (C.I.); luciana.tartaglione@unina.it (L.T.); m.persico@unina.it (M.P.); <u>mlmenna@unina.it</u> (M.M.); <u>marcello.casertano@unina.it</u> (M.C.); <u>dellaver@unina.it</u> (C.D.A.); <u>emorelli@unina.it</u> (E.M.);
- ² Department of Physics "Ettore Pancini", University of Naples Federico II, Naples 80126, Italy; <u>mohammadhassan.valadan@unina.it</u> (M.V.); singh@fisica.unina.it (M.S.); <u>fbajardi@fisica.unina.it</u> (F.B.);
- ³ CoNISMa Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
- ⁴ Department of Pharmacy/DIFARMA, University of Salerno, 84084 Fisciano, Salerno, Italy; <u>aramunno@unisa.it</u> (A.R.); mdaulisiogarigliota@unisa.it (M.L.D.A.G.)
- * Correspondence: <u>varra@unina.it</u> (Mi.V.), Tel.: +39-081-678540 (M.V.); <u>altucci@na.infn.it</u> (C.A.), Tel.: +39-081-676293; caterina.fattorusso@unina.it (C.F.) Tel.: +39-081-678544
- [†] These authors contributed equally to this work.

TABLE OF CONTENTS

Figure S1. UV spectra of <i>d</i> 1RS in the dark at different pH	3
Figure S2. A schematic representation of the instrument employed for fast UV spectroscopy	4
Figure S3. <i>Cis</i> to <i>trans</i> thermal conversion for <i>d</i> 1RR	5
Figure S4. <i>Cis</i> to <i>trans</i> and <i>trans</i> to <i>cis</i> conversion for <i>d</i> 1RR at pH 5.7 and 7.0	6
Figure S5. <i>Cis</i> to <i>trans</i> and <i>trans</i> to <i>cis</i> conversion for <i>d</i> 1RS at pH 5.7 and 7.0	7
Figure S6. Changes in apparent rate constant (k_{obs}) in the pH range 5.7-8.0	8
Figure S7. UV-vis spectra of <i>d</i> 1RR and <i>d</i> 1RS in the pH range 7.0-1.5	8
Figure S8. Conformational families of <i>trans</i> (I-II) and <i>cis</i> (III-V) isomers of <i>d</i> 1RS	9
Figure S9. Conformational families of the zwitterionic form of <i>d</i> 1RS	9
Figure S10. Putative <i>d</i> 1RS ionic species present in solution	10
Figure S11. LC-HRMS of sample 2: (A) Extracted ion Chromatogram at m/z 350.1344, (B) associated HRMS spectrum and associated HRMS ² spectra	1 (C) 11
Figure S12. HRMS ² spectrum of d 1RR obtained by using the ion at m/z 350.1 as precursor	13
Figure S13. The cleavage occurring for <i>d</i> 1RR in HRMS ² experiments giving rise to two main fragment ions	13
Figure S14. LC-HRMS of compound 1: (A) Extracted ion Chromatogram at m/z 306.1453 (B) associated HRMS and	
(C) HRMS ² spectra	14
Figure S15. Enlargement range of the LC-HRMS ² spectrum of the precursor ion of compound 1	16
Figure S16. HRMS and HRMS ² spectra of compound 2	17
Figure S17. ¹ H NMR spectrum of compound 1 in CD ₃ OD	18
Figure S18. Low-field enlargement of 1H-1H COSY NMR spectrum of compound 1 in CD3OD	19
Figure S19. High-field enlargement of 1H-1H COSY NMR spectrum of compound 1 in CD3OD	20
Figure S20. ¹ H NMR spectrum of compound 2 in CD ₃ OD	21
Figure S21. ¹³ C NMR spectrum of compound 2 in CD ₃ OD	22
Table S1. Data coming from the interpolation of the apparent rate constants versus $[H^{+}]$	23
Table S2. Calculated percentages of ionic species of <i>d</i> 1RR and <i>d</i> 1RS in the pH range 1.0-8.0	24
Table S3. ΔE_{GM} values and torsion angle values of the MM conformers of <i>trans</i> isomer of <i>d</i> 1RR	25
Table S4. ΔE_{GM} values and torsion angle values of the MM conformers of <i>cis</i> isomer <i>d</i> 1RR	26
Table S5. ΔE_{GM} values and torsion angle values of the MM conformers of <i>trans</i> isomer of <i>d</i> 1RS	27
Table S6. ΔE_{GM} values and torsion angle values of the MM conformers of <i>cis</i> isomer <i>d</i> 1RS	28
Table S7. ΔE_{GM} values and torsion angle values of the MM conformers of $d\mathbf{1RR}$ in the zwitterionic form	29
Table S8. ΔE_{GM} values and torsion angle values of the MM conformers of d 1RS in the zwitterionic form	30
Table S9. ΔG_{GM} values and torsion angle values of the DFT <i>trans</i> isomers of <i>d</i> 1RS and <i>d</i> 1RR in the anionic form	31
Table S10. ΔG_{GM} values and torsion angle values of the DFT <i>cis</i> isomer of <i>d</i> 1RS and <i>d</i> 1RR in the anionic form	32
Table S11. ΔG_{GM} values and torsion angle values of the DFT conformers of d 1RS and d 1RR in the zwitterionic form	33
Table S12. Bond length values (Å) of the DFT conformers of <i>d</i> 1RR and <i>d</i> 1RS	34
Scheme S1. Synthesis of compound 2	35

Figure S1. **A**. UV spectra of *d***1RS** in the dark at different pH: red pH=5.7; blue pH=7.5; green pH= 8.0. **B**, **C**, and **D**. UV spectra before (dashed line) and after (blue line) irradiation with LED at 435 nm (1 min, 1 LED), at pH=8.0, 7.5, and 5.7 respectively.

Figure S2. The experimental setup for the fast UV spectroscopy. The light source is a Deuterium arc lamp, delivering a board emission band down to about 200 nm. This acts as the probe to monitor transient absorption spectra of the sample. Several optical filters are used to adjust the spectrum and the average power of the probe, preventing any perturbation of the sample by the probe light. A couple of UV-grade convex lenses are used to collimate diverging output light of the lamp and finally couple it to an optical fiber that carries the light to the detector. The cuvette is kept between the two lenses and collimated probe light passes through the sample. The detector is a spectrograph combined with an intensified CCD (ICCD), which is recording the transmitted light at a repetition rate of 10 or 25 Hz; the latter being used for the faster processes in acidic solutions.

Figure S3. Fast UV spectroscopy of *d***1RR** at pH=8.0. **A** and **B**. *Cis* to *trans* thermal conversion (in the dark pH=8.0) for *d***1RR** and **A**. Time-dependent absorption spectrum of *d***1RR**. **B**. 2D graphical representation of the changes in the absorbance of *d***1RR** plotted as a function of time. **C** and **D**. The changes of absorbance at specific wavelengths 340 and 400 nm, together with their best fit (red solid lines). Reaction half-lives and apparent rate constants are deduced based on these fittings.

Figure S4. Some examples of the changes of absorbance at specific wavelengths 340 and 400 nm, measured by fast UV spectroscopy, together with their best fit (red solid lines). *d***1R***R cis* \rightarrow *trans* (**A** and **B**) and *trans* \rightarrow *cis* (**C** and **D**) conversion at pH=5.7. *d***1R***R cis* \rightarrow *trans* (**E** and **F**) and *trans* \rightarrow *cis* (**G** and **H**) conversion at pH= 7.0. Reaction half-lives and apparent rate constants are deduced based on these fittings.

Figure S5. Some examples of the changes of absorbance at specific wavelengths 340 and 400 nm, measured by fast UV spectroscopy, together with their best fit (red solid lines). *d***1RS** *cis* \rightarrow *trans* (**A** and **B**) and *trans* \rightarrow *cis* (**C** and **D**) conversion at pH=5.7. *d***1RS** *cis* \rightarrow *trans* (**E** and **F**) and *trans* \rightarrow *cis* (**G** and **H**) conversion at pH= 7.0. Reaction half-lives and apparent rate constants are deduced based on these fittings.

Figure S6. Changes in apparent rate constant (k_{obs}) in the pH range 5.7-8.0. **A**. d**1RS** $trans \rightarrow cis$ (irradiated at 435 nm). **B**. d**1RS** $cis \rightarrow trans$ (thermal decay). Both the transitions were monitored at 400 nm (circle) and 340 nm (square). **C**. Titration curve of d**1RS** in phosphate buffered solution obtained plotting the absorptions at 400 and 495 nm *versus* pH.

Figure S7. UV spectra of *d***1RR** (**A**) and *d***1RS** (**B**) acquired at different pH values. The arrows show the behaviours of the UV bands at different pH values (Panel A: 7.0, 5.5, 4.5, 3.5, 2.5, 1.5; Panel B: 7.0, 5.5, 4.5, 3.5, 2.5, 1.5, 0.5, 0.2)

Figure S8. Conformational families of the *trans* (up; I and II) and *cis* (down; III-V) isomers of *d***1RS** in their anionic form. The lowest energy conformer of each family is displayed as ball & sticks. Conformers belonging to subfamilies are superimposed by phenyl ring atoms and displayed as stick. Heteroatoms are coloured by atom type: O, red; N, blue. Hydrogens are omitted for clarity with the exception of those involved in intramolecular interactions (evidenced with a black dashed line).

Figure S9. Conformational families of the zwitterionic form of *d***1RS.** The lowest energy conformer of each family is displayed as ball & sticks. Conformers belonging to subfamilies are superimposed by phenyl ring atoms and displayed as stick. Heteroatoms are coloured by atom type: O, red; N, blue. Hydrogens are omitted for clarity with the exception of those involved in intramolecular interactions (evidenced with a black dashed line).

Figure S10. Putative *d***1RS** ionic species present in solution in the pH range considered during the fast UV experiments according to DFT calculations. Dashed arrows indicate conformational equilibria between the different conformers and GM indicate the structure of the global minimum conformer Structures are relative to the obtained DFT minima and are displayed as ball & sticks. Heteroatoms are coloured by atom type: O, red; N, blue. The molecular electrostatic potential surface is displayed.

Figure S11. LC-HRMS analyses of sample **2** on an LTQ Orbitrap XLTM Hybrid FT Mass Spectrometer system: (**A**) Extracted ion Chromatogram (XIC) obtained by selecting the ion at m/z 350.1344, (**B**) relevant HRMS spectrum and (**C**) relevant HRMS² spectrum (Collision Induced Dissociation mode) obtained by using the ion at m/z 350.1 as precursor.

Figure S12. HR-MS² spectrum of *d***1RR** obtained by using the ion at m/z 350.1 as precursor. The sample was analyzed by direct infusion

Figure S14. LC-HRMS analyses for sample **1** on an LTQ Orbitrap XLTM Hybrid FT Mass Spectrometer system: (**A**) Extracted ion Chromatogram (XIC) of the ion at m/z 306.1453, named compound **1**, (**B**) associated HRMS spectrum and (**C**) associated HRMS² spectrum (Collision Induced Dissociation mode) obtained by using the ion at m/z 306.1 as precursor.

Figure S15. (**A**) Enlargement range m/z 90-230 and (**B**) m/z 230-305 of the LC-HRMS² spectrum of the compound **1**.

Figure S16. (**A**) HRMS spectrum of compound **2** and (**B**) relevant HRMS² spectrum obtained by using the ion at m/z 306.1 as precursor. The sample was analyzed by direct infusion.

Figure S17. ¹H NMR spectrum of compound 1 in CD₃OD.

Figure S18. Low-field enlargement of ¹H-¹H COSY NMR spectrum of compound 1 in CD₃OD.

Figure S19. High-field enlargement of ¹H-¹H COSY NMR spectrum of compound 1 in CD₃OD.

Figure S20. ¹H NMR spectrum of compound 2 in CD₃OD.

Figure S21. ¹³C NMR spectrum of compound 2 in CD₃OD.

Table S1. All the apparent rate constants as a function of [H⁺] are fitted using the formula:

				u 1 x									
				a*	b*	•	С*						
			Value	SE**	Value	SE**	Value	SE**					
			x10-7	x10-7	x10-8	x 10-9	x10-2	x 10-2					
d1RR	$trans \rightarrow cis$	340 nm	15.5	5.99	9.19	41.8	35.9	5.67					
		400 nm	24.0	2.46	14.97	14.2	1.88	3.07					
	$cis \rightarrow trans$	340 nm	30.0	1.10	2.45	10.2	27.8	3.41					
		400 nm	8.18	2.45	0.115	5.25	23.8	2.52					
d1RS	$trans \rightarrow cis$	340 nm	33.8	6.98	25.7	47.3	2.62	5.46					
		400 nm	116	72.0	57.8	330	156	121					
	$cis \rightarrow trans$	340 nm	30.6	5.01	0.440	6.33	52.9	5.47					
		400 nm	78.9	35.5	9.19	42.78	97.6	59.8					

w —	b + c x
<i>y</i> –	a + x

*All data are reported as absolute values. ** Standard Error on each value.

According to references in the manuscript [27],

 $b=k_{T\rightarrow C} x K_aT$;

с=ктн+→сн+

and a=K_aT

where $k_{T \to C}$ is the rate constant for the *trans* \rightarrow *cis* isomerization; K_aT is the equilibrium constant for *trans*H⁺ \rightarrow *trans*+ H⁺; c is the rate constant for the reaction *trans*H⁺ \rightarrow *cis*H⁺ under irradiation, whereas all these parameters are connected to the *cis* form during the thermal decay.

pН		% Ionic forms											
	Protonated	Zwitterionic	Anionic	Neutral									
8.0	0	5	95	0									
7.5	0	14	86	0									
7.0	0	33	67	0									
6.7	0	50	50	0									
6.5	0	61	39	0									
6.0	0	83	17	0									
5.7	0	91	9	0									
5.0	0	98	2	0									
4.0	0	100	0	0									
3.0	4	96	0	0									
2.0	28	72	0	0									
1.0	80	20	0	0									

Table S2. Calculated percentages of ionic species of *d***1RR** and *d***1RS** in the pH range 1.0-8.0.

Table S3. ΔE_{GM} values (kcal/mol) and torsion angle values (degrees) of the MM conformers of trans isomer of *d***1RR**.

Sub-	ΔЕдм	(%)		Torsion Angles								
family	(kcal/mol) ^a				(°) ^b			interactions				
			$\tau 1^c$	$\tau_{N=N}{}^d$	$\tau 2^e$	$\tau 3^{f}$	$\tau 4^{g}$					
Ia	0.00-4.96	21.5	-4.94	179.90	-4.30	-63.11	169.89	CH ₂ (j) – N (c)				
Ib	0.92-4.96	16.3	0.61	-179.89	-9.04	95.83	176.13	CH (g) – N (c)				
IIc	1.37-4.98	18.2	2.67	-179.45	155.49	-62.51	176.33	CH ₂ (g) – N (d)				
IId	2.40-4.94	20.2	-1.85	179.66	-156.07	100.29	177.41	CH (g) – N (d)				
Ie	2.31-4.99	10.7	-6.35	179.95	-0.20	-59.94	-74.41	OH (k) – N(c)				
IIf	3.62-4.96	5.8	-2.06	179.49	-155.47	-60.25	-68.39	OH (k) – N(d)				
Ţ	2 00 4 02	2.0	0.42	170.04		132.41	(1 40	CH (g) – N (c)				
Ig	3.80-4.93	3.8	-0.43	-1/9.94	14.39		-64.48	CH ₂ (j) – N (c)				
11.	2 01 4 07		0.04		15 10	100.00	(2.25	OH (k) – N(c)				
In	3.91-4.96	3.2	0.04	180.00	15.19	130.08	62.22	CH (g) – N (c)				

Table S4. ΔE_{GM} values (kcal/mol) and torsion angle values (degrees) of the MM conformers of cis isomer *d***1**RR.

Sub- family	ΔЕсм	Number of				Intramolecular interactions		
Tanniy	(kcal/mol) ^a	conn.(70)			(°)b		
			$\tau 1^c$	$ au_{N=N}^d$	$\tau 2^e$	$\tau 3^{f}$	$\tau 4^g$	
117:	0.00.4.00	- <u>-</u> -	51.76	1 79		65.08 100.61	172.62	CH2OH – OH
IVj	0.00-4.99	27.2		4.70	03.00		175.02	CH (g) – N (c)
IIIk	0.81-4.96	36.0	-60.80	-3.80	127.57	-63.57	174.46	$CH_{2}(j) - N(d)$
IIIi	1.64-5.00	24.2	53.89	4.03	-128.88	105.70	176.51	CH (g) – N (d)
• 7	1.14-4.96 12.6		0.07	04.00			COO- OH	
V L		96 12.6	-60.49	-2.97	-86.03	124.89	177.97	CH (g) – N (c)

Table S5. ΔE_{GM} values (kcal/mol) and torsion angle values (degrees) of the MM conformers of trans isomer of *d***1RS**.

Sub-	ΔE_{GM}	Number of			Torsion	Angles		Intramolecular
family	(kcal/mol)ª	conf. (%)			(°))ь		interactions
			$ au 1^c$	$ au_{\mathrm{N=N}}^{d}$	$\tau 2^e$	$\tau 3^{f}$	$ au 4^g$	
Ia	0.00-4.98	31.9	5.68	-179.89	4.51	63.03	-169.90	CH ₂ (j) – N (c)
Ib	0.99-4.97	12.8	0.51	179.88	9.00	-95.82	-176.13	CH (g) – N (c)
IIc	1.38-4.99	20.9	-2.64	179.46	-155.56	62.53	-176.33	CH ₂ (g) – N (d)
IId	2.40-4.97	13.0	2.07	-179.66	156.58	-100.39	-177.42	CH (g) – N (d)
Ie	2.30-4.96	10.9	6.54	-179.93	0.36	59.89	74.38	OH (k) – N(c)
IIf	3.63-4.95	7.1	2.01	-179.49	155.41	60.28	68.40	OH (k) – N(d)
In	2 91 4 07	2.4	0.25	170.02	14.40	100.00	(1 1 9	CH (g) – N (c)
ıg	3.81-4.97	3.4	0.35	1/9.93	-14.40	-132.38	04.40	CH ₂ (j) – N (c)

Table S6. ΔE_{GM} values (kcal/mol) and torsion angle values (degrees) of the MM conformers of cis isomer *d***1RS**.

Sub-	ΔЕдм	Number of		Т	orsion Ang	gles	Intram	olecular interactions
family	(kcal/mol)ª	conf.(%)			(°) ^b			
			$\tau 1^c$	$ au_{N=N}^{d}$	$\tau 2^e$	$\tau 3^{f}$	$\tau 4^g$	
IVi	0 00-4 99	44	49.85	4 96	-63 61	100 55	175 134	CH2OH – OH
1.1	0.00 1.77	1,1	17.00	1.90	00.01	100.00	170.101	CH (g) – N (c)
IIIk	0.13-4.97	50.3	55.29	4.06	127.70	64.12	-176.13	$CH_{2}(j) - N(d)$
\$7	0.40 5.00	20.1	F0.00	2.05	05.10	105 01	170.40	COO- OH
V L	0.40-5.00	29.1	59.90	3.05	85.12	125.21	-179.40	CH (g) – N (c)
IIIi	1.17-4.98	16.2	57.71	4.16	120.84	104.10	-177.56	CH (g) – N (d)

Table S7. ΔE_{GM} values (kcal/mol) and torsion angle values (degrees) of the MM conformers of *d***1RR** in the zwitterionic form.

Sub-	ΔE_{GM}	Number				Intramolecular		
family	(kcal/mol) ^a	of conf.(%)				interactions		
			$\tau 1^c$	$ au_{N=N}{}^d$	$\tau 2^e$	$\tau 3^{f}$	$ au 4^g$	
IId	0.00-4.98	66.0	0.00	179.74	179.99	122.25	176.88	CH (g) – N (d)
IIc	1.89-4.89	16.1	-0.26	-179.94	178.66	-63.89	176.76	$CH_{2}\left(g ight)$ – N (d)
Ι	2.70-4.99	14.1	-0.44	-176.46	28.47	134.09	175.98	-
IIIi	3.96-4.95	1.1	1.62	76.65	-170.50	115.84	176.91	CH (g) – N (d)
Im	4.01-4.79	0.4	0.60	175.55	-37.58	109.98	176.71	COO- NH
IVn	4.62-4.98	1.5	4.67	61.95	29.93	121.07	175.21	CH2OH – OH
IIf	4.63-4.87	0.8	-0.09	179.04	179.63	-58.55	-69.31	OH (k) – N(d)

Table S8. ΔE_{GM} values (kcal/mol) and torsion angle values (degrees) of the MM conformers of *d***1RS** in the zwitterionic form.

Sub-	ΔE_{GM}	Number				Intramolecular		
family	(kcal/mol) ^a	of conf.(%)			(°) ^b		interactions
			$\tau 1^c$	$\tau_{N=N}{}^d$	$\tau 2^e$	$\tau 3^{f}$	$ au 4^g$	
IId	0.00-4.88	35.83	0.00	-179.73	-179.97	-122.58	-176.80	CH (g) – N (d)
IIc	1.75-4.78	36.70	0.26	179.74	178.75	63.97	176.63	$CH_{2}\left(g\right)-N\left(d ight)$
Ι	2.64-4.96	15.38	0.50	176.60	-27.87	134.37	-175.81	-
IIIi	3.50-4.88	0.56	-0.90	-80.05	170.95	-115.99	-176.787	CH (g) – N (d)
IIf	4.54-4.97	2.72	0.17	-178.79	-179.48	58.01	66.53	OH (k) – N(d)
Im	3.62-4.77	8.54	-0.50	-175.56	38.00	-111.00	-174.51	COO- NH
IVn	4.04-4.73	0.28	6.91	120.77	-50.56	-130.13	-172.43	CH2OH – OH

Table S9. Δ G_{GM} values (kcal/mol) and torsion angle values (degrees) of the DFT trans isomers of *d***1RS** and *d***1RR** in the anionic form.

Cmp	ΔG_{GM}		Torsion	Intramolecular			
	(kcal/mol)		interaction				
		$\tau 1^a$	${ au_{{ m N=N}}}^b$	$\tau 2^c$	$\tau 3^d$	$\tau 4^e$	
d1RS	0.00	1.88	179.99	0.29	61.71	-172.13	CH ₂ (j) – N (c)
	1.32	-0.97	-179.99	0.28	63.52	-62.41	CH ₂ (j)-N (c)
d1RR	0.00	-2.30	179.28	-1.51	-62.72	63.22	CH ₂ (j) -N (c)
	4.93	4.50	-179.37	4.71	122.89	173.84	CH (g) -N (c)

 ${}^{a}\tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${}^{b}\tau_{N=N}$ torsion angle is defined by b, c, d, and e atoms. ${}^{c}\tau^{2}$ torsion angle is defined by c, d, e, and f atoms. ${}^{d}\tau^{3}$ torsion angle is defined by e, f, g, and h atoms. ${}^{e}\tau^{4}$ torsion angle is defined by f, g, j, and k atoms.

Table S10. Δ G_{GM} values (kcal/mol) and torsion angle values (degrees) of the DFT cis isomer of *d***1RS** and *d***1RR** in the anionic form.

Cmp	$\Delta \mathbf{G}$ GM		Torsio	n Angles			Intramolecular			
	(kcal/mol)		(°)							
		$\tau 1^a$	$ au_{\mathrm{N=N}}^{b}$	$\tau 2^c$	$\tau 3^d$	$\tau 4^e$				
d1RS	0.00	80.58	4.10	-177.42	59.78	-171.24	СН-π			
	5.31	42.99	11.82	43.83	-148.54	-168.65	COO- OH			
	7.55	-34.60	-12.60	-45.16	-91.84	-171.90	CH (g) – N (c)			
d1RR	0.00	92.60	0.60	-179.64	117.40	172.12	CH-π			
	8.24	32.92	12.66	46.95	91.67	171.42	OH – Ph			
	8.99	-44.36	-12.12	-47.45	145.61	169.09	COO- OH			

 ${}^{a}\tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${}^{b}\tau_{N=N}$ torsion angle is defined by b, c, d, and e atoms. ${}^{c}\tau^{2}$ torsion angle is defined by c, d, e, and f atoms. ${}^{d}\tau^{3}$ torsion angle is defined by e, f, g, and h atoms. ${}^{c}\tau^{4}$ torsion angle is defined by f, g, j, and k atoms.

Table S11. Δ G_{GM} values (kcal/mol) and torsion angle values (degrees) of the DFT conformers of *d***1RS** and *d***1RR** in the zwitterionic form.

Cmp	ΔG_{GM}		Torsio	Intramolecular			
	(kcal/mol)			interaction			
		$ au 1^a$	$ au_{\mathrm{N=N}}^{b}$	$\tau 2^c$	$\tau 3^d$	$ au 4^e$	
d1RS	0.00	9.94	-176.77	15.33	-94.72	-174.35	COO- NH
	1.22	0.17	-179.24	-179.70	-122.09	-171.38	CH (g) – N (d)
	19.92	34.28	23.43	18.84	-160.02	-171.50	COO OH
d1RR	0.00	7.97	-177.66	9.34	-78.55	173.78	COO- NH
	0.24	0.42	-179.90	-179.79	126.33	-68.48	CH (g) – N (d)
	17.56	-43.23	-16.84	-12.91	143.74	168.90	COO-OH
	18.60	30.29	22.88	17.24	85.56	170.30	CH ₂ OH-OH

 ${}^{a}\tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${}^{b}\tau_{N=N}$ torsion angle is defined by b, c, d, and e atoms. ${}^{c}\tau^{2}$ torsion angle is defined by c, d, e, and f atoms. ${}^{d}\tau^{3}$ torsion angle is defined by e, f, g, and h atoms. ${}^{e}\tau^{4}$ torsion angle is defined by f, g, j, and k atoms.

Cmp	Form	Isomer	Bond length (Å)ª				
			C (b) – N (c)	N (c) – N (d)	N (d) – C (e)		
d1RR	Anionic	trans	1.414	1.272	1.370		
	Anionic	cis	1.439	1.267	1.376		
	Zwitterionic	-	1.408	1.280	1.341		
d1RS	Anionic	trans	1.414	1.271	1.372		
	Anionic	cis	1.438	1.267	1.378		
	Zwitterionic	-	1.405	1.284	1.341		

Table S12. Bond length values (Å) of the DFT conformers of *d***1RR** and *d***1RS**.

^a Average bond lengths: C-N (1.43 Å), C=N (1.38 Å), N-N (1.47 Å) and N=N (1.24 Å)

Scheme S1: Synthesis of compound **2**. Reagents and conditions: a) catalytic KOH, dry toluene, 30 min under reflux, then addition of *R* glycidol at r.t., and eating at 90°C for 24h. b) Pd/C, H₂ (P= 400 psi) in EtOH, 2 h, r.t. c) fluoroboric acid (water solution, 48%), EtOH,-15°C, then isoamyl nitrite, r.t., 12 h. d) acetic acid, sodium acetate 1 h, r.t. For more details see the reference [20] in the manuscript; e) KOH (1.2 mmol) in EtOH, 2h, rt. f) 2,5-dimethoxytetrahydrofuran, H₂O, reflux, 2h, then ethanolamine in DCM, 24h, rt, overnight; g) acetic anhydride, DCM, rt.