Supplementary materials for

Exploring the photodynamic properties of two antiproliferative benzodiazopyrrole derivatives

Concetta Imperatore ${ }^{+1}$, Mohammadhassan Valadan ${ }^{+2}$, Luciana Tartaglione ${ }^{1,3}$, Marco Persico ${ }^{1}$, Anna Ramunno ${ }^{4}$, Marialuisa Menna ${ }^{1}$, Marcello Casertano ${ }^{1}$, Carmela Dell'Aversano ${ }^{1,3}$, Manjot Singh ${ }^{2}$, Maria Luisa d'Aulisio Garigliota ${ }^{4}$, Francesco Bajardi ${ }^{2}$, Elena Morelli ${ }^{1}$, Caterina Fattorusso ${ }^{* 1}$, Carlo Altucci ${ }^{* 2}$ and Michela Varra* ${ }^{* 1}$
1 Department of Pharmacy, University of Naples Federico II, Naples 80131, Italy.; cimperat@unina.it (C.I.); luciana.tartaglione@unina.it (L.T.); m.persico@unina.it (M.P.); mlmenna@unina.it (M.M.); marcello.casertano@unina.it (M.C.); dellaver@unina.it (C.D.A.); emorelli@unina.it (E.M.);
${ }^{2}$ Department of Physics "Ettore Pancini", University of Naples Federico II, Naples 80126, Italy; mohammadhassan.valadan@unina.it (M.V.); singh@fisica.unina.it (M.S.); fbajardi@fisica.unina.it (F.B.);
${ }^{3}$ CoNISMa - Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196 Rome, Italy
${ }^{4}$ Department of Pharmacy/DIFARMA, University of Salerno, 84084 Fisciano, Salerno, Italy; aramunno@unisa.it (A.R.); mdaulisiogarigliota@unisa.it (M.L.D.A.G.)
* Correspondence: varra@unina.it (Mi.V.), Tel.: +39-081-678540 (M.V.); altucci@na.infn.it (C.A.), Tel.: +39-081-676293; caterina.fattorusso@unina.it (C.F.) Tel.: +39-081-678544
+ These authors contributed equally to this work.

TABLE OF CONTENTS

Figure S1. UV spectra of $d \mathbf{1 R S}$ in the dark at different pH
Figure S2. A schematic representation of the instrument employed for fast UV spectroscopy 4
Figure S3. Cis to trans thermal conversion for $d \mathbf{1 R R}$ 5
Figure S4. Cis to trans and trans to cis conversion for $d \mathbf{1} \mathbf{R} \mathbf{R}$ at pH 5.7 and 7.0 6
Figure S5. Cis to trans and trans to cis conversion for $d \mathbf{1 R S}$ at pH 5.7 and 7.0 7
Figure S6. Changes in apparent rate constant ($k_{\text {obs }}$) in the pH range 5.7-8.0 8
Figure S7. UV-vis spectra of $d \mathbf{1 R R}$ and $d \mathbf{1 R S}$ in the pH range 7.0-1.5 8
Figure S8. Conformational families of trans (I-II) and cis (III-V) isomers of $d \mathbf{1 R S}$ 9
Figure S9. Conformational families of the zwitterionic form of $d 1$ RS 9
Figure S10. Putative d 1RS ionic species present in solution 10
Figure S11. LC-HRMS of sample 2: (A) Extracted ion Chromatogram at $m / z 350.1344$, (B) associated HRMS spectrum and (C)associated HRMS ${ }^{2}$ spectra11
Figure S12. HRMS ${ }^{2}$ spectrum of $d \mathbf{1 R R}$ obtained by using the ion at $m / z 350.1$ as precursor 13
Figure S13. The cleavage occurring for $d \mathbf{1 R R}$ in HRMS^{2} experiments giving rise to two main fragment ions 13
Figure S14. LC-HRMS of compound 1: (A) Extracted ion Chromatogram at $m / z 306.1453$ (B) associated HRMS and(C) HRMS ${ }^{2}$ spectra14
Figure S15. Enlargement range of the LC-HRMS² spectrum of the precursor ion of compound 1 16
Figure S16. HRMS and HRMS ${ }^{2}$ spectra of compound 2 17
Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 1 in $\mathrm{CD}_{3} \mathrm{OD}$ 18
Figure S18. Low-field enlargement of ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR spectrum of compound 1 in $\mathrm{CD}_{3} \mathrm{OD}$ 19
Figure S19. High-field enlargement of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of compound 1 in $\mathrm{CD}_{3} \mathrm{OD}$ 20
Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}$ 21
Figure $\mathrm{S} 21 .{ }^{13} \mathrm{C}$ NMR spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}$ 22
Table S1. Data coming from the interpolation of the apparent rate constants versus $\left[\mathrm{H}^{+}\right]$ 23
Table S2. Calculated percentages of ionic species of $d \mathbf{1 R R}$ and $d \mathbf{1 R S}$ in the pH range 1.0-8.0 24
Table S3. $\Delta \mathrm{E}_{\mathrm{gm}}$ values and torsion angle values of the MM conformers of trans isomer of $d \mathbf{1 R R}$ 25
Table S4. Δ Egm values and torsion angle values of the MM conformers of cis isomer $d \mathbf{1 R R}$ 26
 27
Table S6. $\Delta \mathrm{EGM}_{\mathrm{GM}}$ values and torsion angle values of the MM conformers of cis isomer $d \mathbf{1 R S}$ 28
Table S7. $\Delta \mathrm{E}_{\mathrm{Gm}}$ values and torsion angle values of the MM conformers of $d \mathbf{1 R R}$ in the zwitterionic form 29
Table S8. $\Delta \mathrm{E}_{\mathrm{Gm}}$ values and torsion angle values of the MM conformers of $d \mathbf{1 R S}$ in the zwitterionic form 30
Table S9. Δ Ggm values and torsion angle values of the DFT trans isomers of $\boldsymbol{d} \mathbf{1 R S}$ and $d \mathbf{1 R R}$ in the anionic form 31
Table S10. Δ GGm values and torsion angle values of the DFT cis isomer of $d \mathbf{1 R S}$ and $d \mathbf{1 R R}$ in the anionic form 32
Table S11. $\Delta \mathrm{GGm}_{\mathrm{Gm}}$ values and torsion angle values of the DFT conformers of $d \mathbf{1 R S}$ and $d \mathbf{1 R R}$ in the zwitterionic form 33
Table S12. Bond length values (\AA) of the DFT conformers of $d \mathbf{1 R R}$ and $d \mathbf{1 R S}$ 34
Scheme S1. Synthesis of compound 2 35

Figure S1. A. UV spectra of $d \mathbf{1 R S}$ in the dark at different pH : red $\mathrm{pH}=5.7$; blue $\mathrm{pH}=7.5$; green $\mathrm{pH}=$ 8.0. B, C, and D. UV spectra before (dashed line) and after (blue line) irradiation with LED at 435 $\mathrm{nm}(1 \mathrm{~min}, 1$ LED), at $\mathrm{pH}=8.0,7.5$, and 5.7 respectively.

Figure S2. The experimental setup for the fast UV spectroscopy. The light source is a Deuterium arc lamp, delivering a board emission band down to about 200 nm . This acts as the probe to monitor transient absorption spectra of the sample. Several optical filters are used to adjust the spectrum and the average power of the probe, preventing any perturbation of the sample by the probe light. A couple of UV-grade convex lenses are used to collimate diverging output light of the lamp and finally couple it to an optical fiber that carries the light to the detector. The cuvette is kept between the two lenses and collimated probe light passes through the sample. The detector is a spectrograph combined with an intensified CCD (ICCD), which is recording the transmitted light at a repetition rate of 10 or 25 Hz ; the latter being used for the faster processes in acidic solutions.

Figure S3. Fast UV spectroscopy of $d \mathbf{1 R R}$ at $\mathrm{pH}=8.0$. A and B. Cis to trans thermal conversion (in the dark $\mathrm{pH}=8.0$) for $d \mathbf{1 R R}$ and \mathbf{A}. Time-dependent absorption spectrum of $d \mathbf{1 R R}$. B. 2D graphical representation of the changes in the absorbance of $d \mathbf{1 R R}$ plotted as a function of time. C and D. The changes of absorbance at specific wavelengths 340 and 400 nm , together with their best fit (red solid lines). Reaction half-lives and apparent rate constants are deduced based on these fittings.

Figure S4. Some examples of the changes of absorbance at specific wavelengths 340 and 400 nm , measured by fast UV spectroscopy, together with their best fit (red solid lines). d1RR cis \rightarrow trans $(\mathbf{A}$ and $\mathbf{B})$ and trans \rightarrow cis $(\mathbf{C}$ and $\mathbf{D})$ conversion at $\mathrm{pH}=5.7$. d $\mathbf{1 R R}$ cis \rightarrow trans $(\mathbf{E}$ and $\mathbf{F})$ and trans \rightarrow cis $(\mathbf{G}$ and $\mathbf{H})$ conversion at $\mathrm{pH}=7.0$. Reaction half-lives and apparent rate constants are deduced based on these fittings.

Figure S5. Some examples of the changes of absorbance at specific wavelengths 340 and 400 nm, measured by fast UV spectroscopy, together with their best fit (red solid lines). d1RS cis \rightarrow trans $(\mathbf{A}$ and $\mathbf{B})$ and trans \rightarrow cis $(\mathbf{C}$ and $\mathbf{D})$ conversion at $\mathrm{pH}=5.7$. d1RS cis \rightarrow trans $(\mathbf{E}$ and $\mathbf{F})$ and trans \rightarrow cis $(\mathbf{G}$ and $\mathbf{H})$ conversion at $\mathrm{pH}=7.0$. Reaction half-lives and apparent rate constants are deduced based on these fittings.

Figure S6. Changes in apparent rate constant ($k_{\text {obs }}$) in the pH range 5.7-8.0. A. d1RS trans \rightarrow cis (irradiated at 435 nm). B. d1RS cis \rightarrow trans (thermal decay). Both the transitions were monitored at 400 nm (circle) and 340 nm (square). C. Titration curve of $d \mathbf{1 R S}$ in phosphate buffered solution obtained plotting the absorptions at 400 and 495 nm versus pH .

Figure S7. UV spectra of $d \mathbf{1 R R}(\mathbf{A})$ and $d \mathbf{1 R S}(\mathbf{B})$ acquired at different pH values. The arrows show the behaviours of the UV bands at different pH values (Panel A: 7.0, 5.5, 4.5, 3.5, 2.5, 1.5; Panel B: $7.0,5.5,4.5,3.5,2.5,1.5,0.5,0.2)$

I

II

III

IV

v

Figure S8. Conformational families of the trans (up; I and II) and cis (down; III-V) isomers of $d \mathbf{1 R S}$ in their anionic form. The lowest energy conformer of each family is displayed as ball \& sticks. Conformers belonging to subfamilies are superimposed by phenyl ring atoms and displayed as stick. Heteroatoms are coloured by atom type: O, red; N, blue. Hydrogens are omitted for clarity with the exception of those involved in intramolecular interactions (evidenced with a black dashed line).

I

III

IV

Figure S9. Conformational families of the zwitterionic form of $d \mathbf{1 R S}$. The lowest energy conformer of each family is displayed as ball \& sticks. Conformers belonging to subfamilies are superimposed by phenyl ring atoms and displayed as stick. Heteroatoms are coloured by atom type: O, red; N, blue. Hydrogens are omitted for clarity with the exception of those involved in intramolecular interactions (evidenced with a black dashed line).

Figure S10. Putative d 1RS ionic species present in solution in the pH range considered during the fast UV experiments according to DFT calculations. Dashed arrows indicate conformational equilibria between the different conformers and GM indicate the structure of the global minimum conformer Structures are relative to the obtained DFT minima and are displayed as ball \& sticks. Heteroatoms are coloured by atom type: O, red; N, blue. The molecular electrostatic potential surface is displayed.

Figure S11. LC-HRMS analyses of sample 2 on an LTQ Orbitrap XL $^{\text {TM }}$ Hybrid FT Mass Spectrometer system: (A) Extracted ion Chromatogram (XIC) obtained by selecting the ion at m / z 350.1344, (B) relevant HRMS spectrum and (C) relevant HRMS² spectrum (Collision Induced Dissociation mode) obtained by using the ion at $m / z 350.1$ as precursor.

Figure S12. HR-MS ${ }^{2}$ spectrum of d RR obtained by using the ion at $m / z 350.1$ as precursor. The sample was analyzed by direct infusion

Figure S13. Fragmentation site occurring for d 1RR originating two key fragment ions.

Figure S14. LC-HRMS analyses for sample 1 on an LTQ Orbitrap XL $^{\text {TM }}$ Hybrid FT Mass Spectrometer system: (A) Extracted ion Chromatogram (XIC) of the ion at m / z 306.1453, named compound 1, (B) associated HRMS spectrum and (C) associated HRMS ${ }^{2}$ spectrum (Collision Induced Dissociation mode) obtained by using the ion at $m / z 306.1$ as precursor.

Figure S15. (A) Enlargement range m / z 90-230 and (B) $m / z 230-305$ of the LC-HRMS ${ }^{2}$ spectrum of the compound 1.

Figure S16. (A) HRMS spectrum of compound 2 and (B) relevant HRMS^{2} spectrum obtained by using the ion at $m / z 306.1$ as precursor. The sample was analyzed by direct infusion.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S18. Low-field enlargement of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of compound $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S19. High-field enlargement of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of compound $\mathbf{1}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S21. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 2 in $\mathrm{CD}_{3} \mathrm{OD}$.

Table S1. All the apparent rate constants as a function of $\left[\mathrm{H}^{+}\right]$are fitted using the formula:

$$
y=\frac{b+c x}{a+x}
$$

			a^{*}		b^{*}		c^{*}	
			Value $\mathrm{x} 10^{-7}$	$\begin{aligned} & \hline \mathrm{SE}^{* *} \\ & \mathrm{x} 10^{-7} \end{aligned}$	Value $x 10^{-8}$	$\begin{aligned} & \hline \mathrm{SE}^{* *} \\ & \times 10^{-9} \end{aligned}$	Value $\mathrm{x} 10^{-2}$	$\begin{aligned} & \text { SE } E^{* *} \\ & \times 10^{-2} \end{aligned}$
$d \mathbf{R R}$	trans \rightarrow cis	340 nm	15.5	5.99	9.19	41.8	35.9	5.67
		400 nm	24.0	2.46	14.97	14.2	1.88	3.07
	cis \rightarrow trans	340 nm	30.0	1.10	2.45	10.2	27.8	3.41
		400 nm	8.18	2.45	0.115	5.25	23.8	2.52
d1RS	trans \rightarrow cis	340 nm	33.8	6.98	25.7	47.3	2.62	5.46
		400 nm	116	72.0	57.8	330	156	121
	cis \rightarrow trans	340 nm	30.6	5.01	0.440	6.33	52.9	5.47
		400 nm	78.9	35.5	9.19	42.78	97.6	59.8

*All data are reported as absolute values. ** Standard Error on each value.

According to references in the manuscript [27],
$\mathrm{b}=\mathrm{k}_{\mathrm{T} \rightarrow \mathrm{c}} \mathrm{x}$ KaT ;
$\mathrm{c}=\mathrm{kTH}+\rightarrow \mathrm{CH}+$
and $\mathrm{a}=\mathrm{K}_{\mathrm{a}} \mathrm{T}$
where $\mathrm{k}_{\mathrm{T} \rightarrow \mathrm{C}}$ is the rate constant for the trans \rightarrow cis isomerization; $\mathrm{K}_{\mathrm{a}} \mathrm{T}$ is the equilibrium constant for $\operatorname{trans} \mathrm{H}^{+} \rightarrow$ trans+ H^{+}; c is the rate constant for the reaction $\operatorname{trans} \mathrm{H}^{+} \rightarrow$ cis H^{+}under irradiation, whereas all these parameters are connected to the cis form during the thermal decay.

Table S2. Calculated percentages of ionic species of $d \mathbf{1 R R}$ and $d \mathbf{1 R S}$ in the pH range 1.0-8.0.

pH	\% Ionic forms			
	Protonated	Zwitterionic	Anionic	Neutral
$\mathbf{8 . 0}$	0	5	95	0
$\mathbf{7 . 5}$	0	14	86	0
$\mathbf{7 . 0}$	0	33	67	0
$\mathbf{6 . 7}$	0	50	50	0
$\mathbf{6 . 5}$	0	61	39	0
$\mathbf{6 . 0}$	0	83	17	0
$\mathbf{5 . 7}$	0	91	9	0
$\mathbf{5 . 0}$	0	98	2	0
$\mathbf{4 . 0}$	0	100	0	0
$\mathbf{3 . 0}$	4	96	0	0
$\mathbf{2 . 0}$	28	72	0	0
$\mathbf{1 . 0}$	80	20	0	0

Table S3. $\Delta \mathrm{Egm}_{\mathrm{g}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the MM conformers of trans isomer of $d \mathbf{1 R R}$.

Sub- family	$\Delta \mathrm{EGM}_{\mathrm{GM}}$	$(\%)$	Torsion Angles	Intramolecular interactions

			$\tau 1^{c}$	$\tau_{\mathrm{N}=\mathrm{N}}{ }^{\text {d }}$	$\tau 2^{e}$	$\tau 3^{f}$	$\tau 4^{g}$	
Ia	0.00-4.96	21.5	-4.94	179.90	-4.30	-63.11	169.89	$\mathrm{CH}_{2}(\mathrm{j})-\mathrm{N}(\mathrm{c})$
Ib	0.92-4.96	16.3	0.61	-179.89	-9.04	95.83	176.13	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{c})$
IIc	1.37-4.98	18.2	2.67	-179.45	155.49	-62.51	176.33	$\mathrm{CH}_{2}(\mathrm{~g})-\mathrm{N}(\mathrm{d})$
IId	2.40-4.94	20.2	-1.85	179.66	-156.07	100.29	177.41	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$
Ie	2.31-4.99	10.7	-6.35	179.95	-0.20	-59.94	-74.41	$\mathrm{OH}(\mathrm{k})-\mathrm{N}(\mathrm{c})$
IIf	3.62-4.96	5.8	-2.06	179.49	-155.47	-60.25	-68.39	$\mathrm{OH}(\mathrm{k})-\mathrm{N}(\mathrm{d})$
Ig	3.80-4.93	3.8	-0.43	-179.94	14.39	132.41	-64.48	$\mathrm{CH}(\mathrm{~g})-\mathrm{N}(\mathrm{c})$
Ih	3.91-4.96	3.2	0.04	180.00	15.19	130.08	62.22	$\begin{aligned} & \mathrm{OH}(\mathrm{k})-\mathrm{N}(\mathrm{c}) \\ & \mathrm{CH}(\mathrm{~g})-\mathrm{N}(\mathrm{c}) \end{aligned}$

${ }^{a}$ The values reported refer to the lowest and the highest energy conformers of the sub-family. ${ }^{b}$ The values reported refer to the lowest energy conformer of the sub-family. ${ }^{c} \tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${ }^{\mathrm{d}} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by b, c, d , and e atoms. ${ }^{e} \tau 2$ torsion angle is defined by $\mathrm{c}, \mathrm{d}, \mathrm{e}$, and f atoms. ${ }^{f} \tau 3$ torsion angle is defined by e, f, g, and h atoms. ${ }^{g} \tau 4$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S4. $\Delta \mathrm{E}_{\mathrm{GM}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the MM conformers of cis isomer $d \mathbf{1 R R}$.

Subfamily	$\begin{gathered} \Delta E_{G M} \\ (\mathrm{kcal} / \mathrm{mol})^{a} \end{gathered}$	Number of conf. (\%)		Torsion Angles $\left({ }^{\circ}\right)^{b}$				Intramolecular interactions
			$\tau 1{ }^{\text {c }}$	$\tau_{\mathrm{N}=\mathrm{N}^{d}}$	$\tau 2^{e}$	$\tau 3^{f}$	$\tau 4{ }^{8}$	
IVj	0.00-4.99	27.2	51.76	4.78	65.08	100.61	173.62	$\mathrm{CH}_{2} \mathrm{OH}-\mathrm{OH}$
								$\mathrm{CH}(\mathrm{g})-\mathrm{N}$ (c)
IIIk	0.81-4.96	36.0	-60.80	-3.80	127.57	-63.57	174.46	$\mathrm{CH}_{2}(\mathrm{j})-\mathrm{N}(\mathrm{d})$
IIIi	1.64-5.00	24.2	53.89	4.03	-128.88	105.70	176.51	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$
VL	1.14-4.96	12.6	-60.49	-2.97	-86.03	124.89	177.97	$\mathrm{COO}-\mathrm{OH}$
								$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{c})$

${ }^{a}$ The values reported refer to the lowest and the highest energy conformers of the sub-family. ${ }^{b}$ The values reported refer to the lowest energy conformer of the sub-family. ${ }^{c} \tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${ }^{\mathrm{d}} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by b, c, d, and e atoms. ${ }^{e} \tau 2$ torsion angle is defined by $\mathrm{c}, \mathrm{d}, \mathrm{e}$, and f atoms. ${ }^{f} \tau 3$ torsion angle is defined by $\mathrm{e}, \mathrm{f}, \mathrm{g}$, and h atoms. ${ }^{g} \tau 4$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S5. $\Delta \mathrm{Egm}_{\mathrm{g}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the MM conformers of trans isomer of $d \mathbf{1 R S}$.

Subfamily	$\Delta E_{G M}$$(\mathrm{kcal} / \mathrm{mol})^{\mathrm{a}}$	Number of conf. (\%)		Torsion Angles$\left({ }^{\circ}\right)^{b}$				Intramolecular interactions
			$\tau 1^{c}$	$\tau_{\mathrm{N}=\mathrm{N}}{ }^{\text {d }}$	$\tau 2^{e}$	$\tau 3^{f}$	$\tau 4{ }^{8}$	
Ia	0.00-4.98	31.9	5.68	-179.89	4.51	63.03	-169.90	$\mathrm{CH}_{2}(\mathrm{j})-\mathrm{N}(\mathrm{c})$
Ib	0.99-4.97	12.8	0.51	179.88	9.00	-95.82	-176.13	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{c})$
IIc	1.38-4.99	20.9	-2.64	179.46	-155.56	62.53	-176.33	$\mathrm{CH}_{2}(\mathrm{~g})-\mathrm{N}(\mathrm{d})$
IId	2.40-4.97	13.0	2.07	-179.66	156.58	-100.39	-177.42	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$
Ie	2.30-4.96	10.9	6.54	-179.93	0.36	59.89	74.38	$\mathrm{OH}(\mathrm{k})-\mathrm{N}(\mathrm{c})$
IIf	3.63-4.95	7.1	2.01	-179.49	155.41	60.28	68.40	$\mathrm{OH}(\mathrm{k})-\mathrm{N}(\mathrm{d})$
Ig	3.81-4.97	3.4	0.35	179.93	-14.40	-132.38	64.48	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{c})$
								$\mathrm{CH}_{2}(\mathrm{j})-\mathrm{N}(\mathrm{c})$

${ }^{a}$ The values reported refer to the lowest and the highest energy conformers of the sub-family. ${ }^{b}$ The values reported refer to the lowest energy conformer of the sub-family. ${ }^{c} \tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${ }^{\mathrm{d}} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e atoms. ${ }^{e} \tau 2$ torsion angle is defined by $\mathrm{c}, \mathrm{d}, \mathrm{e}$, and f atoms. ${ }^{f} \tau 3$ torsion angle is defined by $\mathrm{e}, \mathrm{f}, \mathrm{g}$, and h atoms. ${ }^{g} \tau 4$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S6. $\Delta \mathrm{E}_{\mathrm{GM}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the MM conformers of cis isomer $d \mathbf{1 R S}$.

Sub-	$\Delta \mathrm{Egm}^{\text {g }}$	Number of		Torsion Angles			Intramolecular interactions	
	($\mathrm{kcal} / \mathrm{mol})^{\text {a }}$	$\left({ }^{\circ}\right)^{\text {b }}$						
			$\tau 1^{c}$	$\tau_{\mathrm{N}=\mathrm{N}^{d}}$	$\tau 2^{e}$	$\tau 3^{f}$	$\tau 4^{g}$	
IVj	0.00-4.99	4.4	49.85	4.96	-63.61	100.55	175.134	$\mathrm{CH}_{2} \mathrm{OH}-\mathrm{OH}$
								$\mathrm{CH}(\mathrm{g})-\mathrm{N}$ (c)
IIIk	0.13-4.97	50.3	55.29	4.06	127.70	64.12	-176.13	$\mathrm{CH}_{2}(\mathrm{j})-\mathrm{N}(\mathrm{d})$
V	0.40-5.00	29.1	59.90	3.05	85.12	125.21	179.40	$\mathrm{COO}-\mathrm{OH}$
,							17.40	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{c})$
IIII	1.17-4.98	16.2	57.71	4.16	120.84	104.10	-177.56	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$

${ }^{a}$ The values reported refer to the lowest and the highest energy conformers of the sub-family. ${ }^{b}$ The values reported refer to the lowest energy conformer of the sub-family. ${ }^{c} \tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${ }^{d} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by b, c, d, and e atoms. ${ }^{e} \tau 2$ torsion angle is defined by $\mathrm{c}, \mathrm{d}, \mathrm{e}$, and f atoms. ${ }^{f} \tau 3$ torsion angle is defined by e, f, g, and h atoms. ${ }^{g} \tau 4$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S7. $\Delta \mathrm{E}_{\mathrm{gm}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the MM conformers of $d \mathbf{1 R R}$ in the zwitterionic form.

III

IV

Sub-	$\Delta E_{G M}$	Number of	Torsion Angles	Intramolecular
family	$(\mathrm{kcal} / \mathrm{mol})^{\mathrm{a}}$	conf. $(\%)$	$\left(^{\circ}\right)^{\mathrm{b}}$	interactions

| | | | $\tau 1^{c}$ | $\tau_{\mathrm{N}=\mathrm{N}^{d}}$ | $\tau 2^{e}$ | $\tau 3^{f}$ | $\tau 4^{g}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IId | $0.00-4.98$ | 66.0 | 0.00 | 179.74 | 179.99 | 122.25 | 176.88 | $\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$ |
| IIc | $1.89-4.89$ | 16.1 | -0.26 | -179.94 | 178.66 | -63.89 | 176.76 | $\mathrm{CH} 2(\mathrm{~g})-\mathrm{N}(\mathrm{d})$ |
| I | $2.70-4.99$ | 14.1 | -0.44 | -176.46 | 28.47 | 134.09 | 175.98 | - |
| IIIi | $3.96-4.95$ | 1.1 | 1.62 | 76.65 | -170.50 | 115.84 | 176.91 | $\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$ |
| Im | $4.01-4.79$ | 0.4 | 0.60 | 175.55 | -37.58 | 109.98 | 176.71 | $\mathrm{COO}-\mathrm{NH}$ |
| IVn | $4.62-4.98$ | 1.5 | 4.67 | 61.95 | 29.93 | 121.07 | 175.21 | $\mathrm{CH} 2 \mathrm{OH}-\mathrm{OH}$ |
| IIf | $4.63-4.87$ | 0.8 | -0.09 | 179.04 | 179.63 | -58.55 | -69.31 | $\mathrm{OH}(\mathrm{k})-\mathrm{N}(\mathrm{d})$ |

${ }^{a}$ The values reported refer to the lowest and the highest energy conformers of the sub-family. ${ }^{b}$ The values reported refer to the lowest energy conformer of the sub-family. ${ }^{c} \tau_{1}$ torsion angle is defined by a, b, c and d atoms. ${ }^{\mathrm{d}} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e atoms. ${ }^{c} \tau 2$ torsion angle is defined by $\mathrm{c}, \mathrm{d}, \mathrm{e}$, and f atoms. $f \tau 3$ torsion angle is defined by $\mathrm{e}, \mathrm{f}, \mathrm{g}$, and h atoms. $\varepsilon_{\tau} 4$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S8. $\Delta \mathrm{E}_{\mathrm{GM}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the MM conformers of d 1RS in the zwitterionic form.

Sub-	$\Delta \mathrm{E}_{\mathrm{GM}}$	Number	Torsion Angles	Intramolecular
family	$(\mathrm{kcal} / \mathrm{mol})^{\mathrm{a}}$		$\left({ }^{\circ}\right)^{\mathrm{b}}$	interactions

			$\tau 1^{c}$	$\tau_{\mathrm{N}=\mathrm{N}^{d}}$	$\tau 2^{e}$	$\tau 3^{f}$	$\tau 4^{g}$	
IId	$0.00-4.88$	35.83	0.00	-179.73	-179.97	-122.58	-176.80	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$
IIc	$1.75-4.78$	36.70	0.26	179.74	178.75	63.97	176.63	$\mathrm{CH}_{2}(\mathrm{~g})-\mathrm{N}(\mathrm{d})$
I	$2.64-4.96$	15.38	0.50	176.60	-27.87	134.37	-175.81	-
IIIi	$3.50-4.88$	0.56	-0.90	-80.05	170.95	-115.99	-176.787	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$
IIf	$4.54-4.97$	2.72	0.17	-178.79	-179.48	58.01	66.53	$\mathrm{OH}(\mathrm{k})-\mathrm{N}(\mathrm{d})$
Im	$3.62-4.77$	8.54	-0.50	-175.56	38.00	-111.00	-174.51	$\mathrm{COO}-\mathrm{NH}$
IVn	$4.04-4.73$	0.28	6.91	120.77	-50.56	-130.13	-172.43	$\mathrm{CH} 2 \mathrm{OH}-\mathrm{OH}$

${ }^{a}$ The values reported refer to the lowest and the highest energy conformers of the sub-family. ${ }^{b}$ The values reported refer to the lowest energy conformer of the sub-family. ${ }^{c} \tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${ }^{d} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by b, c, d, and e atoms. ${ }^{{ }^{\mathrm{c}} \tau 2}$ torsion angle is defined by $\mathrm{c}, \mathrm{d}, \mathrm{e}$, and f atoms. $f \tau 3$ torsion angle is defined by e, f, g, and h atoms. $\varepsilon \tau 4$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S9. $\Delta \mathrm{G}_{\mathrm{Gm}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the DFT trans isomers of $d \mathbf{1 R S}$ and $d \mathbf{1 R R}$ in the anionic form.

Cmp	$\Delta \mathrm{GGM}_{\mathrm{g}}$ ($\mathrm{kcal} / \mathrm{mol}$)	Torsion Angles (${ }^{\circ}$)					Intramolecular interaction
d1RS		$\tau 1^{a}$	$\tau_{\mathrm{N}=\mathrm{N}}{ }^{\text {b }}$	$\tau 2^{c}$	$\tau 3^{d}$	$\tau 4^{e}$	
	0.00	1.88	179.99	0.29	61.71	-172.13	$\mathrm{CH}_{2}(\mathrm{j})-\mathrm{N}(\mathrm{c})$
	1.32	-0.97	-179.99	0.28	63.52	-62.41	$\mathrm{CH}_{2}(\mathrm{j})$-N (c)
d1RR	0.00	-2.30	179.28	-1.51	-62.72	63.22	$\mathrm{CH}_{2}(\mathrm{j})-\mathrm{N}(\mathrm{c})$
	4.93	4.50	-179.37	4.71	122.89	173.84	$\mathrm{CH}(\mathrm{g})-\mathrm{N}$ (c)

${ }^{a} \tau_{1}$ torsion angle is defined by $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d atoms. ${ }^{\mathrm{b}} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by b, c, d, and e atoms. ${ }^{c} \tau 2$ torsion angle is defined by c, d, e, and f atoms. ${ }^{d} \tau 3$ torsion angle is defined by e, f, g, and h atoms. ${ }^{e} \tau 4$ torsion angle is defined by f, g, j, and k atoms.

Table S10. $\Delta \mathrm{G}_{\mathrm{gm}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the DFT cis isomer of $d \mathbf{1 R S}$ and $d \mathbf{1 R R}$ in the anionic form.

Cmp		Torsion Angles $\left({ }^{\circ}\right)$					Intramolecular interaction
		$\tau 1^{a}$		$\tau 2^{\text {c }}$	$\tau 3^{d}$	$\tau 4^{e}$	
d1RS	0.00	80.58	4.10	-177.42	59.78	-171.24	$\mathrm{CH}-\pi$
	5.31	42.99	11.82	43.83	-148.54	-168.65	$\mathrm{COO}-\mathrm{OH}$
	7.55	-34.60	-12.60	-45.16	-91.84	-171.90	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{c})$
$d 1 \mathrm{RR}$	0.00	92.60	0.60	-179.64	117.40	172.12	CH- π
	8.24	32.92	12.66	46.95	91.67	171.42	$\mathrm{OH}-\mathrm{Ph}$
	8.99	-44.36	-12.12	-47.45	145.61	169.09	$\mathrm{COO}-\mathrm{OH}$

${ }^{a} \tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${ }^{\mathrm{b}} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e atoms. ${ }^{c}{ }^{c} 2$ torsion angle is defined by c, d, e, and f atoms. ${ }^{d} \tau 3$ torsion angle is defined by $\mathrm{e}, \mathrm{f}, \mathrm{g}$, and h atoms. ${ }^{e} 44$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S11. $\Delta \mathrm{Ggm}_{\mathrm{g}}$ values ($\mathrm{kcal} / \mathrm{mol}$) and torsion angle values (degrees) of the DFT conformers of $d \mathbf{R} \mathbf{R}$ and $d \mathbf{1 R R}$ in the zwitterionic form.

Cmp	$\begin{gathered} \Delta \mathrm{G}_{\mathrm{Gm}} \\ \text { (kcal/mol) } \end{gathered}$	Torsion Angles $\left({ }^{\circ}\right)$					Intramolecular interaction
d1RS		$\tau 1^{a}$	$\tau_{\mathrm{N}=\mathrm{N}}{ }^{\text {b }}$	$\tau 2^{c}$	$\tau 3^{\text {d }}$	$\tau 4^{e}$	
	0.00	9.94	-176.77	15.33	-94.72	-174.35	COO- NH
	1.22	0.17	-179.24	-179.70	-122.09	-171.38	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$
	19.92	34.28	23.43	18.84	-160.02	-171.50	$\mathrm{COO} \cdot \mathrm{OH}$
$d 1 \mathrm{RR}$	0.00	7.97	-177.66	9.34	-78.55	173.78	COO- NH
	0.24	0.42	-179.90	-179.79	126.33	-68.48	$\mathrm{CH}(\mathrm{g})-\mathrm{N}(\mathrm{d})$
	17.56	-43.23	-16.84	-12.91	143.74	168.90	$\mathrm{COO}{ }^{-\mathrm{OH}}$
	18.60	30.29	22.88	17.24	85.56	170.30	$\mathrm{CH}_{2} \mathrm{OH}-\mathrm{OH}$

${ }^{a} \tau_{1}$ torsion angle is defined by a, b, c, and d atoms. ${ }^{b} \tau_{\mathrm{N}=\mathrm{N}}$ torsion angle is defined by $\mathrm{b}, \mathrm{c}, \mathrm{d}$, and e atoms. ${ }^{c}{ }^{\mathrm{c}} 2$ torsion angle is defined by c, d, e, and f atoms. ${ }^{d} \tau 3$ torsion angle is defined by $\mathrm{e}, \mathrm{f}, \mathrm{g}$, and h atoms. ${ }^{e} 44$ torsion angle is defined by $\mathrm{f}, \mathrm{g}, \mathrm{j}$, and k atoms.

Table S12. Bond length values (\AA) of the DFT conformers of $d \mathbf{1 R R}$ and $d \mathbf{1 R S}$.

Cmp	Form	Isomer	Bond length (${ }^{\text {a }}{ }^{\text {a }}$		
			$\mathrm{C}(\mathrm{b})-\mathrm{N}(\mathrm{c})$	N (c) - N (d)	$\mathrm{N}(\mathrm{d})-\mathrm{C}(\mathrm{e})$
$d 1 \mathrm{RR}$	Anionic	trans	1.414	1.272	1.370
	Anionic	cis	1.439	1.267	1.376
	Zwitterionic	-	1.408	1.280	1.341
d1RS	Anionic	trans	1.414	1.271	1.372
	Anionic	cis	1.438	1.267	1.378
	Zwitterionic	-	1.405	1.284	1.341

${ }^{\text {a }}$ Average bond lengths: $\mathrm{C}-\mathrm{N}(1.43 \AA), \mathrm{C}=\mathrm{N}(1.38 \AA), \mathrm{N}-\mathrm{N}(1.47 \AA)$ and $\mathrm{N}=\mathrm{N}(1.24 \AA)$

Scheme S1: Synthesis of compound 2. Reagents and conditions: a) catalytic KOH , dry toluene, 30 min under reflux, then addition of R glycidol at r.t., and eating at $90^{\circ} \mathrm{C}$ for 24 h . b) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}(\mathrm{P}=400$ psi) in $\mathrm{EtOH}, 2 \mathrm{~h}, \mathrm{r} . \mathrm{t} . \mathrm{c}$) fluoroboric acid (water solution, 48%), $\mathrm{EtOH},-15^{\circ} \mathrm{C}$, then isoamyl nitrite, r.t., 12 h . d) acetic acid, sodium acetate 1 h , r.t. For more details see the reference [20] in the manuscript; e) $\mathrm{KOH}(1.2 \mathrm{mmol})$ in $\mathrm{EtOH}, 2 \mathrm{~h}, \mathrm{rt} . \mathrm{f})$ 2,5-dimethoxytetrahydrofuran, $\mathrm{H}_{2} \mathrm{O}$, reflux, 2 h , then ethanolamine in DCM, 24h, rt, overnight; g) acetic anhydride, DCM, rt.

